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Motivation
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Image Based Rendering (IBR) =⇒ Rendering new viewpoints of a scene from a

multi-view image set

Courtesy of James Pearson [1]

# Decide the optimum location of the samples


chrisMovie.avi
Media File (video/avi)



The Plenoptic Function
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IBR in more detail:

� Images sample a set of lights rays from the scene to the camera

� New rendering interpolated from captured light rays

� Lights ray modelled using the 7D Plenoptic Function [2]

# IBR viewed as the Sampling and Reconstruction of the Plenoptic Function

� Camera centre location (vx,vy,vz),

� Viewing direction (v,w),

� Wavelength ν,

� Time τ.



Plenoptic Function and the Epipolar Plane Image
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Consider the 2D Plenoptic Function, p(t,v), known as the Epipolar Plane Image (EPI) [3]

(a) Scene (b) EPI

� Point in the scene =⇒ Line in the EPI plane where the slope depends on the depth

� Fixing a camera position t1 =⇒ 1D image signal

� Fixing a pixel v1 =⇒ 1D signal of the pixel captured by all cameras



Plenoptic Spectral Analysis
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(a) Scene (b) EPI (c) Plenoptic Spectrum
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Plenoptic Spectral Analysis
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Plenoptic Spectrum exactly bound within two lines relating to the minimum and

maximum depths of the scene [3,4]



Sampled Plenoptic Spectrum
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� Finite Camera Resolution ∆v =⇒ Enforced Lowpass Filtering in ωv

� Sampling in t of period ∆t =⇒ Replicated Plenoptic Spectra

� Undersampling =⇒ Replicated Spectra Overlap =⇒ Aliasing

(a) Plenoptic Spectrum Sampled in v (b) Plenoptic Spectrum Sampled in t



Sampled Plenoptic Spectrum
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� Finite Camera Resolution ∆v =⇒ Enforced Lowpass Filtering in ωv

� Sampling in t of period ∆t =⇒ Replicated Plenoptic Spectra

� Undersampling =⇒ Replicated Spectra Overlap =⇒ Aliasing

(a) Plenoptic Spectrum Sampled in v (b) Plenoptic Spectrum Sampled in t

Assumes =⇒ Infinite Scene Width and Infinite Field of View (FoV),

=⇒ Uniform Sampling in t



Slanted Plane Geometry
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Functional Scene Model [4]:

� s is the Curvilinear Coordinate

� x is the Projection of s onto t

� φ is the Slant of the Plane

Sinusoidal Texture Signal Pasted to Scene Surface

Constraints:

� Finite Field of View (FoV) for the Cameras =⇒ v ∈ [−vm,vm]

� Finite Plane Width =⇒ s ∈ [0,T ]

� Lambertian Scene



Effect of the Constraints on the EPI
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Slanted Plane Plenoptic Spectrum
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Plenoptic spectrum is band-unlimited in both ωt and ωv

# Using our closed-form expression [5], characterise the plenoptic spectrum using 6 lines.

� Two lines ⇒ Maximum and minimum

depths of the plane.

� Two pairs of lines ⇒ Finite (FoV) and

Scene Geometry.

# c1 and c2 are the minimum and

maximum modulated frequency of the

texture



Essential Bandwidth for a Slanted Plane
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Parametric model of the essential bandwidth, comprising 4 parameters:

Ωt =
ωs f

f cos(φ)− vm |sin(φ)| +
2π

T
,

Ωv = Ωt

zmax

f
+

π

vm

,

zopt =
zmax + zmin

2
,

A =
T |sin(φ)|Ωt

zopt

+
2π f

zoptvm



Essential Bandwidth for a Slanted Plane
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Maximum spatial sampling period:

∆t =
2π

A
,

=
2πzoptvm

vmΩtT |sin(φ)|+2π f



Sampling Realistic Scenes
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Smoothly varying scene surface with bandlimited texture:

Our approach:

� Adaptively approximate the scene surface using a set of L slanted planes,

given NT samples.

� Determine a piecewise constant sample rate using the previous theory.

� Non-uniformly sample and reconstruct the plenoptic function.



Evaluating the Surface Approximation
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Measure the error in the plenoptic domain, comprising two parts:

D(N) = γ
︸︷︷︸

Geometric Error

+ α(N)
︸ ︷︷ ︸

Aliasing Error

� Error caused by approximating the scene surface with a set of slanted planes.

