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GLOSSARY

Beacon: BLE enabled device that utilizes iBeacon protocol.

Geofencing: The process of creating a virtual fence around any entity that helps in
detecting the entrance and exit of other entities into the virtual fence (Zafari
et al., 2016) is termed as geofencing.

iBeacon: Apple’s proprietary protocol that allows the BLE enabled devices to
transmit certain messages which are used for proximity based services.

Internet of Things: The ability to connect different entities to each other using the
Internet is known as Internet of Things (IoT) (Evangelatos, Samarasinghe, &
Rolim, 2012).

Location Based Services: Services that are provided to a tenant based on his
location are known as location based services.

Micro-location: The process of locating any entity with an accuracy as high as 10
cm is known as micro-location (Zafari et al., 2016).

Smart Buildings: Buildings that have the capability to provide low cost services
such as heating, air conditioning, illumination, ventilation, sanitation, security
and a wide range of other services to the users without having an adverse
effect on the environment (IBE, 2008).
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ABSTRACT

Faheem M.S., Purdue University, May 2016. iBeacon Based Proximity and Indoor
Localization System. Major Professors: Ioannis Papapanagiotou and Baijian Yang.

User location can be leveraged to provide a wide range of services in a variety of

indoor locations including retails stores, hospitals, airports, museums and libraries

etc. The widescale proliferation of user devices such as smart phones and the

interconnectivity among different entities, powered by Internet of Things (IoT),

makes user device-based localization a viable approach to provide Location Based

Services (LBS). Location based services can be broadly classified into 1) Proximity

based services that provides services based on a rough estimate of users distance to

any entity, and 2) Indoor localization that locates a user’s exact location in the

indoor environment rather than a rough estimate of the distance. The primary

requirements of these services are higher energy efficiency, localization accuracy,

wide reception range, low cost and availability. Technologies such as WiFi, Radio

Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to

provide both indoor localization and proximity based services. Since these

technologies are not primarily intended for LBS, they do not fulfill the

aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that

use Apple’s proprietary iBeacon protocol are mainly intended to provide proximity

based services. iBeacons satisfy the energy efficiency, wide reception range and

availability requirements of LBS. However, iBeacons are prone to noise due to their

reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates

in indoor environments due to interference from different obstructions. This limits

its proximity detection accuracy.
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In this thesis, we present an iBeacon based proximity and indoor localization

system. We present our two server-based algorithms to improve the proximity

detection accuracy by reducing the variation in the RSSI and using the

RSSI-estimated distance, rather than the RSSI itself, for proximity classification.

Our algorithms Server-side Running Average and Server-side Kalman Filter

improves the proximity detection accuracy by 29% and 32% respectively in contrast

to Apple’s current approach of using moving average of RSSI values for proximity

classification. We utilize a server-based approach because of the greater computing

power of servers. Furthermore, server-based approach helps reduce the energy

consumption of user device. We describe our cloud based architecture for iBeacon

based proximity detection.

We also use iBeacons for indoor localization. iBeacons are not primarily

intended for indoor localization as their reliance on RSSI makes them unsuitable for

accurate indoor localization. To improve the localization accuracy, we use Bayesian

filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended

Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended

Kalman Filter with Particle Filter, the indoor localization accuracy can be improved

by 28% and 33.94% respectively when compared with only using PF. The PF,

KFPF and PFEKF algorithm on the server side have average localization error of

1.441 meters, 1.0351 meters and 0.9519 meters respectively.
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CHAPTER 1. INTRODUCTION

This chapter describes the relevant background, along with significance and

purpose of this study. The chapter contains the research question and discusses the

scope, assumptions, limitations and delimitations of this study.

1.1 Background

The concept of Internet of Things (IoT) relies on the inter-connectivity of

most of the devices or ‘things’ that improves the automation of different services,

resulting in higher user satisfaction. The interconnectivity among different entities

allows better networking and assists in leveraging novel technologies for an

enhanced life standard around the world. Smart buildings are part of the global

movement towards ‘smart’ entities and aim to fully automate buildings so that the

energy efficiency is maximized, the tenant’s service level is enhanced, and disaster’s

are properly managed (Zafari et al., 2015, 2016). The deployment of IoT based

systems within smart buildings can improve the overall performance of smart

buildings and assist in achieving energy goals in a much efficient and effective way.

Location of an entity or a user is of primary importance in smart buildings as well

as in IoT based services, as both IoT and smart buildings can provide a number of

services to the user based on his location.

Service that are provided to the user based on location are known as

Location Based Services. The first generation of Location Based Services (LBS) did

not garner significant interest due to the network centric approach (Zafari et al.,

2015, 2016). However, the second generation of LBS, due to its user centric

approach, is successfully penetrating the market especially after the widespread use

of mobile devices and smart phones. LBS are classified into:
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• Localization: In localization, a user’s exact location is obtained to provide

different services. The accuracy requirements for such services is high

• Proximity: An estimate of user’s proximity to an entity is used to provide

effective services to the user. Such services are known as proximity-based

services (PBS). The accuracy requirement for proximity is not as stringent as

for localization.

LBS are primarily intended to be provided in indoor environments such as hospitals,

stadiums, retail stores, libraries, and museums. Technologies, such as Global

Positioning System (GPS), are much more suitable for outdoor localization.

However, the presence of obstructions and the occurrence of different physical

phenomena in the indoor environment makes localization a challenging issue. For

GPS, the localization error is about 10 meters. However, indoor environments

require the error to be limited, ideally below one meter. The basic requirements for

LBS are high accuracy, energy efficiency, wide reception range, cost and availability.

Over the last couple of decades, numerous technologies and techniques have been

used in the literature such as WiFi, Radio Frequency Identification, and Ultra

Wideband with the intention to increase the accuracy of indoor localization and

proximity based service. However, there is still no wide-scale adoption of one

particular technology or technique, due to the inability to fulfill the aforementioned

requirements for LBS in indoor environments. The iBeacon protocol, proposed by

Apple in 2013, allows BLE enabled minuscule devices known as iBeacons/beacons

to provide context-aware proximity based services. iBeacons satisfy the energy

efficiency, wide reception range and availability requirements for LBS. However, it

violates the cost and accuracy requirements. While cost of the iBeacons will likely

reduce, due to the growing interest in the technology, in this thesis, we address the

accuracy problem of the iBeacons for proximity detection and indoor localization

purposes. The study used different Bayesian filtering algorithms for improving the

accuracy of the beacon-based indoor localization and proximity system.
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1.2 Significance

Indoor localization is an important part of the future IoT and smart building

systems. The user’s position, once obtained through indoor localization, can be

leveraged to provide a wide range of services such as context aware solutions,

targeted advertisements, tenant assistance, automated energy management systems,

disaster management and interactive environmental elements etc. For example, a

student in library may not be aware of the location of the particular book, which he

intends to read. Through localization, his current position will be obtained and then

he would be continuously guided towards his destination. Similarly, a smart office

building would track the location of the tenant, and turn on the lights, air

conditioner and the user’s computer when he is in close proximity of his office.

Received Signal Strength Indicator (RSSI) based localization is cost efficient.

However, the fluctuation of RSSI, due to the multipath fading, in an indoor

environment is a challenge in itself. The BLE enabled iBeacons that utilize the

iBeacon protocol are energy efficient and can run for years using a battery cell.

Their basic purpose is to provide proximity based services through geofencing i.e.,

when a specific user is in the vicinity of the beacons, beacons can communicate

certain information to the user. Such services are finding wide scale adoption, and

numerous companies and brands have adopted beacons in their stores and outlets to

increase the sales and to maximize the profits.

However, iBeacons are prone to noise due to the reliance on RSSI and cannot

be used for highly accurate LBS. To solve this problem, we utilized Bayesian

filtering algorithms that have been widely used in the literature for enhancing the

accuracy of indoor localization systems and have provided encouraging results

(Gustafsson, 2010; Gustafsson et al., 2002; Guvenc, Abdallah, Jordan, &

Dedoglu, 2003; Lee, Oka, Pollakis, & Lampe, 2010; Subhan, Hasbullah, & Ashraf,

2013). The use of Bayesian Filtering algorithms improved the proximity detection

and indoor localization accuracy of the iBeacons and resulted in an accurate

iBeacon based system that could be used for efficient LBS.
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1.3 Problem Statement

Proximity and indoor localization services can provide a wide range of

services. Different technologies including UWB, WiFi, and RFID have been used for

providing such services. However, most of these technologies are not primarily

intended for proximity and indoor localization services. Therefore, these

technologies do not fulfill the primary requirements of LBS. iBeacon, based on BLE,

is a promising technology for PBS. However, it utilizes RSSI values to provide

location-based services. The RSSI values are prone to noise and interference that

drastically affects the performance of iBeacon-based proximity detection system. If

the accuracy of the iBeacon based PBS is improved, it can be used in hospitals,

malls, stadiums and numerous other indoor environments to enhance user

experience. Although iBeacons are not primarily intended for indoor localization, an

improvement in the accuracy of the iBeacons will also make it suitable for indoor

localization. Hence, iBeacons with an improved accuracy can be used to provide

LBS, i.e. proximity and indoor localization services.

1.4 Research Question

• Will the use of Kalman filter and Extended Kalman filter in cascade with

Particle Filter improve the localization accuracy of an iBeacons-based indoor

localization system when compared with use of only Particle filter?

• Is it possible to improve the proximity detection accuracy of an iBeacon-based

proximity detection system using our proposed Server-side algorithms when

compared with the current approach used by Apple?

1.5 Scope

iBeacons use RSSI values for indoor localization and proximity based

services. The problem with RSSI based localization and proximity based services in
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general (e.g., fluctuation due to multi-path fading) and more particularly the

reliance of the beacons on 2.4 GHz Bluetooth technology adversely affects the

accuracy of the beacon based proximity and indoor localization system. The

literature contains a number of different filtering algorithms that are designed to

filter out the noise and improve the performance of the sensors (iBeacons in our

case) (Bergman, 1999; Gustafsson, 2010; Gustafsson et al., 2002; Guvenc et al.,

2003; Lee et al., 2010; Paul & Wan, 2009; Savic, Athalye, Bolic, & Djuric, 2011;

Subhan et al., 2013). Usually filters that consider the noise to be non-Gaussian and

the system as non-linear produce the best localization accuracy possible. This

research study tracked a user equipped with an iPhone and a prototype iOS

application within an indoor environment by using our iBeacon-based localization

and proximity system. For obtaining an accurate indoor localization system,

different Bayesian recursive filtering algorithms were applied to reduce the RSSI

variation and sensor noise. Particle Filtering performs best for indoor localization

(Gustafsson, 2010; Gustafsson et al., 2002; Lee et al., 2010). However Kalman

filters, and Extended Kalman Filter (EKF) will be cascaded with Particle Filters in

order to verify whether it would result in any significant performance improvement

over a single particle filter system. For obtaining an accurate proximity detection

system, server-based algorithms are used. Also, the topology of the beacons was

changed to understand the effect of the beacon’s location on localization accuracy.

The study also describes an architecture for iBeacon based proximity services and

showcase two different use cases.

1.6 Assumptions

The assumptions of this study are

• Beacons/iBeacons work with Apple devices running iOS 7 or later as well as

Android devices running 4.3 or later versions of Android. These operating

systems have the capability to listen to the messages transmitted by beacons.
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It is assumed that any user who wants to utilize the services has a device that

runs any of the aforementioned operating systems.

• An iOS application developed specifically for iBeacon based services is used in

this study. It is assumed that any potential user who wants to use the services

will have the iOS application installed on the device.

• iBeacons are Bluetooth Low Energy (BLE) based devices. It is assumed that

for a potential user to utilize the service, the Bluetooth service should be

enabled on the user device.

• The iBeacons transmit messages in a specific format containing certain beacon

related information. It is assumed that the beacon related information is

hard-coded into the application (as per Apple’s Application Store Policy

(Zafari & Papapanagiotou, 2015)).

• The iBeacons transmit messages at random periodic intervals. It is assumed

that the beacons are transmitting at highest possible frequency for the

purpose of this research study.

1.7 Limitations

The limitations of this study are:

• Received Signal Strength Indicator (RSSI) will be used to determine the

position of a user.

• The value of RSSI will fluctuate due to multi-path propagation and

interference from devices working at 2.4GHz.

• The average of RSSI values, obtained through Apple‘s CoreLocation

framework will be used.
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1.8 Delimitations

The delimitations of this study are:

• Only one user will be tracked for the purposes of this research study.

• The user will be tracked within a pre-defined indoor area whose dimensions

are hard-coded in the iOS application as well as server side implementation.

• The user’s position will be tracked in a 2-Dimensional (x, y) Cartesian plane

while the z-axis will be ignored for the purpose of this study.

1.9 Summary

In this chapter, we discussed the background, significance, problem

statement, research questions, scope, assumptions, limitations, and delimitations of

this research study. In next chapter, we provide a detailed review of the literature

relevant to this research study.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

The mammoth growth in the field of Information Technology (IT) and

networking over the last couple of decades have resulted in a wide range of effective

and efficient services that aim to enhance the overall user experience around the

world. The ever increasing reliance on technology, the need for better connectivity,

and automated systems have served as the impetus behind the advent of the IoT.

Connecting different ‘things’ can provide a number of useful services without

the need for human intervention as described in Zafari et al. (2016). Such

autonomous connectivity can serve as an asset in various other novel concepts, of

which smart buildings is one. Smart buildings, like IoT, are intended to improve the

service level to its tenants while mitigating the possible problems such as disasters

and pollution caused by energy consumption etc. The use of LBS is in-line with

goals of IoT and smart buildings. Indeed, a user’s location can be leveraged to

further improve the effectiveness of IoT and smart buildings. Various automated

systems can perform their tasks much more efficiently, once they know the user’s

location by turning on or off various appliances and equipment based on the user’s

location.

This chapter provides an overview of IoT, smart buildings, iBeacons,

proximity-based services, localization and Bayesian Filtering. The chapter also

discusses relevant literary work related to proximity based services and localization

and focuses on the past work done for improving the accuracy of indoor localization.

2.1 Internet of Things

Kevin Ashton was the first one to use the term ‘Internet of Things’ in the

context of supply chain management (Ashton, 2009). However, it gradually



9

Figure 2.1. IoT: Connecting everything through the Internet

encompassed a wide range of services including transportation, health care, and

e-commerce. The core idea of IoT is that different ‘entities’ or ‘things’ such as smart

phones, senors, actuators or physical items embedded with sensors are connected to

each other. The connectivity is leveraged to automate systems and provide better

services (Giusto, Lera, Morabito, & Atzori, 2010). IoT is gaining the attention of

researchers and different industries around the world. IoT relies on the core

principal of connectivity, networking, and sensor networks. Another important field

that IoT is linked with is the ‘Big Data’ (i.e., equipping every single ‘thing’ with

sensors will generate huge amount of data). Figure 2.1 (taken from our papers

Zafari et al. (2015, 2016)) presents an insight into the wide range of services that

IoT can provide.

