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Abstract—Vehicular ad-hoc networks (VANETs) that enable
communication among vehicles and between vehicles and un-
manned aerial vehicles (UAVs) and cellular base stations have re-
cently attracted significant interest from the research community,
due to the wide range of practical applications they can facilitate
(e.g. road safety, traffic management, pollution monitoring and
rescue missions). Despite this increased research activity, the
high vehicle mobility in a VANET raises concerns regarding the
robustness and adaptiveness of such networks to support system
applications. Instead of allowing direct communications between
every vehicle to UAVs or base stations, clustering methods will
potentially be efficient to overcome bandwidth, power consump-
tion and other resource issues. Using the clustering technique,
neighbouring vehicles are grouped into clusters with a particular
vehicle elected as the Custer Head (CH) in each cluster. Each
vehicle communicates with UAVs or base stations through the
CH of the associated cluster. Despite the potential advantages, a
major challenge for clustering techniques is to maintain cluster
stability in light of vehicle mobility and radio fluctuation. In this
paper, we propose a Stable Clustering Algorithm for vehicular
ad hoc networks (SCalE). Two novel features are incorporated
into the algorithm: knowledge of the vehicles behaviour for
efficient selection of CHs, and the employment of a backup CH
to maintain the stability of cluster structures. By simulation
methods, these are shown to increase stability and improve
performance when compared to existing clustering algorithms.

Index Terms—Vehicular Ad-Hoc Networks, Clustering, Cluster
Stability, UAVs, Networking.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) are highly mobile
wireless networks, which consist of vehicles that communicate
with each other in a multi-hop manner. VANETs are self-
organising and rapidly deployable networks that ultimately do
not require a permanent infrastructure [1], [2].

Whilst they are individually able to support a multitude of
applications in a wide range of contexts, cooperation between
vehicles and UAVs or cellular base stations, as depicted in
Figure 1, can be extremely beneficial. For instance, road safety
can be drastically improved. In Europe, the The European
Telecommunications Standards Institute (ETSI) has even des-
ignated a specific type of broadcast message known as Coop-
erative Awareness Messages (CAMs), containing information
relevant to safety related applications (e.g. vehicle speed and
position)[3].

Networking between vehicles and UAVs or cellular base
stations can keep the network connected in the event of

disruptions due to obstacles, poor weather conditions or natural
disasters that destroyed existing communication infrastructure.

Unfortunately, concerns on the robustness and adaptiveness
of such networks to support system applications arise in light
of the the high mobility that characterises the nodes in a
vehicular ad-hoc network. A main challenge is handling the
rapid changes in the network topology and vehicular density,
which significantly affects the performance of the network [4],
[5]. Furthermore direct communication between every vehicle
and UAV or base station, can generate serious resource issues
related to bandwidth, processing, and power consumption.

Clustering techniques, which aim to partition the ground
network vehicles into virtual groups known as clusters (Fig-
ure 1), can provide an effective solution for the aforementioned
problems. A vehicle is selected to be a Cluster Head (CH)
to manage the communication amongst its Cluster Members
(CM) as well as interacting with other layers of a cooperative
network (e.g. unmanned aerial vehicles, road side units or
cellular base stations) as in Figure 1. Therefore, clustering
algorithms are particularly effective in limiting the channel
contention assuring fair channel access to vehicles within
the cluster. Moreover, by limiting the number of vehicles
that can connect to UAVs or cellular base stations, clustering
techniques can provide spatial reuse of resources such as the
bandwidth.

Despite the potential advantages, a major challenge for
clustering techniques is to maintain cluster stability in light
of vehicle mobility and radio fluctuation. In this paper we
propose a Stable Clustering Algorithm for vehicular ad hoc
networks (SCalE), in order to address the aforementioned is-
sues and facilitate the networking between clustered VANETs
and UAVs or cellular base stations. Novel contributions of this
work include:

• Presenting a stable cluster head selection scheme that is
achieved using the knowledge of the vehicle’s behaviour.

• Presenting a stable cluster maintenance scheme using a
backup cluster head (CHBkp).

The rest of the paper is organised as follows. Section II briefly
reviews the current literature on the topic. Section III presents
the CH selection procedure and the features involved in the
process. Section IV describes the selection process of a stable
CHBkp and how the SCalE algorithm operates to maintain
cluster structures. Performance results are presented in Section
V, with concluding remarks provided in SectionVI.
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Fig. 1. Clustering scenario: vehicle cluster (circle dashed line) with cluster
head (faded red), grouping all cluster members (black) within range. For
networking with UAVs or cellular base station only CHs are allowed direct
communication.