� Decreases the more exact the approximation.
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Measure the error in the plenoptic domain, comprising two parts:

D(N) = γ
︸︷︷︸

Geometric Error

+ α(N)
︸ ︷︷ ︸

Aliasing Error

� Error caused by approximating the scene surface with a set of slanted planes.

� Decreases the more exact the approximation.

� Error caused by undersampling the scene with N samples.

� Decreases as the number of samples increases.

� Approximated as twice the energy outside the reconstruction filter in the fre-

quency domain.

Small number of samples ⇒ Surface approximation controlled by Aliasing Error

Large number of samples ⇒ Surface approximation controlled by Geometric Error



Sample Allocation per Plane
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The sample allocation problem is defined in terms minimising the distortion function

given NT samples:

The problem:

min

{
L

∑
i=0

Di(Ni)

}

s.t. NT =
L

∑
i=0

Ni,

Solve using a Lagrange multiple λ, thus the cost function:

L

∑
i=1

(

γi +Ki

(
16∆v

Aiπ
+

2Ai∆v

π
+

8Wi

∆v(Ni −1)

)

+λNi

)

Ki =⇒ constant for the ith plane.

Wi =⇒ distance the plane is visible on the camera line.



Sample Allocation per Plane
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The sample allocation problem is defined in terms minimising the distortion function

given NT samples:

The problem:

min

{
L

∑
i=0

Di(Ni)

}

s.t. NT =
L

∑
i=0

Ni,

The solution:

Ni =

√

8KiWi

∆vλ
+1, where λ =

[

∑L
i=1

√
8KiWi

]2

∆v(NT −L)2

Assumes that NT > L and Ni ≥ 1, ∀i.

# so we have an exact solution to the Lagrange multiplier



Optimising the Surface Approximation
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Determining the optimum surface approximation:

� Binary-tree approach =⇒ Start with an initial ‘fine-grain’ approximation.

� Initially split the surface into 2k equal pieces resulting in L planes.

� Determine the initial λ and sample allocation between the L planes by solving the

minimisation problem.

� Merge the leaves of the tree to reduce the overall distortion.
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Determining the optimum surface approximation:

� Binary-tree approach =⇒ Start with an initial ‘fine-grain’ approximation.
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Surface Approximation Simulations

16 / 20

Approximation of the Piecewise Quadratic Surface using NT = 25:

Initial Number of Planes = 16, Final Number of Planes = 6



Surface Approximation Simulations
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Approximation of the Piecewise Quadratic Surface using NT = 130:

Initial Number of Planes = 16, Final Number of Planes = 8



Surface Approximation Simulations
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Approximation of the Piecewise Quadratic Surface using NT = 275:

Initial Number of Planes = 16, Final Number of Planes = 10



Simulations Results
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Comparison between uniform and adaptive reconstruction for the piecewise quadratic

surface.



Applied to Real Images
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(a) Scene Geometry (b) Acquiring the Data

# Initial Image Set = 253 Images (1cm apart)



Applied to Real Images
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Comparison, in PSNR, for the reconstruction of the plenoptic function when sampled

uniformly and adaptively.



Applied to Real Images
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Example of a rendered image:

# Uses 85 Samples

(a) Original Image

(b) Uniform Sampling (c) Adaptive Sampling



Conclusions
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� Presented a method for positioning a finite number of samples for a smooth

scene based on a spectral analysis of a slanted plane.

� The smooth surface is approximated by a set of slanted planes and the samples

are allocated to minimise the distortion, using a Lagrange multiplier.

� The surface approximation is optimised in a binary-tree framework and adapts

given the number of samples available.

� Non-uniform sampling scheme outperforms normal uniform sampling.
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Non-uniform Sampling and Reconstruction

20 / 20

Generate a piecewise constant sample rate profile in t using the sample allocation:

� Choose the highest sample rate in an overlap

region.

� Determine the non-uniform sample locations.

Reconstruction the plenoptic function:

� Split into regions with constant sample rate and reconstruct separately.

� Combine each region using a local interpolation to smooth the transition

from one rate to another.

� Local interpolation is based on time-warp sampling theory.
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