Various wired and wireless standards exist that can support the

interconnection of devices (Vermesan & Friess, 2013). Table 2.1 (taken from our

papers Zafari et al. (2015, 2016)) highlights some of the renowned wireless

standards. IoT can provide both residential, and commercial services and

application such as e-marketing, e-health (Atzori, Iera, & Morabito, 2010),
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Table 2.1 Wireless Technologies used in IoT

Technology Range Frequency Throughput
Bluetooth ∼ 100m 2.4 GHz 24.0 Mbps
ZigBee ∼ 100m 2.4 GHz 2-250.0 Kbps
IEEE 802.11a 5000m outdoor 5 GHz 54 Mbps
IEEE 802.11b 140m outdoor 2.4 GHz 11 Mbps
IEEE 802.11g 140m outdoor 2.4 GHz 54 Mbps
IEEE 802.11n 250m outdoor 2.5/5 GHz 600 Mbps
IEEE 802.11ac 35m indoor 5 GHz 1.3 Gbps
IEEE 802.11ad couple of meters 60 GHz 4.6 Gbps
WiMAX depends on cell 2.3, 2.5 and 3.5

GHz
365 Mbps downlink,
376 Mbps uplink

LTE depends on cell 2600 MHz 300 Mbps downlink,
75 Mbps uplink

LTE-Advanced depends on cell 4.44-4.99 GHz 1 Gbps downlink, 500
Mbps uplink

UWB 10-20m 10.6 GHz Upto 480 Mbps
RFID upto 200m upto 10 GHz Upto 1.67 Gbps
WiFi Direct upto 200m 2.4/5 GHz Upto 250 Mbps

intelligent transportation systems (Bayram, Michailidis, Papapanagiotou, &

Devetsikiotis, 2013; Bayram & Papapanagiotou, 2014; Weiland & Purser, 2000),

intelligent car parking guidance systems (Faheem, Mahmud, Khan, Rahman, &

Zafar, 2013), logistical automation and a wide range of other services. IoT is poised

to penetrate deep into the consumer market and a wide range of industries such as

appliances, furnitures, and food packaging are going to utilize IoT by the year 2025.

Because IoT is in its relative infancy, it faces certain challenges such as device

smartness, privacy, security, device interoperability, energy consumption, network

addressing the device processing ability (Atzori et al., 2010). The growing interest

in IoT has served as the impetus for research initiatives around the world. In 2005,

the European Commission started IoT technologies related initiatives (Yan, Zhang,

Yang, & Ning, 2008). Similarly the National Science Foundation (NSF) in USA

included IoT as a part of the cyber physical systems.
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IoT has a lot of potential and it can be applied to a number of applications.

The current services provided by IoT are limited and in future, its application

would penetrate into offices, residential areas, industrial complexes, shopping malls,

research labs, hospitals, libraries, gyms and many more. IoT, in particular, can help

the transition towards ‘smart’ entities such as smart nations, smart cities, smart

buildings etc. Solutions that can improve the performance of the aforementioned

smart entities will certainly provide great revenue and would assist in raising the

standard of living for the tenant. The user would be able to interact with smart

environments through IoT, hence providing a better experience to the tenant.

Atzori et al. (2010) presented a detailed survey related to IoT. The paper takes the

complexities involved in IoT, due to the wide range of technologies, techniques and

devices, into account. Various IoT paradigm related visions are discussed. The

current challenges of IoT are highlighted and effective solutions are proposed.

Miorandi, Sicari, De Pellegrini, and Chlamtac (2012) also presented a survey of

different technologies, possible applications, and the challenges of IoT. Because IoT

relies on connectivity of different devices, security and privacy are the main

concerns with the widescale adoption of IoT. The IoT architecture must be resilient

to external and internal threats by providing mechanisms for data authentication,

client privacy and access control (Weber, 2010). Furthermore, there is a need for

legislation that can handle the security and privacy issues. Such initiatives will

certainly bolster the adoption of IoT. Atzori et al. (2010), Miorandi et al. (2012),

and Weber (2010) presented a detailed discussion on the possible security threats to

IoT and each proposes general solutions.

Zafari et al. (2016) provide a detailed survey of techniques and technologies

that can support indoor localization for IoT equipped smart buildings. Novel

concepts such as micro-location and geofencing are discussed in the context of IoT

and smart buildings. The current and envisioned services that indoor localization

can provide to the IoT equipped smart buildings, are discussed. Their paper

addresses numerous challenges that the adoption of micro-location and indoor
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localization technologies face when deployed in IoT equipped smart buildings. The

challenges surrounding IoT can be solved by extensive research. Therefore, the

research community can play their role in addressing these challenges, particularly

the security and privacy concerns.

2.2 Smart Buildings

Buildings that have the capability to provide low cost services such as

illumination, heating, air conditioning, and security, without affecting the

environment adversely are known as smart buildings (IBE, 2008). This definition of

a smart building by the Institute of Smart Buildings (IBE, 2008) is pretty

restricted that is, it does not highlight a wide range of other features of smart

buildings including automation of the entire system, connectivity among appliances,

or energy generation capability. Just like IoT, the motive behind smart buildings is

to provide better services to the user. For example, when an employer enters the

lobby of his office building, the temperature and lighting in his cabin are

automatically adjusted as per the employer’s choice, the computer is turned on so

that once the user gets there, and he can start working immediately without

wasting any time (Snoonian, 2003).

Smart buildings leverage the interconnectivity of various automation systems

for better disaster management and emergency services. In case of a fire, the sensors

can alert the ventilation system to turn off the fans so that the smoke cannot spread

to other parts of the building. The damage as a result of the 2001 attack on

Pentagon could have been much more catastrophic in the absence of the advanced

automation system (smart building) (Snoonian, 2003). Smart buildings rely on

intelligently designed systems and utilize different interconnected subsystems. These

interconnected systems facilitate the sharing of valuable information. This results in

optimized building performance and an improved interaction between the tenants

and building as well as between two different smart buildings. One of the important
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characteristics of smart buildings is that it generates its own power through a

number of renewable resources and does not rely on the power grids. Indeed, the

building grid can produce extra energy that can be sold to the adjacent buildings

and power grids. The basic characteristics of a smart building are:

• Interconnectivity of business systems.

• Provision of technology to the tenants.

• Connectivity with other smart buildings and smart grids.

• Energy Efficiency.

Figure 2.2 shows the components of a smart building. Different components such as

smart appliances, smart meters, building automation etc. are all interconnected and

work under the umbrella of smart buildings.

Figure 2.2. Components of a Smart Building.

The research community has worked on improving the architectural design of

smart buildings that would allow incorporating technologically advanced systems

into the present architecture. The two most famous open communication standards

for building automation are



14

• Building Automation and Control Networks (BACnet): BACnet is a

communication only standard and is concerned with the electrical and

mechanical systems. BACnet can also work with certain hardware as well.

BACnet defines the level of priority for accomplishing the assigned tasks such

as which certain signals would take priority in the event of a disaster.

• Local Operating Networks (LonWorks): LonWorks combines hardware and

communication and has been widely used in both transportation and utility

industry. Recently, LonWorks has been used in buildings. LonWorks relies on

different channels assigned to specific signals.

The use of such standards causes a decrease in operation costs (Snoonian, 2003).

Wireless Sensor Networks can assist the automation and control processes in smart

buildings. The utilization, interconnection and collaboration of the sensors is also

bringing IoT into the limelight. Schor, Sommer, and Wattenhofer (2009) utilized

wireless sensor networks in smart buildings for enhancing building energy efficiency

without affecting the service level. A web services based approach is used to

integrate various sensors and nodes into an IP-based network. The proposed

approach enables automatic service discovery by implementing a representational

state transfer (REST) based application programming interface (API) for accessing

the sensor node services. Kleissl and Agarwal (2010) discussed smart buildings in

the context of cyber-physical systems and present an analysis of the opportunities

provided by jointly optimizing the energy consumption of smart building, both by

the processing equipment and occupants. The energy use of different buildings is

thoroughly investigated based on which energy saving strategies are proposed for

smart buildings. Because energy efficiency is one of the core impetuses behind smart

buildings, most of the literature revolves around energy efficiency of smart buildings.

Majumdar, Albonesi, and Bose (2012) proposed energy aware meeting scheduling

algorithms for smart buildings that can assist in making the building energy

efficient. The proposed algorithms take the meeting related parameters into account
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to schedule the meeting in a room that optimizes the energy efficiency based on the

number of occupants, meeting requirements, and time conflicts. The algorithms

range from greedy to heuristic ones resulting in a 70% lower energy consumption.

Han, Gao, and Fan (2012) proposed a technique for determining the indoor

environment quality (IEQ) and occupancy in a smart building. Statistical

estimation methods are used to enhance the measurements obtained from a

distributed network of sensors. Data such as carbon dioxide (CO2) concentration,

and relative humidity are obtained through different sensors. The occupancy is

modeled using Autoregressive Hidden Markov Model (ARHMM) on the basis of

sensor measurements. The proposed model represents the occupancy and IEQ with

an average accuracy of 80.78%. Such a model can facilitate the services provided by

smart buildings. Firner, Moore, Howard, Martin, and Zhang (2011) proposed

Octopus, which is an open-source system for supporting data management and

fusion for the IoT based applications. The system takes into account the reliance of

the smart buildings on sensor data that has to be associated with physical objects.

Meyer and Rakotonirainy (2003) presented a detailed survey of the research and

strategies that can enhance the diffusion of the IT into smart buildings and homes

so that it could improve the overall services provided to the tenants.

Despite the abundance of literature on smart buildings, there is still need for

further research that could explore the applications of location based technologies in

smart buildings and how context-awareness can further improve the services

provided to the tenants. The incorporation of IoT into smart buildings and

leveraging localization for providing a wide range of services is yet to be thoroughly

explored.

2.3 iBeacons

iBeacon is Apple’s proprietary protocol that enables BLE enabled devices

(known as beacons) to transmit messages that can be used for proximity-based,
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context aware solutions. iBeacon is the protocol while the devices are known as

beacons. However the term iBeacon is also used for the devices. The protocol was

included as part of iOS 7.0 in World Wide Developer Conference (WWDC) in 2013

and is part of all the subsequent iOS versions released by Apple. While Android 4.3

and later versions do support iBeacon protocol, Google recently launched its own

beacon based platform known as Eddystone.

iBeacon requires that the Bluetooth on the user device to be turned on. The

beacons are passive devices that can only transmit specific messages at periodic

intervals. The user device receives these messages and utilize the signal strength of

the transmitted messages to approximate the user’s proximity to a specific iBeacon.

Due to reliance on BLE technology, they are energy efficient and the devices can run

on single coin battery for years. The range of the iBeacons depend on the

transmission power. The higher the transmission power, the higher the range and

energy consumption. Due to energy constraints and the performance issues, it is

preferred to keep the range of the iBeacons low. Also, the higher the transmission

frequency, the better will be the performance and lower will be the energy efficiency.

Each iBeacon message contains:

• Universally Unique Identifier (UUID): It is a 16-byte mandatory field. The

UUID, as per Apple’s Application Store policy, must be hard-coded into the

application. Conventionally, UUID for the iBeacons of a specific company or

store is kept the same. For example, the UUID values of the iBeacons utilized

in a store X through the world would have the same UUID.

• Major value: The major value is 2-byte optional field. For a store X in city Y,

the major value of all the iBeacons would be same as per the convention.

• Minor value: The minor value is also a 2-byte optional field. It is used to

classify the department Z of store X in city Y.

The iBeacons/beacons specifically perform the task of:
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• Distance Measurement: The RSSI values from the iBeacons are used to

calculate the distance of the user to a specific iBeacon. RSSI values also

highlight the accuracy of the obtained estimation results.

• Ranging: The process of classifying the proximity of the user to a specific

beacon in any of the four ranges listed in Table 2.2 is known as ranging.

Apple’s CoreLocation framework averages the RSSI values and then reports them in

order. The moving average is intended to reduce the fluctuations in the RSSI.

Table 2.2 iBeacon Proximity Zones

Range Distance
Immediate Less than a meter.
Near Between 1-3 meters.
Far Greater than 3 meters
Unknown Either user is not in the

range of beacon or there is a
need for initiating ranging.

Despite its relevant infancy, the technology has attracted wide-scale

attention. Numerous companies have started providing beacon based services. Table

2.3 (quotations from our papers (Zafari et al., 2015, 2016)) lists some of the

companies that provide beacon hardware or beacon based services.

To benefit from beacon-based services, the user device bluetooth should be

turned on and a specific application equipped with beacon service should be

installed on the device. The user device is then capable of receiving messages from

the beacon. In a typical iBeacon system, the user device communicates with the

iBeacons and obtains UUID related information. It forwards that to a server, which

communicates with the database for beacon authentication or any other

information. The server might then respond back to the user or contact an actuator,

based on user’s location as shown in Figure 2.3. A detailed discussion on beacons is

presented in Zafari et al. (2015, 2016) while recommendations on the deployment of

beacons are presented in Zafari and Papapanagiotou (2015).
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Table 2.3 Beacon based Service Providers (Quotations from Zafari et al. (2015,
2016))

Company Service Description
Gimbal “Gimbal’s beacons provides a context-aware advertising platform.”
Onxy Beacon “Onxy beacon offers a beacon management system that is cloud

based and helps in building micro location enabled applications for
the beacons.”

Swirl “Swirl uses iBeacons and provides end-to-end mobile marketing
platform within a store. It is an enterprise grade platform that helps
to create, manage and optimize the LBS based mobile marketing.”

Sonic Notify “Sonic Notify uses beacons to provide enterprise proximity
solutions.”

Estimote “Estimote utilizes beacons for creating new and contextually rich
mobile services.”

Figure 2.3. Working principal of the beacon

2.4 Proximity Based Services

The type of services that are provided to a user based on proximity to any

other entity is known as proximity based services (Mascetti, Bettini, Freni, Wang, &

Jajodia, 2009). Rather than the exact position of a user, proximity based services

require a rough estimate of the user’s location. It is a special type of LBS and has

attracted the attention of different industries. Different technologies such as Wi-Fi,

Bluetooth, Zigbee, LTE, and RFID can be used for proximity based services.

Mascetti et al. (2009) discussed the privacy concerns affiliated with proximity based

services. Different preservation techniques that can serve as a trade off between

privacy and the quality of service are proposed. The feasibility of the proposed
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approaches is highlighted through theoretical and experimental results. Meier,

Cahill, Nedos, and Clarke (2005) discussed proximity based services in the context

of ad-hoc networks. The areas or proximities where specific services are provided by

the service providers are advertised, to which the clients can subscribe. Once the

clients reach an area that offers the services of their interest, they are notified about

the offer using ad-hoc networks. Treu and Küpper (2005) addressed the privacy

challenges of proximity-based services. Different techniques are proposed that can

allow the user to trust proximity-based services. Users or peers that share the same

geographical location and time are matched using a central server, while

simultaneously keeping the user privacy intact. The proposed technique utilizes a

combination of cryptography and ‘k-anonymity protect ’ for privacy protection.

2.5 Localization

The process of locating the position of any entity is known as localization.

Once the entity/user’s position is obtained through localization, a number of

different services can be provided. As mentioned earlier, the first generation of LBSs

were network centric (i.e., the basic motive behind them was to assist the network

and enhance the network and system performance). Because there was no incentive

for the user in such a system, the first generation of LBS did not attract significant

research as the user’s participation is mandatory. The second generation of LBS is

user-centric and is intended to provide a wide range of services to the user, based on

location. Therefore, LBS has found its use in a number of different industries.