II. RELATED WORK

The first clustering algorithms were initially designed for
Mobile Ad-Hoc Networks (MANETs) [6], [7], [8]. Among
these MANET clustering algorithms the Highest-Degree [8]
requires the vehicle with the highest nodal degree in the
neighbourhood to undertake the role of cluster head.

Many clustering techniques designed for VANETs have also
been proposed. A fast clustering algorithm that focused mostly
on the rapid construction of the cluster rather than on the stable
cluster head selection, is described in [9].

By contrast, mobility metrics are widely used to select a
stable CH [10], [11]. The authors in [10] propose a clustering
approach based on affinity propagation. The metrics used are
a combination of current and future positions. Each node
makes its clustering decision every clustering interval (CI).
Depending on the length of the CI, which is arbitrary, the
performance may rapidly diminish. The VMaSC algorithm,
presented in [11], employs the average relative speed amongst
neighbouring vehicles as a mobility metric, to select the CH.

The stability of the cluster head is improved in [12] due
to lane detection. Every lane is assigned a different weight
based on the traffic flow, which in turn will help evaluate the
decision metric to elect the CH. However, lane detection is
not always feasible, because it requires specific equipment.

III. CLUSTER HEAD ELECTION

Algorithm 1 summarises the CH election process and cluster
formation. Through periodical exchange of CAM messages
every k vehicle can acquire information to calculate the CH
selection index ξk. The vehicle with the lowest ξ will then
be selected to be the CH, whilst all its free neighbours will
become CMs.

A. CAM packet structure

The structure of the CAM used is depicted in Figure 2. It
contains the following embedded information field of every
vehicle k: vehicle state, vehicle ID γk, cluster ID (that is
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Fig. 2. Cooperative awareness messages (CAMs) structure of the information
embedded. For simplicity every entrance is numbered.

the cluster head ID), speed information vk, position (xk, yk)
(expressed as GPS coordinates), Φk defined as the set of all
cars within range of vehicle k, CH selection index ξk, flow
direction and vehicle behaviour Bk. For the sake of brevity,
every data entry is henceforth denoted by a number as shown
in Figure 2.

The vehicle state (field number 1 of the packet structure),
can assume two different values: cluster head (CH) and
cluster member (CM). Note that the vehicle’s behaviour, field
number 9 in Figure 2, represents a piece of information newly
introduced in this work. This is a single bit of information
(0/1) which indicates whether the vehicle will leave the
system (i.e. road way) at the next side exit. Obtaining such
information is fairly straightforward since the vehicle itself
can easily record this information either when it decides to
take a turn or by combining input from the steering wheel
and GPS tracking.

B. Cluster Head Selection Index

The CH selection index, ξ, is a parameter periodically
calculated by every vehicle for the purposes of CH election.
It is defined as a combination of different metrics, which are
categorised as follows. The value of Bk is set to 1 if the
vehicle intends to leave the system and to 0 otherwise, as
expressed in (1). The information can improve the decision
making process with regards to the election of a stable CH and
backup CH (CHBkp). A vehicle willing to leave the system at
the side exit cannot act as a stable CH, therefore the vehicle
in question will be excluded from the election procedure. It
represents the first step in the CH election, as it is used to
filter out unstable candidates for the role.

Bk
.
=

1, if k is leaving the road way

0, if k is not leaving the road way.
(1)

The stability of the clusters can degrade rapidly in a highly
mobile environment. Hence, the relative mean speed Sk,
defined for every vehicle k, represents a good measure of the
stability of a vehicle in a VANET. This metric is evaluated as
the average difference in velocities v between the reference
vehicle k and all N neighbouring vehicles within its range,
i.e. those belonging to the set Φk. Moreover, the value is
normalised to be within the range [0, 1]. The relative mobility
is thus expressed as

Sk
.
=

∑N
n=1 |vk − vn|

N ·max {Ωk}
, (2)

where the normalising factor is the maximum value of the
set Ωk. This is defined as the set of all the vehicles speed



differences |vk − vn| within the set Φk, provided the vehicles
are moving (v > 0), and is formally expressed as

