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Motivation

Consider an unknown scene with a certain texture pasted to the
surface. In order to render good quality new viewpoints of the
scene, using Image-Based Rendering (IBR) techniques, it must
be adequately sampled. Suppose the sampling device is a camera
mounted to a robot.

Fig 1: Unknown Scene

Important Questions:

• How should the camera travel rel-
ative to the scene?

• Where to sample along the path?

• Whether to zoom or not?

Our Approach:

• Approximate the scene with a planar facet model and bandlim-
ited texture.

• Bandwidth analysis of the plenoptic function for such a model
under the constraints of finite field of view and finite plane
width.

• Use analysis to determine a non-uniform distribution for the
camera along a 1D path parallel to the scene.

The Plenoptic Function

Consider the 2D plenoptic function[1], p(t, v):

• Models the intensity of the light ray, travelling from the scene, at camera
location t and pixel location v.

• Representation in the (t, v)-space is known as the Epipolar Plane Image
(EPI), where a point in the scene is mapped to a line with a slope depending
on its depth.

• The Fourier transform of the EPI gives the Plenoptic Spectrum, P (ωt, ωv).
The spectrum is bounded by lines relating to the maximum and minimum
depths of the scene[2].

Fig 2: (a) Scene (b) EPI (c) Plenoptic Spectrum

Sampled Plenoptic Spectrum:

• Lowpass Filtering in ωv due to finite resolution,
∆v

• Finite camera spacing leading to replicated
spectra.

• Undersampling results in spectral overlap (alias-
ing).

Fig 3: Sampled Plenoptic

Spectrum

Slanted Plane Geometry

The scene is modelled using functional surfaces with bandlimited
texture pasted to the surface[3]. In this case the texture signal is
a sinusoid.

Fig 4: Scene Geometry

Parameters:

• s is the coordinate on the plane.

• x is the projection of s onto t.

• φ is the slant of the plane.

• θ is the angle of view.

• f is the focal length.

Surface light field relationship:

l(x, θ) = p(t, v), when t = x − z(x)v
f

Constraints:

• Finite Field of View (FoV) =⇒ v ∈ [−vm, vm]

• Finite Plane Width =⇒ s ∈ [0, T ]

• Lambertian Surface =⇒ l(x, θ) = l(x)

Slanted Plane Analysis

Applying both finite constraints to the plenoptic function of the
slanted plane lead to windowing in the EPI domain, shown below:

Fig 5: (a) Unconstrained EPI (b) Finite Plane Width EPI (c) Finite FoV EPI

Plenoptic Spectrum

The plenoptic spectrum is derived by taking the Fourier transform
of the finite EPI in Fig 3(c), mathematically this is defined by
the integral:

P (ωt, ωv) =

∫ s=T
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The solution to this integral, when g(s) = ejωss, is
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Where ζ(jw), for w ∈ R, is defined as

ζ(jw) =







E1(jw) + ln(jw) + γ , if w > 0

E1(−jw) − 2jSi(−w) + jπ + ln(jw) + γ , if w < 0

0 , if w = 0

E1(w) is the Exponential Integral, Si(w) is the Sine Integral and γ is Euler’s Constant [4] and

a = ωvvm − ωt
zmaxvm

f , b = ωvvm − ωt
zminvm

f , c = −f(ωt cos(φ)−ωs)
sin(φ)ωtvm

Fig 6: Plenoptic Spectrum

The Essential Bandwidth

The plenoptic spectrum of the slanted plane is band-unlimited
in both ωv and ωt, hence we cannot define an exact bandwidth
region. However, we can define the Essential Bandwidth[5]:

A finite region that contains 90% of the signal’s energy.

Central Concept: The plenoptic function is
adequately reconstructed when it is assumed to be

bandlimited to the essential bandwidth.

Essential Bandwidth Model

The essential bandwidth is parameterised using four parameters:

• Ωt is the maximum value in ωt,

• Ωv is the maximum value in ωv,

• zopt/f is the slant of region,

•A is the width of region in ωt.

Fig 7: Essential Bandwidth Model

Applied to the slanted plane:

• Restrict the degrees of freedom so Ωt is the only free parameter

Fix: Ωv = Ωt
zmax

f and zopt = 2
z−1
max+z−1

min
⇒ A = Ωt

T sin(φ)
zmin

• Assume the plenoptic spectrum is characterised as shown in
Fig 8(a).

• Approximate the decay along each line outside the region and
equate the total energy to 10%

Fig 8: (a) Characterisation of Spectrum (b) Calculating Ωt

Fronto-Parallel Plane

A special case when φ = 0, a finite fronto-parallel plane (FPP)
at a depth zc. The plenoptic spectrum is now:

|P (ωt, ωv)| = sinc
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)
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where G(ωt) is the Fourier transform of g(s), bandlimited to ωs.

• Finite Plane Width ⇒ Convolution
with Sinc function in spectral domain
along the line ωv = ωt

zc
f .

• Finite FoV ⇒ Convolution with Sinc
function in spectral domain parallel to
the ωv-axis.

Fig 9: Plenoptic Spectrum for a FPP

Sampling and Reconstruction

The essential bandwidth of a Sinc function is the width of its
main lobe, thus the essential bandwidth parameters for a FPP
are:

Ωt = ωs +
2π

T
, Ωv = Ωt

zc

f
+

π

vm
, zopt = zc and A =

2πf

vmzc

Fig 10: (a) Sampled EPI (b) Essential Bandwidth (c) Reconstruction Filter

Critical sampling determined by relating the essential bandwidth
region to the reconstruction filter:

∆t =
vmzc

f

Fig 11: Sampling Curve

Sampling Curve:

• Adequate camera spacing given the dis-
tance from the cameras to the scene.

• The camera spacing can be increased by
moving further from the scene.

• Oversampling occurs to left of the optimum
line and undersampling to the right.

Simulation Results

A scene consisting of two identical FPPs at different depths.

Fig 12: Two Plane Geometry

Uniform Sampling =⇒ Sample rate dictated
by nearest plane, thus other plane is

oversampled

Scene is piecewise planar =⇒ Non-uniform
sampling scheme

Sample rate varies depending on the plane being sampled.

Fig 13: Simulation Results
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