To utilize LBSs, the first step is to determine the user’s location with high

accuracy. The user can be in an outdoor or indoor environment. GPS is one of the

most widely used outdoor localization systems that can attain an accuracy as high

as 10 meters (LaMarca et al., 2005; Zafari et al., 2016) and it can provide a

number of solutions, with navigation being one of the most widely used ones.

Outdoor localization has been widely researched in the context of WSNs (Sichitiu,
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Ramadurai, & Peddabachagari, 2003), robotics (Kais, Dauvillier, De La Fortelle,

Masaki, & Laugier, 2004; Lingemann, Surmann, Nüchter, & Hertzberg, 2004),

asset tracking, and navigation etc. Though there is still room for improvement of

outdoor localization, this research work is mainly focused on indoor localization.

Interested readers are referred to other studies (Bulusu, Heidemann, & Estrin,

2000; Kais et al., 2004; Lingemann et al., 2004; Sichitiu et al., 2003) for further

discussion on outdoor localization.

Research related to indoor localization has seen an increase in interest over

the last couple of decades (Liu, Darabi, Banerjee, & Liu, 2007). Numerous

techniques have been proposed for indoor localization. In the following sub-section,

we discuss some of the indoor localization techniques.

2.5.1 Indoor Localization Techniques

A number of different technologies can be used for indoor localization. Some

of the most widely used technologies are Bluetooth, Ultra-wide Band (UWB),

Magnetic Field Mapping, RFIDs, WiFi, and Zigbee. Table 2.4 lists different

technologies and their accuracy in indoor localization. Different localization

techniques can be applied to these technologies to formulate an indoor localization

system. Based on the technique used, indoor localization algorithms and measuring

principles are divided into a) Triangulation b) Scene Analysis and c) Proximity. In

the subsections that follow, each is discussed in detail.

2.5.1.1. Triangulation

In triangulation, the location of the target is estimated using three different

dimensions (Liu et al., 2007). The two main derivations of triangulation are:
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Table 2.4 Positioning technologies

Technology Accuracy
UWB based localization 0.1m
Magnetic Field Mapping 0.1m-2m
Hybrid of RF and IR, or RF and
Ultrasonic technologies

1m

WLAN 3m
Zigbee 3m
GPS 10m outdoor

• Lateration: In lateration, the distance between the object and different

references is measured to obtain an estimate of the target’s location.

Lateration is also known as range measurement technique.

• Angulation: In angulation, the angles formed between the target and the

reference points is used to estimate the target’s position.

Both lateration and angulation are discussed in detail below.

2.5.1.1.1. Lateration

There are different types of lateration that are listed below.

a)Time of Arrival (TOA): In TOA, the distance between the target and the

reference points is directly proportional to the propagation time of the signal

between the two points (Liu et al., 2007). For locating an object in a

two-dimensional environment, a TOA based system requires the signals at least

from three reference points. Figure 2.4 depicts TOA based object localization. X, Y,

and Z are the reference points with respect to which the user location is to be

tracked. The one way propagation time between the reference point and target is

used as the indicator of the distance between the two. TOA requires precise time

synchronization between the system transceivers (Liu et al., 2007). The

transmitted signal contains a mandatory time stamp that helps in determining

whether the signal is line of sight (LOS) or reflected/diffracted. The position of the
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target can be found through a number of different methods. The simplest method is

to use principles of geometry to find the points where all the TOA circles intersect.

The least squares algorithms (Fang, 1990; Kanaan & Pahlavan, 2004) constitute

the alternate method for TOA based localization, in which the position of the target

is obtained by minimizing the sum of the squares of the non-linear cost function

(Liu et al., 2007). Least square algorithms based method assumes that any target

present at (x0, y0) transmits a signal at time t0 so the J reference nodes present at

(x1, y1), (x2, y2), (x3, y3), ....., (xJ , yJ) receive the signal at time t1, t2, t3, ......, tJ . The

cost function (Liu et al., 2007) is shown in Equation 2.1

C(x) =
J∑

l=1

βl
2cl(x)

2 (Eqn. 2.1)

The βl depends on the signal reliability received at unit l while cl(x) can be

calculated as shown in Equation 2.2

cl(x) = v(tl − 1)−
√
(xl − x)2 + (yl − y)2 (Eqn. 2.2)

v denotes speed of light that is 3.0 x 108 meters/second while x = (x, y, t)T . The

function can be obtained for any measuring unit l = 1, 2...., J . cl(x) becomes zero

for specific values of x, y and t. The minimization of C(x) results in the estimated

location.

Figure 2.4. TOA/RTOF based localization of object.
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Chan, Tsui, So, and Ching (2006) proposed a residual test that can mitigate

for the localization error caused by the non-line of sight (NLOS) measurements. The

proposed test identifies the LOS reference nodes and their quantity. The identified

LOS reference nodes or base stations are used for localization. The principle behind

the residual test is that for measurements which only consist of LOS, the normalized

values of the residuals will follow a central Chi-square distribution. However when

NLOS measurements are present, then the normalized residuals follow a non-central

Chi-square distribution. The simulation results highlight the accuracy of the

proposed residual test as it can identify the correct number of LOS reference nodes

with an accuracy over 90%. Xu, Ding, and Dasgupta (2011) proposed two novel

convex optimization methods based on semi-definite programming (SDP) relaxation

for the purpose of direct localization. Their proposed method reduces the

susceptibility of the three decibel (dB) noise enhancement and does not need prior

information regarding the transmission time of the signal. The results show the

improvement in performance of the TOA based localization in the presence of noise.

Humphrey and Hedley (2008) used super-resolution algorithms for analyzing the

TOA measurements and compare it with the traditional inverse Fourier transform.

The results show that the Fourier transform based approach is better than the

super-resolution algorithms. It is also shown that most of the TOA information

stored in the signal exists in a couple of coefficients on the impulse response’s

leading edge. Based on the findings, the authors propose using a pattern matching

technique for obtaining TOA as it outperforms other contemporary techniques.

b)Time Difference of Arrival (TDOA): TDOA can be used to obtain the

estimated position of the target by examining the time difference between the arrival

of a signal at different reference points (Liu et al., 2007). TOA differs from TDOA

as TOA relies on absolute time of arrival while TDOA deals with the difference of

time of arrival. For TDOA measurements, the transmitter have to lie on the

hyperboloid while the range of the measuring units must have a constant difference.

The hyperboloid can be mathematically expressed as shown in Equation 2.3



24

Rl,m =
√

(xl − x)2 + (yl − y)2 + (zl − z)2 −
√

(xm − x)2 + (ym − y)2 + (zm − z)2

(Eqn. 2.3)

The (xl, yl, zl) and (xm, ym, zm) represent the stationary receivers l,m and x, y, z

represent the target’s coordinates. Equation 2.3 can be solved by using a

Taylor-series expansion and then formulating an iterative algorithm. Alternative

methods to obtain solution are non-linear regression and correlation techniques (Liu

et al., 2007). Figure 2.5 shows how TDOA based measurements can be leveraged to

obtained the target’s location in a two-dimensional space. The measurements at

point (X, Y, Z) result in two different hyperbolas that provide the target W’s

location.

Figure 2.5. TDOA based localization of object.

Gustafsson and Gunnarsson (2003) attempted to solve the uncertainty in

TDOA measurements through the use of a Monte Carlo based method for

localization and a gradient search algorithm that utilizes a non-linear least squares

framework. The Monte Carlo based method can be extended for a dynamic

framework that includes the transmitter’s motion model. Yang, An, Bu, and Sun

(2010) proposed a novel algorithm for TDOA-based source localization where the

signal is received at spatially distributed sensors. The algorithm uses the

constrained total least-squares (CTLS) technique, while a numerical solution is

obtained through a Newton method based iterative technique. Perturbation analysis

is used to derive the bias and covariance of the proposed algorithm. Simulation
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results highlight the fact that despite lower computation cost, the proposed

algorithm results in sufficient localization accuracy. Furthermore, the algorithm is

robust to large measurement noise when compared to contemporary algorithms.

Young, Keller, Bliss, and Forsythe (2003) discussed TDOA based localization for

ultra-wideband (UWB) system. Cross correlation based TDOA method is used in

combination with a novel technique that combines TDOA estimates from a number

of antenna pairs in order to estimate the transmitter’s location. Zhang, Kuhn,

Merkl, Fathy, and Mahfouz (2006) also used TDOA for UWB based localization.

The system results in sub-centimeter accuracy and complies with the FCC’s UWB

regulations. The method also achieves better ranging measurements. Using the

time-domain measurements, multi-path signals can be suppressed that can further

improve the accuracy to sub-millimeters (mm).

c)Received Signal Strength (RSS): Multi-path effects impact the performance

of TDOA as well as TOA, since they rely on signal’s arrival that is affected by

refraction, reflection and diffraction (Liu et al., 2007). This affects localization

accuracy in an indoor environment. An alternative to both TOA and TDOA is

using the strength of the signal to estimate the distance of an entity to any

reference point that is called Received Signal Strength (RSS). RSS based methods

rely on calculating the propagation induced signal path loss. The literature contains

various theoretical and empirical models for estimating the distance between the

reference point and target using RSS. Figure 2.6 depicts how RSS can be used for

object localization. PL1, PL2 and PL3 are the path loss.

Drastic shadowing and multi-path fading that exist in indoor environments

can affect the reliability of the path-loss models. The parameters used in the

path-loss model vary from site to site, so obtaining a generalized model with specific

set of values is not favorable. The performance can be significantly improved by

utilizing pre-measured RSS contour values centered at the receiver. Various other

alternatives can also improve the performance of the RSS based systems such as
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utilizing multiple measurements at different reference points or fuzzy logic

algorithms (Teuber, Eissfeller, & Pany, 2006).

Figure 2.6. RSS based localization of object.

Kaemarungsi and Krishnamurthy (2004) discussed RSS properties of IEEE

802.11b wireless network interface cards (NICs). The paper presents a thorough

analysis of the data that assists in understanding the basic features of location

fingerprinting. The authors have also compared a Gaussian model with RSS based

indoor localization systems in terms of accuracy in order to verify how closely can

the Gaussian model fit the measured data. Kaemarungsi (2006) focused on location

finger printing that is based on RSSI of WLANs interfaces. The paper also takes

into account RSSI’s underlying mechanism to dissect it from indoor localization

perspective. Extensive experiments are performed in order to analyze the RSSI

distribution from five IEEE 802.11b/g WLAN interface. The goal of the paper is to

model indoor localization system based on location fingerprinting. Seshadri, Zaruba,

and Huber (2005) used a probabilistic method for global localization in an indoor

environment using minimum infrastructure. In global localization, the device does

not know its initial position and initiates one from scratch. RSSI from wireless NICs

is used for localization. Bayesian filtering is applied on samples obtained through

Monte-Carlo for obtaining location and orientation estimates. The accuracy of the

proposed method is highlighted using simulations.

Gustafsson (2010); Gustafsson et al. (2002); Guvenc et al. (2003); Lee et

al. (2010); Subhan et al. (2013) presented a detailed discussion on Bayesian filtering
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techniques that can assist in addressing the challenges affecting the performance of

RSSI based indoor localization. While particle filters (PF) have proven to be better

than Kalman Filters (KF) and Extended Kalman Filters (EKF) in an indoor

environment, this research study aims to study whether using them in cascade (with

different cascade arrangements), that is utilizing particle filters in combination with

KF or EKF, can improve the performance of a PF-based localization system.

d)Round Trip of Flight (RTOF): In RTOF, the round-trip flight time of a

specific signal sent from the transmitter to a specific entity is used for localization

purposes (Liu et al., 2007). Figure 2.4 depicts both TOA and RTOF. RTOF,

compared to TOA, does not require strict clock synchronization. Both TOA and

RTOF use the same method for measuring the range. A radar can serve as

measuring unit and the target respond back to the radar signal. The measuring unit

measures the round trip time and its performance can be affected if the measuring

unit is not aware of any possible delay at the target. If the transmission time is

significantly more than the delay in long or medium range, then the delay can be

ignored. However, delay must be taken into account for short ranges. Modulation

reflection can be used for short range systems (Günther & Hoene, 2005). Similar

positioning algorithms can be used for both RTOF and TOA.

2.5.1.1.2. Angulation

The fundamental type of angulation technique is known as Angle of Arrival

(AoA). In AoA, the target is located by obtaining the intersection of different angle

direction lines formed between the circular radius of the base station and the target

(Liu et al., 2007). Figure 2.7 shows how angulation provides the location of the

target. In order to track the position of the target in two dimensions, AoA requires

two reference points and the angles formed between the reference points and the

target. An array of antennas or directional antennas are suitable for AoA based

approaches.
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AoA can be used for three-dimensional (3D) localization even by utilizing

three measuring units. Also, there is no need for timing synchronization in AoA

based localization. However, hardware complexity and performance degradation

with an increase in the distance between the target and reference points, is one of

the significant problems with AoA. Furthermore, measuring the angles can be a

tedious task in indoor environments due to various noise and multi-path fading

phenomena.

Figure 2.7. AOA based localization of an entity at point W.

Peng and Sichitiu (2006) utilized AOA information between adjacent nodes

for localization. They propose a novel scheme for orientation and localization that

takes the beacon information from multiple hops away into account. The

measurements are assumed to be noisy. The simulation results show that even in

the presence of noisy measurements and small number of beacons (reference nodes),

the proposed system can accurately locate an entity. Niculescu and Nath (2003)

used AOA ability of nodes in an ad-hoc network for localization. The

communication among the adjacent nodes is leveraged for obtaining the location of

the nodes (not necessarily reference nodes) with AOA capability. Two different

algorithms based on Distance Vector (DV), DV-Bearing and DV-Radical are

proposed that can provide absolute position and orientation of the nodes without

the need for any added infrastructure.
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2.5.1.2. Scene Analysis

In scene analysis, the fingerprints of the experiment space are collected. During the

online stage, the fingerprints are matched against the obtained measurements to

locate the user. The most widely used form of scene analysis is RSS based scene

analysis. For localization, there is need for location fingerprinting in which the

fingerprint of feature of a signal at a specific location is obtained. The two different

stages of fingerprinting are:

• Offline: Site survey is conducted to obtain the RSS values at different

locations within the site. The reference points or base stations are placed in

the entire site. RSS values at different (x, y) coordinates from different base

stations or access points are collected.

• Online: During the runtime or online stage, the obtained RSS values are

compared with the offline values and are compared in order to obtain an

accurate estimate of the location.

RSS based fingerprinting due to its reliance on RSS is prone to the problems that

RSS faces in an indoor environment (i.e., the RSS values can fluctuate due to

diffraction, reflection and scattering). There are five different fingerprinting based

localization algorithms proposed in the literature: a) Probabilistic methods b) k

Nearest Neighbors (kNN) c) Neural Networks(NN) d) Support Vector Machines

(SVM) e) Smallest M-vertex polygon (SMP). Liu et al. (2007) provided a detailed

discussion on these methods.

2.5.1.3. Proximity

Proximity based algorithms are intended for providing information related

to symbolic relative position (Liu et al., 2007). These algorithms use a dense

antenna grid and the position of every antenna is used. When a target is detected

by any antenna, it is assumed to be co-located with that antenna. Proximity based
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methods are much easier to implement and a number of different mediums can

benefit from such systems. RFID and IR based systems usually use proximity based

algorithms for localization.