Ωk
.
={|vk−vn| | (vk, vn)>0 ;∀n ∈ Φk} . (3)

Another metric that can be used to identify a stable CH
is related to the vehicle position relative to its neighbours. A
smaller normalised relative mean distance Dk indicates that
the neighbouring vehicles are closer to the potential CH. Given
the GPS coordinates of two vehicles k and n, we can write
the x and y distance between the two at an arbitrary time as

∆xk,n = |xk − xn|, (4)

∆yk,n = |yk − yn|. (5)

Consequently, the mean relative distance Dk of vehicle k is
defined as the mean Euclidean distance. Furthermore, normal-
ising by the maximum value of the set Zk, as shown in (6),
makes Sk and Dk comparable:

Dk
.
=

∑N
n=1

√
[∆xk,n]

2
+ [∆yk,n]

2

N ·max {Zk}
. (6)

The set Zk is composed of all the Euclidean distances between
the vehicles belonging to the set Φk, that is

Zk
.
=

{√
[∆xk,n]

2
+[∆yk,n]

2

∣∣∣∣ ∀n ∈ Φk

}
. (7)

Finally the CH selection index is evaluated as the sum of the
normalised values of the mean relative speed and distances,

ξk
.
= Sk+Dk, (8)

and as such will always fall in the range [0, 2].
Upon periodical exchange of CAMs amongst all the vehicles

in the system, the kth vehicle can record a list of all CH
selection indexes ξ belonging to every nth vehicle in its
neighbour’s set Φk. The set of all ξ for every neighbour’s
set Φk is therefore defined as:

Ψk={ξn | ∀n ∈Φk} . (9)

Denoting γk as the ID of the vehicle k, the vehicle will be
elected CH if its CH selection index ξk is found to be smaller
than ξn, the selection index of any other vehicle n in range,
that belongs to the set Φk:

CH = {γk | ξ(γk) ≤ min {Ψk}} (10)

IV. CLUSTER MAINTENANCE

A. Backup CH selection

After cluster formation, a maintenance phase comes into
effect that aims to maintain cluster structure (Algorithm 2). To
this end, another novel contribution of this work is introduced:
the backup CH (CHBkp). This is defined as the most suitable
CM to become CH (without re-starting the CH election) if
the current head is forced to resign from its role. The choice
of a stable CHBkp is based on CH selection index ξ, and
on the coverage that a vehicle has over its existing cluster.
In choosing a stable CHBkp, it is important that the vehicle

selected will have the smallest repercussions in terms of losing
CMs, and resulting reaffiliations. Consequently an additional
metric, called cardinality (11), is introduced to take the vehicle
coverage into account.

Algorithm 1 Cluster Head Election
Require: ∀k in the system that do not belong to a cluster yet

1: for each kth vehicle do
2: Evaluate ξk using (2), (6) and (8)
3: end for
4: for each kth vehicle do
5: if k is in range of a CHi then
6: k← CMi

7: else
8: Start CH election process:
9: Eliminate unstable vehicles with (1)

10: if (10) then
11: k← CHi

12: end if
13: end if
14: end for
15: go to CLUSTER MAINTENANCE

Let us define the ith cluster Θi as the set of all vehicles
that belong to the same cluster and share the same CH. The
CH keeps record of CMs in Θi, and also has knowledge of
the neighbours set Φk of every kth CM, as shown in Figure 2.
We can now define the cardinality degree index as

Ck
.
= |Θi ∩ Φk| ∀ k ∈ Θi , (11)

where Θi∩Φk denotes the set of k neighbouring vehicles that
are also part of the cluster Θi. Hence, Ck represents a measure
of the coverage that vehicle k has over the cluster Θi, where
a higher value means better coverage.

Let’s call αm the ID of the kth vehicle within a cluster Θi,
with m representing an additional ordering index. The set ΓAc

contains all the cardinality values C(αm) of the CMs in Θi

as shown in (12).

