Imperial College London

A CLOSED-FORM EXPRESSION FOR THE BANDWIDTH OF THE PLENOPTIC FUNCTION UNDER FINITE FIELD OF VIEW CONSTRAINTS

Christopher Gilliam, Pier Luigi Dragotti, and Mike Brookes

Electrical and Electronic Engineering Department, Imperial College London, UK

Motivation

Consider an unknown scene with a certain texture pasted to the surface. In order to render good quality new viewpoints of the scene, using Image-Based Rendering (IBR) techniques, it must be adequately sampled. Suppose the sampling device is a camera mounted to a robot.

Slanted Plane Analysis

Applying both finite constraints to the plenoptic function of the slanted plane lead to windowing in the EPI domain, shown below:

Fronto-Parallel Plane

A special case when $\phi = 0$, a finite fronto-parallel plane (FPP) at a depth z_c . The plenoptic spectrum is now:

 $|P(\omega_t, \omega_v)| = \operatorname{sinc}\left(\omega_v v_m - \frac{z(x)v_m}{f}\omega_t\right) \left| G(\omega_t) * \operatorname{sinc}\left(\frac{\omega_t T}{2}\right) e^{-j\omega_t \frac{T}{2}} \right|$

Unknown Scene

Fig 1: Unknown Scene

Robot with Camera

- Important Questions:
- How should the camera travel relative to the scene?
- Where to sample along the path?
- Whether to zoom or not?

Our Approach:

- Approximate the scene with a planar facet model and bandlimited texture.
- Bandwidth analysis of the plenoptic function for such a model under the constraints of finite field of view and finite plane width.
- Use analysis to determine a non-uniform distribution for the camera along a 1D path parallel to the scene.

The Plenoptic Function

Consider the 2D plenoptic function^[1], p(t, v):

• Models the intensity of the light ray, travelling from the scene, at camera location t and pixel location v.

Fig 5: (a) Unconstrained EPI (b) Finite Plane Width EPI (c) Finite FoV EPI

Plenoptic Spectrum

The plenoptic spectrum is derived by taking the Fourier transform of the finite EPI in Fig 3(c), mathematically this is defined by the integral:

 $P(\omega_t, \omega_v) = \int_{s=0}^{s=T} g(s) \cos(\phi) \int_{v=-v_m}^{v=v_m} \left[1 - v \frac{\tan(\phi)}{f} \right] e^{-j(\omega_v - s \frac{\sin(\phi)\omega_t}{f})v} e^{-j\omega_t \cos(\phi)s} \, dv ds$

The solution to this integral, when $g(s) = e^{j\omega_s s}$, is $|P(\omega_t, \omega_v)| = \left| \frac{\omega_s f}{\sin(\phi)\omega_t^2} \left[\zeta(jb(c-1)) - \zeta(ja(c-1)) - \zeta(jb(c+1)) + \zeta(ja(c+1)) \right] \right|$ $+\frac{2v_m}{\omega_t}\left[\operatorname{sinc}(a) e^{-jca} - \operatorname{sinc}(b) e^{-jcb}\right]$

Where $\zeta(jw)$, for $w \in \mathbb{R}$, is defined as $\mathcal{E}_1(jw) + \ln(jw) + \gamma$, if w > 0 $\zeta(jw) = \{ E_1(-jw) - 2jSi(-w) + j\pi + \ln(jw) + \gamma , \text{ if } w < 0 \}$, if w = 0

 $E_1(w)$ is the Exponential Integral, Si(w) is the Sine Integral and γ is Euler's Constant^[4] and

where $G(\omega_t)$ is the Fourier transform of g(s), bandlimited to ω_s .

- Finite Plane Width \Rightarrow Convolution with Sinc function in spectral domain along the line $\omega_v = \omega_t \frac{z_c}{f}$.
- Finite FoV \Rightarrow Convolution with Sinc function in spectral domain parallel to the ω_v -axis.

Fig 9: Plenoptic Spectrum for a FPP

Sampling and Reconstruction

The essential bandwidth of a Sinc function is the width of its main lobe, thus the essential bandwidth parameters for a FPP are:

$$\Omega_t = \omega_s + \frac{2\pi}{T}, \quad \Omega_v = \Omega_t \frac{z_c}{f} + \frac{\pi}{v_m}, \quad z_{opt} = z_c \quad \text{and} \quad A = \frac{2\pi f}{v_m z_c}$$

1991.

- Representation in the (t, v)-space is known as the Epipolar Plane Image (EPI), where a point in the scene is mapped to a line with a slope depending on its depth.
- The Fourier transform of the EPI gives the Plenoptic Spectrum, $P(\omega_t, \omega_v)$. The spectrum is bounded by lines relating to the maximum and minimum depths of the scene^[2].</sup>

Slanted Plane Geometry

The scene is modelled using functional surfaces with bandlimited texture pasted to the surface^[3]. In this case the texture signal is a sinusoid.

Parameters: • s is the coordinate on the plane. • x is the projection of s onto t. • ϕ is the slant of the plane. • θ is the angle of view. • f is the focal length.

Surface light field relationship:

 $l(x,\theta) = p(t,v)$, when $t = x - z(x)\frac{v}{t}$

Constraints:

- Finite Field of View (FoV) $\implies v \in [-v_m, v_m]$ • Finite Plane Width $\implies s \in [0, T]$
- Lambertian Surface $\implies l(x, \theta) = l(x)$

- Applied to the slanted plane:
- Restrict the degrees of freedom so Ω_t is the only free parameter
- Assume the plenoptic spectrum is characterised as shown in Fig 8(a).
- Approximate the decay along each line outside the region and equate the total energy to 10%

- 2. J.X. Chai, S.C. Chan, H.Y. Shum, and X. Tong. Plenoptic sampling. In Computer graphics (SIGGRAPH'00), pages 307-318, 2000.
- 3. M.N. Do, D Marchand-Maillet, and M. Vetterli. On the bandwidth of the plenoptic function. IEEE Transactions on Image Processing, 2009. Preprint.
- 4. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, 1964.

5. B.P Lathi. Modern Digital and Analog Communication Systems. Oxford University Press, 1998.