2.6 Bayesian Filtering

There are a number of scientific problems that require estimating a time

varying system’s state using a set of noisy measurements (Arulampalam, Maskell,

Gordon, & Clapp, 2002). Bayes theory can be applied to such systems to estimate

the state. To use Bayesian filtering, we require at least two models as described by

Arulampalam et al. (2002).

1. System Model: This model describes the variation of the state with time. The

system model relates the state yi with the process noise and previous state.

2. Measurement Model: The measurement model relates the noisy measurements

with the state.

In such an approach for estimating the dynamic state, the posterior probability

density function (pdf) of the state is constructed using the set of all possible

information including the measurements. The pdf contains all the statistical

information available, so it can be considered to be the complete solution to the

state estimation problem. In most of the problems, there is a need to estimate the

state whenever a measurement is obtained. For such problems, we need a recursive

filter that requires sequential processing of data. Recursive filters require the

prediction and update stage. The state is usually affected by a number of unknown

disturbances, so during the prediction stage, the pdf is translated, deformed and

spread. In the update stage, the measurements are used for modifying the

prediction pdf. This is where Bayes theorem comes into play as the knowledge or

information about the state is updated using the obtained information.
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According to the system model, state yi at time i is a function of the state at

i− 1 and the process noise mi−1 as described by Djurić et al. (2003) and given in

Equation 2.4.

yi = fi(yi−1,mi−1) (Eqn. 2.4)

fi : �ny x �nm → �ny is the non-linear function (can be linear as well) for the state

yi−1 as described by Arulampalam et al. (2002). It maps the current state in the

presence of process noise to the next state. {mi, i ∈ ℵ} indicates independent,

identically distributed (i.i.d) process noise sequence. The state and process noise

vector dimensions are represented by ny and nm respectively while the set of natural

numbers is represented by ℵ. Similarly, according to the measurement model, the

obtained measurement xi is a function of the state y and measurement noise n at

time i as described by Djurić et al. (2003) and given in Equation 2.5.

xi = hi(yi, ni) (Eqn. 2.5)

hi : �ny x �nn → �nx can be either a linear or non-linear function. Just like fi, hi

also depends on laws of physics/motions and maps the current state and

measurement noise to obtained measurements. {ni, i ∈ ℵ} represents the i.i.d

measurement noise sequence. nx and nn represent the dimension of measurement

and measurement noise vectors respectively.

This, in Bayesian terminology, can be interpreted as repeatedly calculating

certain belief in the state yi at particular time instant i taking various values in the

presence of measurement data x1:i. Therefore, it is necessary to calculate the

probability density function (pdf) p(yi|x1:i). As described by Arulampalam et al.

(2002), initial pdf p(yo|x0) is assumed to be equivalent to state vector’s p(y0). p(y0)

is also known as the prior and it is assumed to be available. Based on the

information provided, the pdf p(yi|x1:i) can be recursively obtained using a

prediction and update stage.
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In the prediction stage as described by Arulampalam et al. (2002), the

Chapman-Kolmogorov equation (see Equation 2.6) is used for obtaining the state’s

prior pdf at time i provided that the pdf p(yi−1|x1:i−1) is available.

p(yi|x1:i−1) =

∫
p(yi|yi−1)p(yk−1|x1:i−1)dyi−1 (Eqn. 2.6)

At time i, the measurement xi are obtained from the sensors which can then be

used to update the prior using Bayes’ rule as shown in equation 2.7 and described

by Arulampalam et al. (2002). The normalizing constant in equation 2.7 is further

explained in equation 2.8.

p(yi|x1:i) =
p(xi|yi)p(yi|x1:i−1)

p(xi|xi−1)
(Eqn. 2.7)

p(xi|xi−1) =

∫
p(xi|yi)p(yi|xi−1)dyi (Eqn. 2.8)

During the update stage, xi is utilized for modifying the prior density that results in

the required current state’s posterior density. The recursive process described in

Equations 2.6 and 2.7 results in an optimal Bayesian solutions. However, such

recursive propagation of posterior density cannot be obtained analytically.

Therefore, different algorithms such as KF, EKF, and PF can be used to obtain a

solution. Below, the theory related to Kalman Filters, Extended Kalman Filters and

Particle Filters is presented.

2.6.1 Kalman Filter

The underlying assumption of Kalman filters is that the posterior

probability density is Gaussian at every step that can be characterized by a mean

(μ) and variance (σ2) (Arulampalam et al., 2002). For a Gaussian p(yi−1|x1:i−1),

p(yi|x1:i) is also Gaussian under certain assumptions such as

• hi(yi, ni) is a linear function of the state yi and measurement noise ni
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Table 2.5 Kalman filter parameter notation

Symbol Meaning
y State vector
x Measurement/observation vector
F State transition matrix
P State vector estimate covariance or Error covariance
Q Process noise covariance
R Measurement noise covariance
H Observation matrix
w Process Noise
v Measurement Noise

• fi(yi−1,mi−1) is a known linear function of the yi−1 and process noise mi−1

• Both the process noise mi−1 and measurement noise ni follow a Gaussian

distribution with known parameters.

Based on the above assumptions, Equation 2.4 and 2.5 can be written, as described

in Arulampalam et al. (2002)

Yi = FiYi−1 +mi (Eqn. 2.9)

Xi = HiYi + ni (Eqn. 2.10)

Both Fi and Hi are known matrices that define the linear functions. The matrix F

is known as the transition matrix while Hi is known as measurement matrix. The

covariances of the process and measurement noise are Qi−1 and Ri. Table 2.5

contains the notations for different parameters used in the prediction and update

steps of Kalman filters.

During the prediction phase, the state estimate ȳ and state vector estimate

P̄ covariance is calculated as given in Equations 2.11 and 2.12 and described by

Guvenc et al. (2003).

Ȳi = FYi−1 (Eqn. 2.11)
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P̄i−1 = FPi−1F
T +Q (Eqn. 2.12)

The Kalman gain K weights the observations based on which the estimate is

updated. Kalman gain is one of the most important factors that dictates the

performance of the filter. It is mathematically represented as given in equation 2.13.

It is the measure of range to which the update values depend on the obtained

measurements. The higher the value of measurement noise covariance R, the lower

the reliance will be on measurements for updating the state vector and error

covariance. This is because the increase in R causes a decrease in the Kalman gain.

Similarly a higher value of Q means a higher value of Kalman gain, which would

increase the weight of the observation when the estimate is being updated. In the

update step, Kalman gain, the state and state vector estimate covariance are

updated as discussed by Guvenc et al. (2003).

Ki = P̄i−1H
T (HP̄i−1H

T +R)
−1

(Eqn. 2.13)

Ȳi = Ȳi−1 +Ki(Xi −HȲi−1) (Eqn. 2.14)

Pi = P̄i−1(1−KH) (Eqn. 2.15)

This whole process is iterative and the output from the update in iteration k is the

input to the predict step in iteration k + 1 as seen in Figure 2.8.

2.6.2 Extended Kalman Filter

Kalman filters relies on the assumption that the functions given in

equations 2.9 and 2.10 are linear. However if the assumption does not hold (if

functions are in fact non-linear), then a local linearization of the equations can

approximate the non-linearity condition. This is the core essence of Extended

Kalman Filters (EKF) as they locally linearize non-linear functions by taking the



35

Figure 2.8. Prediction and update steps in Kalman Filter

Jacobian of the non-linear f(.) and h(.) functions listed in Equations 2.4 and 2.5

respectively. Let F̄ and H̄ are the locally linearized functions obtained through the

Jacobian of f(.) and g(.) functions. Before discussing Jacobian, it is worth

mentioning that EKF is based on this approximation that the probability p(yi|x1:i)

can be approximated using Gaussian as given in Equations 2.16-2.18 by

Arulampalam et al. (2002)

p(yi−1|x1:i−1) ≈ N (yi−1;mi−1|i−1, Pi−1|i−1) (Eqn. 2.16)

p(yi|x1:i−1) ≈ N (yi;mi|i−1, Pi|i−1) (Eqn. 2.17)

p(yi|x1:i) ≈ N (yi;mi|i, Pi|i) (Eqn. 2.18)

where N (y;m,P ) is a Gaussian Probability Density and has arguments state y,

mean m and covariance P . Similarly (taken from Arulampalam et al. (2002))
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mi|i−1 = fi(mi−1|i−1) (Eqn. 2.19)

Pi|i−1 = Qi−1 + F̄iPi−1|iF̄ T
i (Eqn. 2.20)

mi|i = mi|i−1 +Ki(xi − hi(mi|i−1)) (Eqn. 2.21)

Pi|i = Pi|i−1 −KiH̄iPi:i−1 (Eqn. 2.22)

The Jacobian for both f(.) and g(.) functions is given below

F̄i =
dfi(y)

dy

∣∣∣∣
y=mi−1|i−1

(Eqn. 2.23)

H̄i =
dhi(y)

dy

∣∣∣∣
y=mi|i−1

(Eqn. 2.24)

The predict and update steps for EKF are, as described by Guvenc et al. (2003).

• Predict:

Ȳi−1 = FYi−1 (Eqn. 2.25)

P̄i−1 = FPi−1F
T +Q (Eqn. 2.26)

• Update:

Ki = P̄i−1H
T (HP̄i−1H

T +R)
−1

(Eqn. 2.27)

Ȳi = Ȳi−1 +Ki(Xi −HȲi−1) (Eqn. 2.28)

Pi = P̄i−1(1−KH) (Eqn. 2.29)

The rest of the process is exactly same as Kalman Filters.

2.6.3 Particle Filter

Particle filters, based on the Sequential Importance Sampling (SIS)

and Bayesian theory (Djurić et al., 2003), is widely used for indoor localization and
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tracking (Gustafsson, 2010; Gustafsson & Gunnarsson, 2003; Gustafsson et al.,

2002). It is indeed a method of implementing a recursive Bayesian filter by Monte

Carlo (MC) simulations. The basic idea behind particle filters is that the posterior

probability distribution is represented using a set of weighted random samples that

are used for computing the estimates (Arulampalam et al., 2002). The increase in

the number of samples cause the filter to perform optimally. For understanding the

algorithm in detail, let
{
yk0:i, w

k
i

}
be the set of random measures that characterize

the posterior pdf p(y0:i|x1:i).
{
yk0:i, k = 0, .....Ns

}
is the set of support points whereas

the weight are given by
{
wk

i , k = 0, .....Ns

}
. y0:i {yj, j = 0, .....i} is the set of the

states up to i. The weight are normalized using
∑

min w
k
i = 1. After the

normalization, the posterior density at i is approximated, as given by Arulampalam

et al. (2002), using

p(y0:i|x1:i) ≈
Ns∑
k=1

wk
i δ(y0:i − yk0:i) (Eqn. 2.30)

Equation 2.30 is the discrete weighted approximation of the true posterior

probability distribution p(y0:i|x1:i). Importance sampling (Bergman, 1999) is used

to choose the weights associated with each particle (Arulampalam et al., 2002). For

importance sampling, assume that p(y) ∝ π(y) is the probability density from which

drawing particles is tedious. However, π(y) can be evaluated for it. Let yk ∼ d(y)

where k ∈ [1, ...,Ms] be the samples generated from the proposal d(.) known as

importance density. Then the probability density p(.) can be approximated as given

by Arulampalam et al. (2002)

p(y) ≈
Ms∑
k=1

wkδ(y − yk) (Eqn. 2.31)

where as the normalized weight of the kth particle can be obtained using equation

2.32

wk ∝ π(yk)

d(yk)
(Eqn. 2.32)
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If the samples yk0:i are taken from the importance density d(yk0:i|x1:i), then the

weights used in equation 2.30 are given by

wk
i ∝ p(yk0:i|x1:i)

d(yk0:i|x1:i)
(Eqn. 2.33)

Due to the sequential nature of the process, at every single iteration, there could be

samples that approximate the p(y0:i−1|x1:i−1), and the goal is to approximate

p(y0:i|x1:i) with new samples. The importance density must be chosen for factorizing

such that

d(y0:i|x1:i) = p(yi|y0:i−1, xi:i)d(y0:i−1|x1:i−1) (Eqn. 2.34)

Then the samples yk0:i ∼ d(y0:i|x1:i) can be obtained by incorporating the existing

samples yk0:i−1 ∼ d(y0:i−1|x1:i−1) into the recently obtained state

yki ∼ d(yi|y0:i−1, x1:i). The weights must be updated using the update equation that

can be derived by first representing p(y0:i|x1:i) in terms of p(xi|yi), p(yi|yi−1) and

p(y0:i−1|x1:i−1) that can be mathematically given as

p(y0:i|x1:i) =
p(xi|y0:i|x0:i−1)p(y0:i|x1:i−1)

p(xi|x1:i−1)

=
p(xi|y0:i|x0:i−1)p(y0:i|y0:i−1|x1:i−1)

p(xi|x1:i−1)

× p(y0:i−1|x1:i−1)

(Eqn. 2.35)

=
p(xi|yi)p(yi|yi−1)

p(xi|x1:i−1)
p(y0:i−1|x1:i−1)

∝ p(xi|yi)p(yi|yi−1)p(y0:i−1|x1:i−1)

(Eqn. 2.36)
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The weight Equation in 2.33 can be updated by substituting Equation 2.34 and 2.36

into it, so Equation 2.33 will become

wk
i ∝ p(xi|yki )p(yki |yki−1)p(y

k
0:i−1|x1:i−1)

d(yki |yk1:i−1, x1:i)d(yk0:i−1|x1:i−1)

= wk
i−1

p(xi|yki ))p(yki |yki−1)

d(yki |yk1:i−1, x1:i)

(Eqn. 2.37)

Also the importance density function would be only dependent on yi−1 xi if

d(yi|y1:i−1, x1:i) = d(yi|yi−1, xi). This assists when only a filtered estimate of

p(yi|x1:i) is needed at each time stamp. In such cases, only the state yki would be

stored. The weights are then modified into

wk
i ∝ wk

i−1

p(xi|yki ))p(yki |yki−1)

d(yki |yki−1, xi)
(Eqn. 2.38)

while the filtered posterior probability density becomes

p(yi|x1:i) ≈
Ns∑
k=1

wk
i δ(yi − yki ) (Eqn. 2.39)

The aforementioned algorithm (SIS) is a recursive algorithm in which the weights

and support points are recursively propagated with the reception of every single

measurement. The aforementioned three Bayesian algorithms can greatly help in

localization purposes. Particle Filters are optimal for indoor localization since they

assume the system to be non-linear and noise to be Non-Gaussian which is a

realistic assumption for indoor environments.

2.7 Summary

In this chapter, we provided a detailed discussion and review of the literature

relevant to IoT, smart buildings, iBeacons, proximity based services, localization

and Bayesian Filtering. We presented an in-depth into the basics of IoT, its
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architecture and technologies. We also discussed smart buildings and highlighted

how IoT and localization can be leveraged to improve the performance of smart

buildings. We also presented a primer on iBeacons that discussed the basics of the

protocol and can help to build upon for further analysis. We thoroughly

investigated different techniques that are used for indoor localization purposes. We

also showcased the basic theory behind such techniques and presented literature

that utilizes these techniques. We also presented the basics of Bayesian filtering and

explained Kalman Filters, Extended Kalman Filters and Particle Filters. In the next

chapter, we provide the framework and methodology used in the research study.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

This chapter provides the framework and methodology used in the research

study.