ΓAc={C(α1), C(α2), ..., C(αN)} . (12)

The CH sorts the CM IDs in descending order with respect
to their cardinality; as the ordering index m increases the
cardinality related to the vehicle with ID αm decreases. The
ordered set of CM IDs, AC , is formally expressed as:

AC
.
={α1, α2, ..., αN | C(αm) ≥ C(αn),∀ m<n} . (13)

To select most suitable backup, the CH needs to acquire and
store some additional information. Firstly, the CH needs a list
ΞAs of all CH selection indexes ξ(βm) belonging to every kth
vehicle in its cluster Θi, where βm denotes the personal ID
of the kth CM within a cluster Θi. The set ΞAs is therefore:

ΞAs={ξ(β1), ξ(β2), ..., ξ(βN)} (14)

The cluster member IDs are then sorted in ascending order
with respect to their CH selection index ξ; as the ordering
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Fig. 3. How to choose ξTh

index m increases the ξ of the vehicle with ID βm increases.
The ordered set AS of cluster member IDs is hence formalised
as follows:

AS
.
={β1, β2, ..., βN |ξ(βm) ≤ ξ(βn),∀m<n} (15)

Finally, the new CHBkp will be the first CM in the cluster Θi

with the highest cardinality degree (from set AC) whose ID
is recorded in αm, to simultaneously fulfil the requirement
of having its CH selection index ξ(αm) smaller than a set
threshold ξTh. That is,

CHBkp = arg min
k∈Θi

{αm | ξ(αm) ≤ ξTh} (16)

With reference to (14) and (15) the threshold ξTh can be
established. In (16) the threshold is selected amongst values
recorded in set ΞAS

, depending on the choice of cluster
member ID βm, as

ξTh
.
= ξ(βm) m = 1, ..., N. (17)

From Figure 3 it is important to notice how the choice of the
threshold can drastically influence the terms under which the
CHBkp is selected. Picking the cluster member ID βm with
small ordering index m, will result in adding more weight
to the CH selection index ξ during the selection, because the
resulting threshold will be very small. On the other hand, by
employing a higher threshold, that is choosing a βm with a
large ordering index m, the weight of the decision making
process is shifted to the cardinality degree. In this work a
higher threshold ξTh is chosen to minimise the repercussions
in terms of losing CMs after changing from CH to CHBkp.

B. Cluster Maintenance

The rest of the maintenance phase is described in Algo-
rithm 2, which is designed to minimise cluster changes for
every possible event, namely for the following situations:
• The CH leaves the network, that is the vehicle will turn

at the next intersection.
• The CH is within the communication range of at least

another CH.
• A CM loses connection with the CH.
• A new vehicle joins the network.

If a CH leaves the system, it will put its CHBkp in charge of
the cluster. All the CMs in cluster Θi can therefore still hold
onto the original cluster structure and avoid going through
the clustering process again. In the case a CHi can hear at
least another CHj but the backup cluster head of cluster Θi,
CHi

Bkp, is not in range of the other CHj, then the CHi
Bkp will

become the new CHi, without the need of a new election.

On the other hand, if both the CHi and its CHi
Bkp lie within

CHj transmission range, the two CHs will merge. The CH
with more CMs in its cluster will maintain its role whilst
the other (with the minimum number of CMs) will become
its CM. Lastly, if a new node joins the network or loses
connection with the reference CH, it will undergo the CH
selection procedure already explained in Algorithm 1.

Algorithm 2 Cluster Maintenance
1: for each CHi do
2: CHi chooses the CHi

Bkp using (16) and (17)
3: end for
4: if CHi leaves system then
5: CHi

Bkp ← CHi

6: end if
7: if CHi is in range of another CHj then
8: if CHi

Bkp is not in range of CHj then
9: CHi

Bkp ← CHi

10: else
11: merge cluster Θi and Θj

12: end if
13: end if
14: if CMi is not in range of CHi then
15: go to CLUSTER HEAD ELECTION
16: end if
17: if new vehicle k enters the system then
18: go to CLUSTER HEAD ELECTION
19: end if

V. PERFORMANCE EVALUATION

Experimental simulations were conducted to assess the
performance of our proposed clustering algorithm, SCalE.
The performances of our proposed method are compared
with the Highest-Degree and VMaSC methods. The former
is commonly used for comparative purposes in the literature
[12], [13], [14], it selects the vehicle with greater number of
neighbours as CH. Therefore, this algorithm is characterised
by a smaller number of CH and bigger cluster size. The
VMaSC algorithm was proposed in 2016 in [11], it selects
the vehicle with the lowest average relative speed in range as
CH.