3.1 Hypotheses

H01 : The use of our proposed Server-side Running Average (SRA) and

Server-side Kalman Filter (SKF) algorithms does not improve the

proximity detection accuracy when compared with iBeacon’s current

proximity detection approach.

Hα1 : The use of our proposed Server-side Running Average (SRA) and

Server-side Kalman Filter (SKF) algorithms improves the proximity

detection accuracy by at least 10% when compared with iBeacon’s

current proximity detection approach.

H02 : The use of a Kalman Filter or an Extended Kalman Filter in

cascade with Particle Filter does not significantly reduce the average

localization error of an iBeacon based indoor localization system when

compared with using only Particle Filter.

Hα2 : The use of a Kalman Filter or an Extended Kalman Filter in

cascade with Particle Filter significantly reduces the average localization

error of an iBeacon based indoor localization system when compared

with using only Particle Filter.
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3.2 Our Approach

In this research study, we used iBeacons for both proximity detection and

indoor localization purposes. We present different approaches that improve the

performance of an iBeacon-based proximity detection and indoor localization

system. In earlier chapters, we discussed the basics of iBeacons, indoor localization,

proximity based services and Bayesian filtering. In this chapter, we highlight the

prototype iOS application that we developed for iBeacon based proximity and

localization. Then we present our approach for improving the proximity detection

accuracy of iBeacon-based proximity system. We also present an insight into how

we utilize iBeacons for indoor localization.

3.2.1 Our iOS application

We developed a prototype iOS application that can communicate with

iBeacons as well as a server. The application was developed in Objective C. The

application has four tabs, three of which provide indoor localization, geofencing and

proximity based services while the fourth one contains general information. Figure

3.1 shows our prototype application. The right side of Figure 3.1 shows the

proximity tab while the left side highlights the indoor localization feature. The

application is capable of receiving RSSI values from the iBeacons and then using

them for indoor localization or proximity based services as well as communicating

with the server.

3.2.2 iBeacon-based Proximity Detection

We highlight the limitations of the current iBeacon based proximity

detection. Then we present server-based approaches that utilize moving average and

Kalman filtering to improve the proximity detection accuracy of iBeacon-based

proximity detection system. We compare our approach with Apple’s current
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Figure 3.1. iPhone Application Prototype.

approach used for iBeacon based proximity detection and show that our approach

resulted in significant improvement.

3.2.3 iBeacon-based Indoor Localization

For indoor localization, we used Particle filters primarily to locate the user

using RSSI values. PF, as mentioned earlier, is widely preferred for indoor

localization. To improve the performance further, we used KF and EKF for RSSI in

cascade with PF to improve the localization accuracy. Below, we highlight our

approaches for indoor localization.

3.2.3.1. Particle Filtering on the user device

The iOS application running on the user device was equipped with particle

filter. iBeacons were placed in an indoor environment. The user was tracked

continuously and the application showed him his approximated position. The

particle filter was inputted with the unfiltered RSSI values. RSSI values were

converted into distance between the user device and the beacons using path-loss
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model (Kumar, Reddy, & Varma, 2009) given in equation 3.1. Path-loss model is

widely used in RSSI based localization. Through extensive experiment, the different

parameters in equation 3.1 were caliberated to enhance the localization accuracy.

RSSI = −10nlog(d) + C (Eqn. 3.1)

where n represents the path-loss exponent, d represents the distance and C is the

reference RSSI value at a distance of 1m (Kumar et al., 2009).

3.2.3.2. Particle Filtering on the server side

The user device running the iOS applications collected the RSSI values from

different iBeacons and forwarded it to a local Apache Tomcat Server that ran

particle filtering algorithm using the unfiltered RSSI values. The output of the

algorithm was the estimated user location.

3.2.3.3. Cascaded Filters on the server side

Particle filtering was the main algorithm used for localization. However, for

the cascaded filter part; the RSSI values were filtered through KF so that the

fluctuation in the RSSI could be reduced. The reduced fluctuation in the RSSI

values improved the localization accuracy and reduced the variation of the observed

positions. Also, the Extended Kalman Filter (EKF) was used to enhance the

measurements obtained from the Server-side Particle Filtering algorithm and

improve the localization accuracy.

3.3 Data Sources

Based on the apparatus discussed above, the following data was collected.
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• Actuators status (boolean) based on the user’s movements in and out of the

geofence.

• User’s actual position in the (X, Y ) grid.

• User’s estimated position in the (X, Y ) grid

3.4 Data Analysis

The data for both the tasks was analyzed differently.

3.4.1 Proximity based service

The actual proximity zone of the user was compared with the estimated

proximity zone. If the actual and estimated proximity zones were same, there was

no proximity detection error.

3.4.2 Indoor Localization

After completing all the experiments as described above for the indoor

localization system, the data related to the user’s original location and estimated

location obtained from our proposed model was compared using equation 3.2. The

average localization error was calculated as the difference between the actual

location (X, Y ) and the estimated (X<est>, Y<est>). n, equal to 11 in our

experiments, was the total number of points used as the actual position while

(X<est>) and (Y<est>) was calculated using the average of 10 measurements

(estimates) for a particular point.

< Error >=

∑n
i=1

√
(Xi −X<est>)2 + (Yi − Y<est>)2

n
(Eqn. 3.2)
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The average localization error, standard deviation of error was calculated for

experiments in different scenarios with various number of particles, and iBeacons.

The parameters of KF and EKF were altered to improve the accuracy of the

algorithm. A plot of the localization error versus the number of beacons,

localization error versus number of particles, and arrangement of filters was also

obtained. The average error was used to evaluate the validity of the hypotheses

stated for this study.

3.5 Threats to validity

The possible threats to the validity are:

Environmental Noise: Different parameters such as the variables in the path-loss

model were optimized for the environment in which the experiments were

conducted for this research study. The variables vary for other environments

that can affect the results. Similarly, the variation in environment noise such

as presence of obstacles, or interference can affect the performance of the

system.

iBeacon Type: There are number of beacons available whose performance vary. For

this study, we used Gimbal series 10 beacons. The performance of the system

can vary for other beacons.

Beacon Transmission Power: The beacons can be configured to transmit at a

certain power. The beacons used in this study were optimized to transmit at a

certain power (0 dBm) that suited the experimental setup and environment.

Beacon Message Transmission Frequency: The interval (frequency) between the

transmission of simultaneous messages from the beacons can be altered. The

higher the frequency, the better will be the performance. Changing the

message transmission frequency can affect the results.
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Number of Beacons: The number of beacons for indoor localization depend upon

factors such as transmission frequency, power, area of the room (for

experiments) etc. Varying the number of beacons can affect the performance

and serve as a threat to the validity of the results in this study.

Topology of the Beacons: Beacons can be arranged in a number of topologies

depending on the environment and noise. The topology used for this research

study may not be ideal for some other environment.

Parameters of the filter: The filters used in this research study were optimized for

this research study and environment. They necessarily might not hold true for

other experimental setups and scenarios.

Internet/Network Connectivity: The mobile application needs to contact the server

through the Internet/network. Using Internet or network that might have

problems serve as threat to the validity of this research study.

3.6 Hypothesis Validation

• Two samples based large sample test was used.

• The average error was used as the test statistic.

– x̄ was the average error of the system only using Particle Filter.

– ȳ was the average error of the system using Cascaded Filters.

• Let μ1 be the true average error of system using only particle filter, μ2 be the

true average error of system using cascaded filters and Δ0 be μ1 − μ2 then

– H0: Δ0 = .25× x̄

– Hα: Δ0 > .25× x̄ i.e. rejection region was Z ≥ Zα where α = 0.05
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Z =
x̄− ȳ −Δ0√

S2
1

m
+

S2
2

n

(Eqn. 3.3)

where m and n were the number of samples in sample 1 (only particle filter)

and sample 2 (cascaded filters).

• If Z ≥ 1.645(Zα = 1.645 for α = 0.05) then the null hypothesis was rejected.

3.7 Summary

In this thesis, we provided the framework and methodology used in the

research study. We also presented the hypotheses and our approach for proximity

detection and indoor localization. We also listed the data sources, data analysis, the

threats to validity and the method for hypothesis validation. In the next chapter,

we provide the detailed results for the beacon based proximity services using the

proposed cloud based architecture.
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CHAPTER 4. IBEACON BASED PROXIMITY DETECTION

This chapter provides our server based approaches used for improving the

proximity detection accuracy of an iBeacon-based proximity detection system. The

current approach utilized by Apple’s CoreLocation Framework is used as the

benchmark. The chapter also describes our cloud-based architecture for end-to-end

iBeacon-based proximity services.

4.1 Proposed Optimization for Proximity Detection

iBeacons are the industry standard for providing PBS. It is energy efficient

with wide reception range and is readily available in most of the user devices.

However, cost and proximity detection accuracy is the major challenge. The cost

will reduce with the increase in the adoption of the iBeacons. Below we discuss the

current approach utilized for iBeacon based PBS. We highlight its limitations that

result in lower proximity detection accuracy. Then, we present our Server-side

Running Average (SRA) and Server-side Kalman Filter (SKF) that improves the

proximity detection accuracy by 29% and 32% respectively.

4.1.1 Current Approach

RSSI values from the iBeacons are received by the user device. Apple’s

CoreLocation Framework enables the application on the user device to report a

moving/running average of the RSSI value every one second. Since the RSSI values

are highly fluctuating, the running average is used to reduce the fluctuation and

improve the performance. Based on the value of the running averaged RSSI, Apple

then classifies the user’s location in any of the aforementioned four zones. In case
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Figure 4.1. Current approach used by Apple’s CoreLocation Framework.

the user device detects that the user moved from one zone to another, the

notification does not take place instantaneously. The device waits for some time in

order to ascertain that the user indeed moved to a different zone and it is not

because of a fluctuating RSSI value. Figure 4.1 shows the current approach used for

iBeacon based proximity detection by iOS.

The problem with the current approach is that the RSSI values fluctuate

drastically in the indoor environment despite using moving average. Furthermore,

Apple uses a generic model in which the user’s proximity to a certain beacon is

estimated based on the RSSI values. The underlying assumption is that the channel

characteristics of the indoor environment are uniform so an RSSI value higher than

say ‘x’ indicates that the user is in ‘immediate’ zone while an RSSI value lower than

‘x’ indicates that the user is in ‘near’ region. However, this might not be the case in

highly noisy or noise-free environments. For example, in highly noisy environment, a

user in ‘immediate’ zone might receive an RSSI value lower than ‘x’ (due to noise)

so the current approach would misclassify him in ‘near’ zone. This affects the

proximity detection accuracy and proximity based services. To account for these

limitations, below we describe our server based algorithms that leverage the

superior processing power of servers for efficient and effective proximity detection.
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4.1.2 Server-side Running Average (SRA)

Our first algorithm, Server-side Running Average intends to address problem

of using a generic model for proximity classification using RSSI values, through the

use of path-loss model obtained distance as given in Equation 4.1. In Equation 4.1,

n is the path loss exponent, d is the distance while C is the RSSI value at a

reference distance of 1 meter.

RSSI = −10nlog(d) + C (Eqn. 4.1)

Using experiments, we obtained a path-loss model (discussed later) to compute

distance using RSSI values. Our prototype iOS application received the RSSI values

from the beacons and forwarded it to the server that obtained an estimated distance

between the user and iBeacons using the path-loss model and RSSI values. The

estimated distance was used to classify the user in any of the aforementioned four

zones. In order to account for the drastic RSSI fluctuation, our algorithm SRA

classified a user in any proximity zone only if three consecutive samples classified

him/her in that zone. Algorithm 1 shows the SRA.

Algorithm 1 Server-side Running Average

1: procedure Server-side Running Average
2: Obtain a path-loss model using site survey
3: while User device receives RSSI from iBeacons do
4: Report RSSI values from user device to server
5: Obtain distance from RSSI values using path loss model.
6: Classify proximity zone based on distance
7: if The user is classified as being present in the same zone by three

consecutive measurements obtained from beacons then
8: Accept the proximity estimate
9: else Reject the proximity estimate
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Figure 4.2. Server-side Kalman Filter for proximity classification

4.1.3 Server-side Kalman Filter (SKF)

Our second algorithm, Server-side Kalman Filter utilizes Kalman filtering for

reducing the fluctuation in the RSSI. The user device obtains the RSSI values from

the iBeacons and forwards it to a server. At the server, Kalman filter is used to

reduce the RSSI variation. The smoothed RSSI values are then converted into

distance using the obtained path-loss model. The computed distance is used to

classify the user in any proximity zone. Just like SRA, SKF only classifies a user in

any particular zone if three consecutive samples classify the user in that zone.

Algorithm 2 contains the pseudocode for SKF. Figure 4.2 shows the proposed

Kalman Filter based approach. Below we described the Kalman filter, used in our

experiments, in detail.

Algorithm 2 Server-side Kalman Filter

1: procedure Server-side Kalman Filter
2: Obtain a path-loss model using site survey
3: while User device receives RSSI from iBeacons do
4: Report RSSI values from user device to server
5: Pass RSSI through Kalman Filter
6: Obtain distance from filtered RSSI values using path-loss model.
7: Classify proximity zone based on distance
8: if The user is classified as being present in the same zone by three

consecutive measurements obtained from beacons then
9: Accept the proximity estimate
10: else Reject the proximity estimate



53

4.1.3.1. Parameters of the Kalman Filter

Prior to explaining the experimental results, we discuss the Kalman filter

parameters for RSSI smoothing used in our iBeacon-based proximity system. We

have already discussed the theory related to Kalman Filter in Chapter 2. Here we

discuss KF in context of our experiment. Our state Yi consists of the current RSSI

value yi and the rate of change of RSSI Δyi given below.

Yi =

⎡
⎣ yi

Δyi

⎤
⎦

The current value of RSSI yi depends on the previous RSSI yi−1 plus the rate of

change of RSSI Δyi−1 and the process noise my
i , so we can write Equation 2.9

⎡
⎣ yi

Δyi

⎤
⎦ =

⎡
⎣1 δt

0 1

⎤
⎦
⎡
⎣ yi−1

Δyi−1

⎤
⎦+

⎡
⎣ my

i

mΔy
i

⎤
⎦ (Eqn. 4.2)

Hence transition matrix F is given by

F =

⎡
⎣1 δt

0 1

⎤
⎦

The parameter δt depends on the environment. Through trial and error, we obtain

the optimal results at δt equal to 0.2. Similarly the Equation 2.10 can be written as

[
xi

]
=

[
1 0

]⎡⎣ yi

Δyi

⎤
⎦+

[
ny
i

]
(Eqn. 4.3)

So our observation matrix H is given by

H =
[
1 0

]
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Parameters P, Q and R, obtained through trial and error, used in the experiments

are given below.

P =

⎡
⎣100 0

0 100

⎤
⎦Q =

⎡
⎣0.001 0

0 0.001

⎤
⎦R =

[
0.10

]

The Kalman Filter was then used for smoothing RSSI as discussed in Algorithm 2.

4.1.4 Experimental Setup, Results and Discussion

We first obtained the path-loss models for two distinct environments i.e.

Environment 1 was 11m × 6m and environment 2 was 8m × 4m (environment 2) in

dimension. The iBeacon was placed in a stationary position and we noted the RSSI

values at different distances starting from zero meters up to seven meters. We used

iPhone 6s plus running our prototype iOS application to collect RSSI

measurements. We collected 22 samples at each distance and averaged that. Then

we plotted the distance vs. RSSI values and used matlab’s curve fitting function to

obtain path-loss exponent n and the RSSI value at reference distance (1 meters in

our experiments) C in Equation 4.1. Figure 4.3 and 4.4 show the fitted curve for

distance vs RSSI in environment 1 and environment 2 respectively. Based on the

fitted curve for environment 1, the n in Equation 4.1 was 0.9116 with 95%

confidence bounds between (0.8272, 0.996) and C was -62.78 with 95% confidence

bounds between (-64.07, -61.05). The R2 value for the fitted curve was 0.9915. For

environment 2, the path-loss exponent n equals to 1.246 with 95% confidence

bounds between (1.139, 1.354) and C equals to -60.95 with 95% confidence bounds

between (-62.24, -59.66) while the R2 value for the fitted curve is 0.9926. Hence for

environment 1, Equation 4.1 with above values values become Equation 4.4.

Because the goal is to obtain distance using RSSI values, we rearrange Equation 4.4

into Equation 4.5. Similarly for environment 2, Equation 4.6 is rearranged into

Equation 4.7 to obtain the distance from the beacons using RSSI values.



55

0 1 2 3 4 5 6 7
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

Distance (meters)

A
ve

ra
ge

 R
S

S
I (

dB
m

)

RSSI vs Distance Fitted Curve

 

 
RSSI vs. Distance
Fitted Curve

Figure 4.3. Curve fitting for RSSI values at distances from 0 to 7 meters in

Environment 1
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Figure 4.4. Curve fitting for RSSI values at distances from 0 to 7 meters in

Environment 2

RSSI = −10× 0.9116× log10d− 62.78 (Eqn. 4.4)

d = 10(
62.78+RSSI

−9.116
) (Eqn. 4.5)
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Table 4.1 An insight into the estimation error of the fitted curve for environment 1

Average RSSI Actual Distance (m) Computed Distance (m) Error
-26.8692 0.0001 0.0001 0
-59.9565 1 0.4901 0.5099
-64.4782 2 1.5357 0.4643
-67.6086 3 3.3861 0.3861
-68.4347 4 4.1717 0.1717
-69.4347 5 5.3705 0.3705
-70.5652 6 7.1452 1.1452
-72.2173 7 10.8457 3.8457

Table 4.2 An insight into the estimation error of the fitted curve for environment 2

Average RSSI Actual Distance (m) Computed Distance (m) Error (m)
-23.1034 0.0001 0.0009 0.0008
-61 1 1.0093 0.0093
-67.3448 2 3.2601 1.2601
-67.9655 3 3.6563 0.6563
-68.5 4 4.0359 0.0359
-69 5 4.4266 0.5734
-69.9310 6 5.2576 0.7424
-69.4827 7 4.8396 2.1604

RSSI = −10× 1.246× log10d− 60.95 (Eqn. 4.6)

d = 10(
60.95+RSSI

−12.46
) (Eqn. 4.7)

Tables 4.1 and 4.2 highlight the accuracy of the obtained path-loss models. The

tables list the average RSSI values, the actual distance at which they were obtained

and the computed distances using the path loss model along with the error which is

the absolute of difference between the actual distance and the computed distance.

The models have an average computation error of 86.14 cm and 67.98 cm in

environment 1 and environment 2 respectively. It is evident from Table 4.1, Table

4.2, Figure 4.3, and Figure 4.4 that the obtained path-loss models can accurately

estimate distance using RSSI values.
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Once we obtained the path-loss models, we evaluated our proposed

algorithms and the current approach used by Apple. We put a Gimbal (Gimbal,

n.d.) iBeacon in the aforementioned environments. We used a core-i5 Macbook-pro

with 8 gigabytes of RAM, running Apache Tomcat 8.0 and Java 1.8 as our server for

running SRA and SKF algorihtms. The equipment related information can be found

in Table 4.3.

Table 4.3 Summary of Device Parameters

Device Apple iPhone 6s plus
Wireless Interface Bluetooth V4.2 / 2.4GHz
Operating System iOS 9.2
Beacons Gimbal Series 10
Gimbal range 50 meters
Transmission Frequency 100 ms
Major Value Yes
Minor Value Yes

We put the iBeacon in a fixed position and evaluated the proximity at a

number of distances. Since the ‘unknown’ zone has no practical use, we tested our

algorithms only in the ‘immediate’, ‘near’, and ‘far’ zones. In every zone, we

evaluated the user’s proximity using the algorithms at two different distances. Table

4.4 shows the various distances in different zones where the algorithms were tested.

We collected 20 RSSI samples at each physical location while every single RSSI

sample was a moving average of 10 RSSI values (iOS reports RSSI after 1 second

while our iBeacon transmitted after 100ms so 1s/100ms = 10). We took 40 samples

in every zone (20 samples per distance × 2 distances in every zone) resulting in 120

samples (3 zones × 40 samples in every zone) for each environment.

We used a confusion matrix, a popular method used for performance

evaluation of different classification models (Patro & Patra, 2015), to evaluate the

performance of our algorithms. Using confusion matrix, we compared our estimated

or classified proximity zone with actual proximity zones. The parameters of

confusion matrix, as discussed by Fawcett in (Fawcett, 2006) are summarized in
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Table 4.4 Distances used in experiments

Distance (m) Proximity
0

Immediate
0.6
1.8

Near
2.4
4.3

Far
5.5

Table 4.5 Different parameters used in confusion matrix

Parameter Description
True Positive (TP) When the user is in zone ‘x’ and is classified in zone ‘x’
True Negative (TN) When the user is not in zone ‘x’ and is not classified in

zone ‘x’
False Positive (FP) When the user is not in zone ‘x’ but is classified in zone

‘x’
False Negative (FN) When the user is in zone ‘x’ but is not classified in zone

‘x’
Precision/Positive
Prediction Value
(PPV)

The fractions of samples classified in zone ‘x’.
Mathematically, precision = TPi

TPi+FPi
where i is any zone.

Sensitivity/Recall The fraction of samples correctly classified in zone ‘x’.
Mathematically, sensitivity = TPi

TPi+FNi
. The higher the

sensitivity, the better will be the algorithm.
Specificity The fraction of samples correctly classified in any zone

other than zone ‘x’. The higher the specificity, the better
will be the algorithm. Mathematically, specificity =

TNi

TNi+FPi
.

Fall out/False Positive
Rate (FPR)

Mathematically, FPR = 1-specificity = FPi

FPi+TNi
. The

lower the FPR value, the better will be the algorithm.
False Negative Rate
(FNR)

Mathematically, FNR = FNi

FNi+TPi
. The lower the FNR

value, the better will be the algorithm.
False Discovery Rate
(FDR)

A good indicator for conceptualizing the rate of type
I error. Mathematically, FDR = 1 - sensitivity =

FPi

FPi+TPi
. The lower the FDR value, the better will be

the algorithm.
Accuracy The fraction of samples correctly classified.

Mathematically, accuracy = TP+TN
TP+TN+FP+FN

∀ zones.

Table 4.5 in context of this thesis. Various statistical metrics that are obtained
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through confusion matrix for the current approach as well as SRA and SKF are

given in Table 4.6 and 4.8 for both environment 1 and environment 2 respectively.

It is evident that both SRA and SKF outperform the current approach. The higher

values of both true positives and the true negatives in the table, for the SRA and

SKF, indicate that both these algorithms can accurately detect when a user is in

any particular zone or not. Also, the lower value of false positives and false

negatives mean that our algorithms do not misclassify a user in any other zone. The

higher sensitivity values in the ‘immediate’ and ‘near’ zones for both SRA and SKF

in contrast with the current approach indicates that our approach detects users in

these zones with higher accuracy than the current approach. This is also verified by

lower FDR, FNR, and FPR values. The higher FNR value for the current approach

in the ‘immediate’ and ‘near’ zone means that the current approach misclassifies

most of the samples when the user is in the ‘immediate’ or ‘near’ zones. This is

because of the fact that current approach does not take the environment into

consideration when classifying user proximity and classifies the user in the ‘far’ zone

due to the environmental noise (noise reduces the RSSI values so the user is

misclassified in the ‘far’ zone despite being in ‘immediate’ or ‘near’ zone). This is

also the reason that the current approach seems to have higher accuracy in the ‘far’

zone. However, the higher accuracy in the far region for the current approach is due

to the inherent flaw in the current approach, also highlighted by the high FDR value

in the ‘far’ zone for the current approach.

Table 4.7 and 4.9 show the proximity detection error of the current, SRF and

SKF algorithm at different distances and in different zones in both environment 1

and environment 2 respectively. The current approach has 95% and 75% proximity

detection error at 0.6m in environment 1 and environment 2 respectively, that

indicates that out of 20, only 1 sample in environment 1 and 5 samples in

environment 2 were accurately classified by the current approach. In contrast, our

SRA and SKF algorithms accurately classify all the 20 samples. It can be seen that

our algorithms SRA and SKF have zero proximity detection error in the ‘immediate’
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zone. This means that all the 40 samples are accurately classified in the immediate.

Similarly in the ‘near’ zone, both SRA and SKF outperform the current approach.

As discussed earlier and highlighted by high FNR values of the current approach in

the ‘immediate’, and ‘near’ zone as well as high FDR value in the ‘far’ zone, the

high accuracy of the current approach in the far zone is not because of the superior

performance of the approach but rather the tendency of the approach to misclassify

everything in the far zone. SKF is the optimal of all the algorithms and outperforms

SRA as well due to the use of Kalman Filters. SRA is simpler but less accurate

when compared with SKF. Figure 4.5 and 4.6 show the error of all the three

algorithms in the three different zones of environment 1 and environment 2

respectively. As mentioned earlier, both SRA and SKF have a zero proximity

detection error in the ‘immediate’ region. Figure 4.7 highlights the overall accuracy

of the algorithms. The current approach has an overall accuracy of 65.83% in

environment 1 and 67.5% in environment 2. The SRA achieved a proximity

detection accuracy of 92.5% in environment 1 and 96.6% in environment 2. SKF

achieved proximity detection accuracy of 97.5% in environment 1 and 98.3% in

environment 2. Hence SRA outperforms current approach by 26.7% in environment

1 and 29.1% in environment 2 while SKF outperforms current approach by 31.6% in

environment 1 and 30.8% in environment 2. The lower noise level in environment 2,

is highlighted by lower C in Equation 4.6 in comparison with the C value for

environment 1. This is why the performance of all three algorithms is better in

environment 2, compared to environment 1.

In the following section, we discuss our cloud and iBeacon-based architecture

for proximity based services.

4.2 iBeacon Deployments for Proximity-Based Services

iBeacons are predominantly used for proximity based context aware

solutions. Using the geofencing capability of the beacons, they can be used to
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Figure 4.5. Error in different proximity zones for the models in Environment 1
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Figure 4.6. Error in different proximity zones for the models in Environment 2

automate various systems and make the environment interactive. We present our

cloud-based architecture that leverages iBeacons for geofencing capabilities. The

architecture consists of:

• Beacons
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• User Device

• Cloud Computing

• Actuator/End Device

We already discussed iBeacons in detail in chapter 2. The interested readers can

read Zafari and Papapanagiotou (2015); Zafari et al. (2015, 2016) for further details

on iBeacons. Below, we discuss other components of our architecture.

4.2.1 User Device:

As discussed earlier, the user device must be BLE enabled and should

run either the iOS 7.0 (or later) or the Android 4.3 (or later) version operating

systems. Applications that are beacon capable must be developed to receive the

messages transmitted by the beacon. The UUID values of the beacons are to be

hard coded into the application as per the requirements of Apple Application Store.

A single user device can listen to more than four billion beacons at a time. However,

the number of regions or geofences that the application running on the user device
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can monitor is limited to 20. For this research study, we developed a prototype iOS

application in Objective C that is capable of providing indoor localization,

geofencing and proximity based services.

4.2.2 Cloud Computing:

Our architecture uses cloud services for providing iBeacon

authentication as well as geofencing services. When the user device obtains the

UUID, major and minor values of the beacon for the first time, it contacts an

Apache Tomcat Server residing on Amazon’s Web Services (AWS) and forwards the

information using JavaScript Object Notation (JSON) document, sent over the

wireless network (WiFi or 4G/LTE) to AWS. For security purposes, the study uses

a MySQL database on the server that contains the information about all the known

beacons such as the UUID, major value, minor value, the name and the purpose of

the beacon. After the information is received from the user device, it is compared

with the stored information in the database. If there is a match, then the beacons

are authenticated and server notifies the device about the use of the beacon and its

purpose. Whenever the user device enters or exits the geofence of any beacon, it

notifies the server that can trigger content based on the user’s proximity to the

beacon or device.

4.2.3 Actuator/End Device:

There are a wide range of devices that can serve as actuators or end

devices based on the application and requirements. It can be a ubiquitous

household device such as microwave oven, television, computer monitor etc. or an

application specific device such as the interactive media present in museum or

libraries that tend to engage the users and improve the service level. The actuator is

controlled by the user’s location and is triggered by the server based on the user’s

entrance or exit from a geofence. This study used Belkin’s WemoSwitch as an end
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device that would turn on and off based on the user’s location. We also utilize the

interactive environment of James Hunt Jr. Library at North Carolina State

University (NCSU) as an end device to verify the effectiveness of the used beacon

based proximity service.

The proposed architecture for beacon based proximity can use any server,

cloud computing service or database and does not necessarily have to be Apache

Tomcat, AWS or MySQL. The beacons were placed close to the end

device/actuators for creating a geofence. The beacon related information was stored

in the database and the server was deployed on AWS and an Elastic Bean instance

was run. The user carrying a device with beacon application installed and

Bluetooth enabled move around in the ambiance. The events were triggered based

on the location and the actuators acted in a pre-defined manner. Below, we present

the two different environments in which our architecture was used.

4.2.3.1. Deployment 1

Deployment 1 involved the utilization of a user’s location in a 11m × 6m

area to automate an electronic device through a Wemo Switch. The Belkin Wemo

Switch is a Wi-Fi based switch that is primarily used to control the appliances over

the internet or using smart phones. The Wemo Switch API allows an iOS, Android

or any other device to interact with the switch and control its operation. Figure 4.8

shows a schematic of how the system accomplished its task. Once the beacons were

verified from the server and the database, the proximity of a device to a beacon was

used as an indicator whether to trigger the server to either turn ‘on’ or ‘off’ a

specific electric device. The Wemo switch has a specific Internet Protocol (IP)

address that the server can communicate with. Once the user was within the

‘immediate’ or ‘near’ vicinity of the appliance, the mobile phone informed the server

which sent the ‘on’ command to the wemo switch. The switch turned on which in

turn activated the appliance as well. As soon as the user moved into either ‘far’ or
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Figure 4.8. End-to-End IoT Solution Implementation

‘unknown’ region, the user device asked the server to turn off the appliance.

Although we used a Wemo switch, numerous other devices and APIs can be

communicated using our architecture for creating a geofence and then handling the

appliances accordingly. A video demonstration of our implementation can be found

at our Youtube Channel (2015a).