A. Mobility model

A Matlab implementation of the Gipps car following model
and the Gipps lane-changing model [15], [16] (also used
in the AIMSUN simulator) is employed in this work. The
behaviour of each vehicle, in terms of speed or lane changing
decision, is determined using information such as vehicle
dimensions, current traveling speed, distance to the leading
vehicle, acceleration and deceleration. A highway scenario of 8
lanes, 4 in each direction is implemented. The highway section
is 6 km long and an additional side exit is placed at the 3 km
mark for both directions, as seen in Figure 4. The side exit is
accessible only to vehicles driving on or that move to (due to
the lane changing model) the side lane. Vehicles are injected in
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Fig. 4. Simulations scenario. Highway of 4 lanes for each moving direction.
Length of road section is 6Km and 2 side exits are placed at 3Km to allow
vehicles driving on or moving to (using the Gipps lane changing model) the
side lane to leave the highway. Arrival rate of λ = 5car/min for illustrative
purpose only.

the system, at either end of the highway in Figure 4, following
a Poisson process with arrival rate λ =30 veh/min. A network
of 560 cars is monitored for 350 s. The probability that a
vehicle on the side lane leaves the network at the side exit is
p = 0.7. Vehicles can assume different sizes from 2 m to 7 m
and their speed can vary in the range of 22 - 33 m/s.

B. Clustering performance criteria

The performance of a clustering algorithm can be measured
by several metrics. In this work the following are used:
• Average CM Lifetime represents the average time a vehi-

cle spends as a member of the same cluster and it is an
important measure of the cluster stability.

• Number of Leaving CHs counts how many CHs leave the
system at the side exit during the simulation time. Cluster
stability is directly influenced by this metric since every
time a CH leaves the system its CMs have to undergo a
new CH election process. It is normalised by the highest
value to allow relative comparison.

• Number of CH Re-elections is the total number of new
CH elections that take place during the simulation. It
represents the cluster stability and the additional delay
suffered by vehicles due to re-elections. This metric is
also normalised by the highest value.

• Average Number of Reaffiliations per vehicle is defined as
the average number of times a vehicle starts or join a new
cluster due to one of the following reasons: 1) a CH gets
detached from its cluster, 2) a CM gets detached from its
cluster, 3) a CH merges with a second CH. The value is
an additional criteria used to establish the reliability of
the cluster structure. This metric is then normalised by
the highest value to allow relative comparison.

C. Performance Analysis

The number of CHs leaving the system at the side exit
decreases with the communication range as shown in Figure 5.
The graph shows that SCalE has the best performance, due to
the tailored selection of the CH using the vehicle’s behaviour
information Bk. Furthermore, the use of a stable CHBkp with
high coverage over the cluster can help reduce the number of
vehicles losing contact with their CH, meaning the number
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Fig. 5. Normalised number of CHs leaving the highway at the side exit
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Fig. 6. Normalised Average number of cluster reaffiliations per vehicle
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Fig. 7. Normalised average number of CHs re-elections
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Fig. 8. Average cluster member lifetime

of reaffiliations can be reduced as Figure 6 indicates. Con-
sequently the number of CH re-elections is also diminished
as observed in Figure 7, allowing SCalE to outperform the
Highest-Degree and VMaSC algorithms. Finally, Figure 8
shows that the average lifetime of a CM decreases with the
vehicle’s transmission range. It can be noticed that the pro-
posed algorithm has better performance. This is demonstrated
by the fact that the SCalE algorithm can select a stable CH and
CHBkp capable of maintaining the cluster structure for longer
than other algorithms.

VI. CONCLUSION

In this paper, we have proposed a Stable Clustering Algo-
rithm for vehicular ad-hoc networks (SCalE), in order to im-
prove the stability of the communication vehicles and facilitate
efficient networking between vehicles and UAVs or cellular
base stations. The clustering algorithm groups neighbouring
vehicles into a cluster and selects two of them as the cluster
head and backup cluster head, respectively. The stability of the
cluster structures is achieved by the use of knowledge of the
vehicle’s behaviour in the cluster-head selection as well as the
use of the backup cluster head to enable efficient maintenance
of the cluster structure. Simulation results presented in this
paper validate the SCalE algorithm under the challenging
circumstances of working in a highly mobile environment.
A performance comparison with Highest-Degree and VMaSC
algorithms shows that SCalE is able to enhance the cluster
stability in various performance metrics such as the average
cluster member lifetime, the number of cluster heads leaving
the system, the number of cluster head re-elections and the
number of reaffiliations per vehicle.
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