4.2.3.2. Deployment 2

In the second deployment, we installed 8 beacons in the James B. Hunt Jr

Library (Libraries, 2015) in North Carolina State University (NCSU). The library

built at a cost of about $115.2 million is known for its interactive and high-tech

environment. There are a number of large screens and devices used to enhance the

user’s experience and provide efficient, effective and context-aware location based

services to the library tenants. The library has an in-house RESTful web-service

that allows to listen to HTML ‘POST’ and ‘DELETE’ messages and de-serialize

JSON or XML based content using basic authentication. To interact with their

web-service to trigger content on the display devices, we used the proximity to the
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beacons to either ‘POST’ or ‘DELETE’ from their web-service. After the iOS

application was launched and the beacons were ranged, the server and the database

were consulted for the beacons. The server responded back with the information

about the beacons and the display device with which it is related. When a user was

in either the ‘immediate’ or ‘near’ vicinity of the beacon affiliated with a particular

device, the iOS application sent a specific message containing the user’s location

and affiliated display to the Tomcat server deployed on cloud. The Tomcat server

then authenticated with the RESTful web-service of the library and after successful

authentication, posted location aware content to the web-service that showed up on

the display devices. The content appeared as long as the user stayed within the

‘immediate’ or ‘near’ vicinity or when the time stamp expired on the server.

Currently the RESTful API uses a time stamp of two minutes. After the user

moved into either a ‘far’ or ‘unknown’ region, the user device notified the Tomcat

server, which sent a delete message to the web-service to remove location based

context aware content from the web-service and the screen. Using a brute force

approach i.e. a large number of beacons in the area, we improved the performance

of the system to trigger content on a number of different display devices that are

currently located in the library. The larger space, greater number of devices and

larger number of beacons presented a challenge that the proposed architecture

handled efficiently and effectively. The promptness, and accuracy of all these

different tasks makes the proposed architecture a viable approach for deployment in

even more complex scenarios and highlights the potential for industrial

implementations and deployments. A visual depiction of the prototype can also be

found on our YouTube Channel (2015b).

4.3 Summary

In this chapter, we discussed the current approach used by Apple for iBeacon

based proximity detection. We also described the inherent limitations in the current
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approach, and discussed our algorithms SRA and SKF that improved the proximity

detection accuracy by 27% and 32% respectively when compared with the current

approach. We highlighted our cloud and iBeacons-based architecture for proximity

based services and highlighted two different deployments using our architecture. In

this next chapter, we present our iBeacon-based indoor localization system.
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CHAPTER 5. IBEACON BASED INDOOR LOCALIZATION

This chapter provides an iBeacon-based indoor localization system. The

chapter discusses the experimental setup, the obtained results and also validates the

hypothesis of this thesis. While we use the server side filtering algorithms for

hypothesis testing, we also include the results of mobile phone-based particle

filtering for indoor localization that has been published in IEEE Globecom 2015

(Zafari & Papapanagiotou, 2015).

5.1 Particle Filtering on the User Device

We placed a number of beacons in an 11m × 6m space that, due to the

presence of obstacles, replicates a real world scenario for iBeacon based indoor

localization. We also tested our proposed system in a 1m × 1m space. We utilized

our developed iOS application that obtained the RSSI values from the iBeacons and

used particle filtering algorithm for indoor localization. During the experiments, we

altered the number of iBeacons and particles to locate the user (Zafari &

Papapanagiotou, 2015). Table 5.1 lists the device related information. Figure 5.1

shows the average localization error in 1m × 1m are for varying number of iBeacons.

We increased the number of iBeacons until the addition of further iBeacons did not

improve the results or in worst case, affected the localization accuracy due to the

interference among iBeacons. In 1m × 1m environment, we started with 3 iBeacons

and added iBeacons to improve the overall localization performance. The addition

of sixth iBeacon adversely affected the localization accuracy due to the saturation of

the space with iBeacons resulting in interference among the iBeacons. Table 5.2 and

5.3 highlight the average localization error and standard deviation of the

localization error for varying number of particles and iBeacons respectively. The
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lowest localization error is observed for 4 iBeacons and 1000 particles. Figure 5.2

shows the average localization error Vs. number of iBeacons in 11 m × 6m area. As

in the case of 1m × 1m space, we started with three iBeacons in the space and kept

increasing the number of iBeacons until it enhanced the localization accuracy. The

addition of the 8th iBeacon into the space, adversely affected the average localization

error which is why we did not add any more iBeacons. Table 5.4 and 5.5 show the

average localization error and standard deviation of localization error respectively

for a number of particles and iBeacons in 11 m × 6m area. The minimum

localization error of 0.97 meters was obtained with 1000 particles and 5 iBeacons.

Table 5.1 Experimental Deployment

Device Apple iPhone 4s
Wireless Interface Bluetooth V4.0 / 2.4GHz
Operating System iOS 8.1
Beacons Gimbal Series 10
Gimbal range 50 meters
Transmission Frequency 100 ms
Major Value Yes
Minor Value Yes

Table 5.2 Localization error (meters) for a number of particles and iBeacons in 1m
× 1m environment with particle filter on the user device

Particles
Beacons

3 4 5 6
400 0.308 0.290 0.303 0.301
600 0.356 0.308 0.312 0.302
800 0.396 0.301 0.302 0.310
1000 0.384 0.276 0.298 0.316
1200 0.400 0.299 0.293 0.318
1400 0.403 0.289 0.307 0.315
1600 0.385 0.314 0.306 0.316
1800 0.407 0.298 0.299 0.291
2000 0.411 0.312 0.300 0.304

The computational overhead of calculating the particles on the end user’s

device may result in draining the battery faster. Also, the limited processing power
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Figure 5.1. Average error vs number of particles for different number of iBeacons

for 1m × 1m.

Table 5.3 Standard Deviation of Localization error for a number of particles and
iBeacons in 1m × 1m environment with particle filter on the user device

Particles
Beacons

3 4 5 6
400 0.065 0.158 0.162 0.156
600 0.232 0.172 0.155 0.171
800 0.262 0.170 0.151 0.164
1000 0.273 0.178 0.164 0.152
1200 0.254 0.167 0.159 0.167
1400 0.249 0.167 0.163 0.156
1600 0.238 0.164 0.146 0.149
1800 0.245 0.172 0.175 0.181
2000 0.253 0.161 0.143 0.181

of the device can affect the performance of the algorithm. Therefore, we utilize a

local server to run the particle filtering algorithm for computing the user position
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Figure 5.2. Average error vs number of particles for different number of iBeacons

for 11m × 6m environment.

Table 5.4 Average error vs number of particles for different number of iBeacons for
11 m × 6m environment with particle filter on the user device

Particles
Beacons

3 4 5 6 7 8
400 2.195 1.486 1.720 1.590 1.385 1.492
600 2.167 1.074 1.159 1.422 1.200 1.595
800 2.152 1.729 1.721 1.598 1.345 1.623
1000 1.736 1.802 0.975 1.284 1.220 1.432
1200 1.843 1.678 1.531 1.126 1.008 1.275
1400 2.262 1.507 1.575 1.639 1.442 1.180
1600 2.049 1.251 1.455 1.149 1.339 1.245
1800 1.774 1.368 1.540 1.208 1.362 1.168
2000 1.668 1.451 1.328 1.430 1.017 1.411

that is discussed in detail in the next section. The device related information for the

following sections can be found in Table 4.3.
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Table 5.5 Standard Deviation of Error vs number of particles for different number of
iBeacons for 11 m × 6m environment with particle filter on the user device

Particles
Beacons

3 4 5 6 7 8
400 0.333 0.913 1.005 1.288 0.641 1.399
600 0.996 0.600 0.868 1.164 0.850 1.176
800 0.394 1.041 0.825 1.045 0.672 1.378
1000 0.441 1.082 0.885 1.189 1.144 0.815
1200 0.473 1.034 0.692 0.890 1.020 1.009
1400 0.261 0.733 0.890 1.660 1.042 0.763
1600 0.295 0.640 0.724 0.943 0.637 0.681
1800 0.669 0.698 0.872 0.948 1.000 0.815
2000 0.561 0.458 0.919 1.296 0.977 0.962

5.2 Particle Filtering on the Server Side

The RSSI values from the iBeacons were collected by the user device that

reported it to a server. The server utilized particle filtering algorithm to computer

user’s position. As in the case of running particle filtering on the user device, we

varied the number of iBeacons, and the number of particles. We conducted the

experiments in a 7 m × 6m space that contained a number of obstacles. We used

the particle filtering algorithm to obtain an estimate of the user location and

compare it with the original user location to calculate the localization error in

accordance with Equation 3.2. We started with 3 iBeacons and kept increasing the

number of iBeacons until the addition of further iBeacons did not bring any

significant improvement in the localization accuracy or in worst case, affected it

adversely. During the course of experiments, as expected, the portion of the

experimental space that was behind obstacles and had obstructions had higher

localization error in contrast with comparatively less occupied space. Figure 5.3

shows the average localization in meters for different number of iBeacons. It can be

seen the average localization error is high for 3 iBeacons. However the addition of

further iBeacons improves the performance. An average accuracy of 0.969 meters

was obtained with 7 iBeacons, but the addition of the 8th iBeacon deteriorated the



75

results. This is due to self interference among the iBeacons. Table 5.6 shows the

average localization error for various number of iBeacons and particles with particle

filter algorithm running on the server. The lowest average localization error of 0.859

meters was obtained with 7 iBeacons and 1200 particles. Table 5.7 shows the

standard deviation of average localization error for various number of iBeacons and

the particles with particle filter algorithm running on the server. In the next section

we showcase the results for a cascaded filter arrangement of Kalman Filter followed

by Particle filter that we termed as KFPF.
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Figure 5.3. Average error vs number of Beacons in 7m × 6m environment with

particle filter on the server side.

5.3 Kalman Filter-Particle Filter Cascade on the Server Side

As described in chapter 3, one of the fundamental challenges of RSSI-based

localization is the problem of RSSI fluctuation due to the presence of obstacles in

the environment. The RSSI values greatly vary despite no difference in the position
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Table 5.6 Average error vs number of particles for different number of iBeacons for
7 m × 6m environment with particle filter on the server side.

Particles
Beacons

3 4 5 6 7 8
400 1.776 1.566 1.672 1.405 0.916 1.247
600 1.768 1.788 1.693 1.307 1.063 1.395
800 1.733 1.639 1.545 1.314 0.954 1.545
1000 1.696 1.658 1.551 1.243 0.955 1.438
1200 1.724 1.688 1.548 1.267 0.859 1.506
1400 1.665 1.704 1.502 1.252 0.995 1.346
1600 1.701 1.703 1.547 1.259 0.959 1.448
1800 1.643 1.647 1.932 1.300 1.017 1.304
2000 1.681 1.715 1.526 1.278 1.010 1.225

Table 5.7 Standard deviation of average error vs number of particles for different
number of iBeacons for 7 m × 6m environment with particle filter on the server side

Particles
Beacons

3 4 5 6 7 8
400 0.743 0.586 1.027 0.628 0.431 0.483
600 0.641 0.881 1.084 0.589 0.533 0.641
800 0.565 0.669 0.821 0.456 0.386 0.762
1000 0.668 0.721 0.773 0.486 0.428 0.701
1200 0.719 0.748 0.742 0.493 0.382 0.664
1400 0.724 0.561 0.624 0.470 0.391 0.403
1600 0.570 0.879 0.984 0.530 0.454 0.654
1800 0.498 0.605 0.674 0.639 0.392 0.647
2000 0.557 0.655 0.925 0.512 0.339 0.585

of the user as the radio frequency waves can bounce of the walls and various

obstruction resulting in interference or noise. To improve the performance of the

localization system, we first reduce the RSSI fluctuation using Kalman filter. The

filtered RSSI values are then input into PF for locating the user as shown in Figure

5.4. Since the Kalman filter used in Chapter 4 provided improved results in terms of

RSSI smoothing and improve the proximity detection, we use the Kalman Filter

with same parameters here and model the RSSI as done in Chapter 4. Once the

RSSI values were filtered by Kalman Filter, the particle filter on the server side
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Figure 5.4. Kalman filter enhanced RSSI values for server side particle filter-based

localization.

estimated the user’s location. Figure 5.5 shows the average localization error with

KFPF algorithm for a number of beacons. As done in the previous case, we started

with 3 beacons and added beacons till the addition of further beacons did not

improve result or in worst case affected it adversely. For the KFPF algorithm, we

obtained the best results with 7 iBeacons. Table 5.8 shows the average localization

error of the KFPF algorithm for different number of beacons and particles in 7 m ×
6m area. The lowest localization error is obtained with 7 beacons and 2000 particles.

In comparison with Table 5.6, the average localization error with KFPF algorithm is

less. Table 5.9 shows the standard deviation of the localization error for KFPF

algorithm for different number of beacons and particles in our experimental area.

Table 5.8 Average error vs number of particles for different number of iBeacons in 7
m × 6m environment with KFPF algorithm.

Particles
Beacons

3 4 5 6 7 8
400 1.307 1.091 1.147 0.836 0.916 0.812
600 1.484 1.219 1.013 0.902 0.985 0.849
800 1.442 1.238 1.055 0.778 0.736 0.782
1000 1.472 1.276 0.939 0.837 0.748 0.796
1200 1.412 1.450 1.090 0.806 0.709 0.804
1400 1.390 1.371 1.064 0.845 0.724 0.781
1600 1.449 1.376 1.023 0.861 0.742 0.849
1800 1.500 1.295 1.149 0.821 0.714 0.786
2000 1.452 1.193 1.240 0.816 0.708 0.819
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Figure 5.5. Average error vs number of Beacons in 7m × 6m environment with our

KFPF algorithm on server side.

Table 5.9 Standard deviation of localization error vs number of particles for different
number of iBeacons in 7 m × 6m environment with KFPF algorithm.

Particles
Beacons

3 4 5 6 7 8
400 0.680 0.555 0.585 0.394 0.431 0.556
600 0.745 0.425 0.532 0.369 0.502 0.705
800 0.756 0.424 0.488 0.384 0.470 0.537
1000 0.826 0.500 0.512 0.331 0.501 0.598
1200 0.827 0.513 0.524 0.341 0.528 0.650
1400 0.702 0.463 0.591 0.387 0.513 0.547
1600 0.773 0.481 0.524 0.410 0.465 0.598
1800 0.833 0.520 0.494 0.394 0.368 0.507
2000 0.696 0.381 0.663 0.352 0.382 0.496
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5.4 Particle Filter-Extended Kalman Filter Cascade on the Server Side

The RSSI model used in the previous section and in Chapter 4 for Kalman

filter relates the current RSSI values to the previous RSSI values and rate of RSSI

change in a linear way. Therefore, we cannot apply Extended Kalman Filter to

RSSI filtering (Even if we do, the Extended Kalman Filter will be equivalent to

Kalman Filter). Therefore, we first use the Particle filtering algorithm to estimate

the user’s location and then use EKF to reduce the fluctuation in the user position’s

x and y coordinate as the fluctuating RSSI values also cause the drastic fluctuation

in the estimate of the user’s location.

The RSSI values from the iBeacons are obtained by the user’s device that

forwards it to a local Apache Tomcat Server. The particle filtering algorithm

running on the server estimates the user’s location (The particle’s with the highest

probability are used to obtain the estimate of the user’s location). The PF

estimated x and y coordinates are used as input into the EKF algorithm. Below we

present the mathematical model for the EKF model.

5.4.1 Mathematical Model for EKF

We use the widely used Position-Velocity (PV) model (Khan, Khan, Khan, &

Khan, 2014; Khan, Sottile, & Spirito, 2013) for EKF modeling. Our state Yi

consists of the current x coordinate, y coordinate, the horizontal velocity Vxi

component, and the vertical velocity Vyi component.

Yi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

yi

Vxi

Vyi

⎤
⎥⎥⎥⎥⎥⎥⎦

The state equation for the PV model as given by Khan et al. (2014, 2013) is given

below by Equation 5.1.
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⎡
⎢⎢⎢⎢⎢⎢⎣

xi

yi

Vxi

Vyi

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xi−1

yi−1

Vxi−1

Vyi−1

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

mx
i

my
i

mVxi
i

m
Vyi

i

⎤
⎥⎥⎥⎥⎥⎥⎦

(Eqn. 5.1)

where the matrix given below is the process noise matrix.

⎡
⎢⎢⎢⎢⎢⎢⎣

mx
i

my
i

mVx
i

m
Vy

i

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence the Jacobian matrix F is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The parameter δt is the time interval in which the velocity is constant. Since we

obtain the measurements after every 1 second, we used δt =1. Similarly the

measurement model in Equation 2.10 can be written as

⎡
⎣xi

yi

⎤
⎦ =

⎡
⎣1 0 0 0

0 1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

yi

Vxi

Vyi

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎣nx

i

ny
i

⎤
⎦ (Eqn. 5.2)

where the Jacobian matrix H is given by

H =

⎡
⎣1 0 0 0

0 1 0 0

⎤
⎦
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Parameters P, Q and R used in the experiments (chosen after trial and error) are

given below.

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

100 0 0 0

0 100 0 0

0 0 100 0

0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦
Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0 0.001

⎤
⎥⎥⎥⎥⎥⎥⎦
R =

⎡
⎣0.10 0

0 0.10

⎤
⎦

It is worth mentioning here that the use of Jacobian has linearized the state and

observation models. The Extended Kalman Filter involves recursively predicting

and updating the state vector as discussed in detail in Chapter 2.

The above PFEKF model was used during the experiments to obtain the

user’s location. Figure 5.6 shows the average localization error for different number

of beacons in the 7m × 6m environment with server side PFEKF algorithm. We

started with 3 beacons and kept adding on more beacons until we reached 8

beacons. We stopped at 8 beacons for sake of comparison with our PF and

KFPF-based results. It can be seen that in comparison with both PF and KFPF,

the PFEKF has a lower average localization error. However, the performance

characteristic is somewhat different. For example, the average localization error for

4 beacons, is slightly more with PFEKF than 3 beacons and we obtain the lowest

possible error with 6 beacons. This is because EKF is not an optimal filter and

might not always result in optimal model. However, due to modeling the

localization problem as a non-linear problem and the use of Jacobian matrix, the

overall localization error is much less for server side PFEKF model in comparison

with PF and KFPF. Furthermore, we also have a better performing system with

just 6 beacons, hence the system is less costly when compared with a 7 beacon

system. Table 5.10 shows the average localization error vs. different number of

particles for a number of particles with server side PFEKF algorithm. The optimal

result is obtained with 6 beacons and 1200 particles. Table 5.11 shows the standard
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deviation of error vs. different number of particles for a number of particles with

server side PFEKF algorithm.

3 4 5 6 7 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Beacons

A
ve

ra
ge

 L
oc

al
iz

at
io

n 
E

rr
or

 (
m

et
er

s)

Average 2D Localization Error Vs. Number of Beacons

 

 

3 Beacons
4 Beacons
5 Beacons
6 Beacons
7 Beacons
8 Beacons

Figure 5.6. Average error vs number of Beacons in 7m × 6m environment with our

PFEKF algorithm on server side.

Table 5.10 Average error vs number of particles for different number of iBeacons in
7 m × 6m environment with server side PFEKF algorithm.

Particles
Beacons

3 4 5 6 7 8
400 0.995 0.874 0.892 0.836 1.032 0.969
600 1.039 1.044 0.838 0.796 1.057 1.086
800 1.120 1.246 0.797 0.765 0.750 1.120
1000 1.118 1.222 0.822 0.756 0.920 1.015
1200 1.079 1.209 0.867 0.720 0.889 1.007
1400 1.112 1.111 0.827 0.793 0.849 1.062
1600 1.155 1.128 0.800 0.760 0.878 0.932
1800 1.153 1.109 0.845 0.788 0.862 0.902
2000 1.116 1.064 0.722 0.800 0.869 0.889
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Table 5.11 Standard deviation of error vs number of particles for different number of
iBeacons in 7 m × 6m environment with server side PFEKF algorithm.

Particles
Beacons

3 4 5 6 7 8
400 0.659 0.385 0.536 0.403 0.480 0.619
600 0.579 0.468 0.512 0.384 0.478 0.749
800 0.507 0.648 0.485 0.331 0.576 0.447
1000 0.607 0.717 0.471 0.280 0.505 0.524
1200 0.713 0.751 0.614 0.310 0.608 0.598
1400 0.682 0.628 0.559 0.424 0.567 0.532
1600 0.707 0.734 0.423 0.391 0.606 0.634
1800 0.594 0.813 0.479 0.346 0.561 0.482
2000 0.583 0.637 0.359 0.398 0.570 0.517

5.5 Comparison among server side PF, KF-PF and PF-EKF

In this section, we present a comparison of the different algorithms used in

this work for indoor localization. Through the results obtained as a result of the

experiments, we show that the cascaded filters significantly improve the indoor

localization accuracy when compared with particle filters.

Figure 5.7 compares the average localization error of PF with KFPF in 7m ×
6m environment for different number of beacons. From the figure, it is evident that

the KFPF cascaded filter approach improves the localization error in comparison

with the PF algorithm on the server side. This, as described earlier, is due to the

reduction in RSSI fluctuation by Kalman filter that assists particle filter in

localization. The performance of both PF and KFPF improve with the addition of

beacons with the best results obtained with 7 beacons for both algorithms. The

addition of 8th beacon affected the localization error. The box-plot validates our

hypothesis and shows that KFPF significantly improves the localization error when

compared with PF on the server side. In our experimental setup, the average

localization for PF and KFPF on server side was 1.441 meters and 1.035 meters

respectively. Hence the KFPF algorithm improved the average localization accuracy

by 28% in comparison with the PF on the server side.
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Figure 5.7. Average 2D localization error of PF vs. KFPF in 7m × 6m environment

for different number of beacons

Figure 5.8 presents the boxplot highlighting the average 2D localization error

of PF and PF-EKF in a 7m × 6m environment for different number of beacons. It

is evident from this figure that PFEKF improves the localization error when

compared with the PF on the server side. This is because the use of EKF that takes

into account the horizontal and vertical velocity component Vx and Vy and reduces

the fluctuation in the obtained x and y coordinate. The best localization accuracy is

attained with 6 beacons for PFEKF that shows the cost efficiency of the system as

we can achieve higher localization accuracy with lower number of beacons. The

addition of 7th beacon deteriorates the performance of the PKEKF, however it

improves the performance of the PF algorithm. The addition of 8th adversely affects

the performance of both PF and PFEKF algorithm indicating that the

self-interference can affect the localization error. Another reason for such fluctuating

behavior is the unreliability of RSSI due to the presence of varying noise. As
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Figure 5.8. Average 2D localization error of PF vs. PFEKF in 7m × 6m

environment for different number of beacons

indicated by our experiments, the PFEKF had an average localization error of 0.952

meters that is a 33.94% over the PF server side algorithm.

Figure 5.9 compares the cascaded filters KFPF and PFEKF in terms of the

average 2D localization error in 7m × 6m environment for different number of

beacons. It is evident from the figure, that both the algorithms have potential for

indoor localization. For 6 and lesser number of beacons, the PFEKF slightly

outperforms KFPF while KFPF has better localization accuracy for 7 and 8

beacons. As highlighted by Arulampalam (Arulampalam et al., 2002), the EKF

algorithm might not always converge to the optimal point. Therefore, we believe

that the better performance of KFPF for 7 and 8 beacons is because the EKF

module in the PFEKF algorithm did not converge to the optimal point. As

indicated by our experiments, the PFEKF improved the average localization error

by 8.039% when compared to KFPF.
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Figure 5.9. Average 2D localization error of KFPF vs. PFEKF in 7m × 6m

environment for different number of beacons

We also use two samples based large sample test to validate our hypotheses

as explained in Chapter 3. Let x̄PF , x̄KFPF , and x̄PFEKF be the average localization

error of Server-side PF, KFPF and PFEKF system respectively. Let SPF , SKFPF ,

and SPFEKF be the standard deviation of the PF, KFPF and PKEKF system

respectively. The number of samples m and n in Equation 3.3 be 5940. Below we

calculate the Z-value to evaluate if we can reject the null hypotheses.

For comparison PF and KFPF, we put the values in Equation 3.3 and

calculate the value of Z as given in Equation 5.3.

Z =
1.44− 1.035− 0.36√

0.872

5940
+ 0.6992

5940

= 3.11 (Eqn. 5.3)
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Since Z=3.11≥ 1.645, hence the null hypothesis can be rejected and the alternative

hypothesis will hold true. Similarly for the case of PF and PFEKF, we put the

values in Equation 3.3 and calculate the value of Z as given in Equation 5.4.

Z =
1.44− 0.9519− 0.36√

0.872

5940
+ 0.5962

5940

= 9.357 (Eqn. 5.4)

As Z=9.357≥ 1.645, hence the null hypothesis can be rejected and the alternative

hypothesis will hold true.

From the above results, it is clear that the cascaded approach is better when

compared with the PF on the server side. Our results show that iBeacons have the

potential to be used for indoor localization which answers our research question.

While the iBeacons without any filtering algorithm have huge localization error, the

use of combination of signal processing filters can improve the localization accuracy

and make it viable for indoor localization. Cascaded filters showed promise for

indoor localization and verified our hypothesis that cascaded filters can significantly

improve the localization error when compared with PF on the server side. While we

used the iBeacons to highlight the effectiveness of proposed cascaded approach,

various other RSSI based localization technologies and techniques can benefit from

the cascaded filters. RSSI based localization is a challenge, however, a combination

of filtering and indoor localization algorithms can help us obtain an effective and

accurate indoor localization system. In the next section, we discuss the effect of

topology on the performance of the iBeacons.

5.6 Topology of the Beacons

During the course of experiments conducted for this work, we altered the topology

of the beacons to analyze how it affects the localization accuracy. We found out

that the position of the beacons can drastically affect the localization accuracy.

While the positioning of the beacons greatly depend on the environment and the
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Figure 5.10. The position of the beacons in our experimental setup

room where they are placed for localization, an important point to consider is that

the beacons should be placed at suitable heights rather than placing them at lower

heights as that drastically affects the localization accuracy and makes the

measurement more erroneous. There is no generic model for placement of the

beacons as the rooms and deployment sites might vary and we have to alter the

number of beacons and position of the beacons based on the number of people,

obstacles, and size of the room. But there are some general guidelines that we

obtained for deploying beacons.

• Do not place iBeacon close to any obstruction or interfering devices.
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• Place beacons at reasonable height so that obstructions can be avoided but do

not place them too high as that affects the localization particularly in 2D

environment because the RSSI value would decrease with an increase in the

height of the beacons (the distance between the user and beacons increases).

• At least 3 iBeacons are required for accurate indoor localization.

• Keep the beacons away from obstacles.

• If any particular location in the room has high localization error, deploy

beacons there to improve the localization accuracy.

From the experiments, we conclude that the deployment of beacons should be

properly planned as per the environment and deployment site. Since the

characteristics and layout of the deployment space vary from one environment to

another, it is fundamental to first do a site survey and analyze the environment and

then deploy the beacons in a topology which would maximize the localization

accuracy. We utilized the same approach for our experiments. Figure 5.10 shows the

topology of the beacons that we used. Beacon number 4, 7 and 8 are placed in the

locality with high localization error (due to presence of obstructions). This improves

the localization accuracy and reduces the localization error in that specific part of

the room.

5.7 Summary

In this chapter, we discussed an iBeacon based indoor localization system,

and presented results for a user device running particle filters for indoor

localization. We also highlighted the experimental setup and results obtained by

using PF, KFPF and PFEKF for indoor localization on the server side. Through

experimental results, we showed that the use of cascaded filters improve the

localization accuracy when compared with a single particle filter. The use of KFPF

improved the localization accuracy by 28% when compared with PF while the
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PFEKF improved the localization accuracy by 33% when compared with PF. We

also provided a discussion on how the positioning of beacons can affect the indoor

localization accuracy.
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CHAPTER 6. SUMMARY

Apple’s BLE-based iBeacon is a technology primarily intended for proximity

based services. However, due to its reliance on RSSI, it is prone to noise. Therefore,

in its current form, it is not only inviable for indoor localization, but it also results

in poor proximity detection accuracy due to the inherent flaws in the proximity

detection mechanism currently used by Apple’s CoreLocation Framework.

In this thesis, we presented an iBeacon-based accurate proximity and indoor

localization system. We proposed two server-side algorithms, Server-side Running

Average and Server-side Kalman Filter, for proximity detection that improved the

proximity detection accuracy by 29% and 32% when compared with the current

approach used by Apple’s CoreLocation Framework for proximity-based services.

SRA achieved a proximity detection accuracy as high as 96.6% while SKF achieved

a proximity detection accuracy as high as 98.3%. The proposed algorithms leverage

the high processing power of servers to improve the performance of the proximity

detection system and also reduce the energy consumption on the user device by

transferring the proximity related calculations to a server. We also presented our

cloud-based architecture that can be used to provide proximity based services.

While our proposed algorithms and architecture have been tested with the iBeacons,

we believe that the proposed approach can also be used by other RSSI based

approaches.

We also presented our iBeacon based indoor localization system and

leveraged Bayesian theory for making iBeacons viable for indoor localization. Since

particle filters have proven to be the optimal Bayesian filters for indoor localization,

we showed how PF can be used on the user devices as well as a server to accurately

estimate a user’s location. We also showed that the use of multiple filters in cascade

outperform particle filter (only) used for indoor localization. In our first approach,
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KFPF, we used Kalman filters to smooth the RSSI values that are reported by the

user device (from beacons) to a server. The filtered RSSI values are then used for

localization using particle filters. The experimental results show that the use of

Kalman filter in cascade with Particle filters improved the localization accuracy by

28% when compared with only particle filters used for indoor localization. We also

used a cascade of PFEKF where PF was used for indoor localization and then EKF

was used to enhance the measurements obtained through PF. Experimental results

showed that PFEKF improved the localization accuracy by 33.94% and 8.039%

when compared with PF and KFPF respectively. While PFEKF improves the

localization accuracy, it might not also result in the optimal solution. We also

discussed how topology affects the localization accuracy. Through experiments, we

found out that topology and position of the beacons can drastically affect the

localization accuracy. Therefore, it is important to conduct a site survey before the

deployment of the beacons. The optimal topology and positioning of the beacons

vary from one place to other due to the variation in the channel and environment

characteristics which is why every environment should be dealt with separately and

use of generic model might no always yield the best possible localization accuracy.

To conclude, iBeacons can certainly be used to provide an accurate indoor

localization and proximity system. However, there is need to leverage different

signal processing techniques that can account for the environmental noise and

improve the system performance. With out proposed system, we achieved a

localization error as low as 70 centimeters.
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