
Joint Data Compression and Caching:
Approaching Optimality with Guarantees

Jian Li

College of Information and

Computer Sciences

University of Massachusetts

Amherst, MA 01003, USA

jianli@cs.umass.edu

Faheem Zafari
∗

Department of Electrical and

Electronic Engineering,

Imperial College London,

London SW72AZ, U.K.

faheem16@imperial.ac.uk

Don Towsley

College of Information and

Computer Sciences

University of Massachusetts

Amherst, MA 01003, USA

towsley@cs.umass.edu

Kin K. Leung

Department of Electrical and

Electronic Engineering,

Imperial College London,

London SW72AZ, U.K.

kin.leung@imperial.ac.uk

Ananthram Swami

U.S. Army Research Laboratory

Adelphi, MD 20783 USA

ananthram.swami.civ@mail.mil

ABSTRACT
We consider the problem of optimally compressing and caching

data across a communication network. Given the data generated at

edge nodes and a routing path, our goal is to determine the optimal

data compression ratios and caching decisions across the network

in order to minimize average latency, which can be shown to be

equivalent to maximizing the compression and caching gain under an
energy consumption constraint. We show that this problem is NP-

hard in general and the hardness is caused by the caching decision

subproblem, while the compression sub-problem is polynomial-

time solvable. We then propose an approximation algorithm that

achieves a (1 − 1/e)-approximation solution to the optimum in

strongly polynomial time. We show that our proposed algorithm

achieve the near-optimal performance in synthetic-based evalua-

tions. In this paper, we consider a tree-structured network as an

illustrative example, but our results easily extend to general net-

work topology at the expense of more complicated notations.

ACM Reference Format:
Jian Li, Faheem Zafari, Don Towsley, Kin K. Leung, and Ananthram Swami.

2018. Joint Data Compression and Caching: Approaching Optimality with

Guarantees. In ICPE ’18: ACM/SPEC International Conference on Performance
Engineering, April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3184407.3184410

1 INTRODUCTION
In recent years, with the ever increasing prevalence of edge comput-

ing enabled mobile devices and applications, such as social media,

weather reports, emails notifications, etc., the demand for data

communication has significantly increased. As bandwidth and the

∗
Co-primary authors with equal contribution

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00

https://doi.org/10.1145/3184407.3184410

power supply associated with mobile devices are limited, efficient

data communication is critical.

In this paper, we consider a network of nodes, each capable of

compressing data and caching a constant amount of data. A set of

nodes generates real time data and a sink node collects the data

from these nodes through fixed paths to serve requests for these

data. However, the requests need not reach nodes that generated

the data, i.e. request forwarding stops upon reaching a node on the

path that has cached the requested data. Upon finding the data, it is

sent along the reverse path to the sink node to serve the requests.

While each node can cache data to serve future requests so as to

reduce access latency and bandwidth requirement, it incurs addi-

tional caching costs [9]. Furthermore, data compression reduces the

transmission cost at the expense of computation cost [4, 26]. Thus,

there is an energy consumption tradeoff among data compression,

transmission, and caching to reduce latency. Since bandwidth and

energy required for network operation is expensive [26], it is criti-

cal to efficiently compress, transmit and cache the data to reduce

latency. This raises the following question, what is the right balance

between compression and caching to minimize total communica-

tion latency for limited energy consumption?

Our primary goal is to minimize average network latency (de-

lay) due to data transfer across the network, subject to an energy

consumption constraint on compression and caching of the data.

This problem is naturally abstracted and motivated by many real

world applications, including wireless sensor networks (WSNs) [9],

peer-to-peer networks [10], content distribution networks (CDNs)

[6, 13, 23], Information Centric Networks (ICNs) [18] and so on. For

example, in a hierarchical WSN, the sensors generate data, which

can be compressed and forwarded to the sink node through fixed

paths to serve requests generated from outside the network. These

requests can be served from the intermediate nodes along the path

that cache the data; if, however, data are not cached on any node

along the path, the request can subsequently be forwarded to the

edge sensor that generates the requested data. Similarly, in an ICN,

requests for data can be served locally from intermediate caches

https://doi.org/10.1145/3184407.3184410
https://doi.org/10.1145/3184407.3184410

2

placed between the server and origin. Both applications can be

mapped into the problem we consider here.

For these and many other applications, it is natural to assume

that edge nodes in the network generate data which is then com-

pressed and transmitted by all the nodes along the path to the sink

node. The sink node receives and serves requests generated out-

side the communication network. The intermediate nodes along

the path can cache data to serve requests. However, compression,

transmission, and caching consume energy, while the node power

supply is usually limited. To address this challenge, our main goal

is to design a lightweight and efficient algorithm with provable

performance guarantees that minimizes average latency. We make

the following contributions:

• We propose a formal mathematical framework for joint data

compression and cache optimization. Specifically, we formu-

late the problem of finding optimal data compression ratios

and caching locations that minimize average delay in serving

requests subject to an energy constraint.

• We analyze the complexity of the problem and show that

it is NP-hard in general. The hardness is caused by data

allocation to the caches.

• We propose polynomial time solvable algorithms for the for-

mulated problem. Because the original optimization problem

is NP-hard and non-convex, we relax the constraints and

show that the relaxed problem can be transformed into an

equivalent convex optimization problem that can be solved

in polynomial time. We then show that combining this solu-

tion with greedy caching allocation achieves a solution with

1/2-approximation to the optimum. Moreover, we construct

a polynomial-time (1− 1/e) approximation algorithm for the

problem.

• We conduct extensive simulations using synthetic network

topologies and compare our proposed algorithm with bench-

mark techniques. Our results show that the proposed algo-

rithm achieves near-optimal performance, and significantly

outperforms benchmarks Genetic Algorithm [12], Bonmin

[5], and NOMAD [21] by obtaining a feasible solution in less

time for various network topologies.

The rest of the paper is organized as follows: We discuss related

work in Section 2 and present our mathematical formulation in

Section 3. Our main results are presented in Section 4. Numeri-

cal evaluation of our algorithms against benchmarks is given in

Section 5 and finally we conclude the paper in Section 6.

2 RELATEDWORK
Optimizing energy consumption has been widely studied in the

literature with a primary focus on clustering [33], routing [25] and

MAC protocols [15]. With the proliferation of smart sensors [26], in-

network data processing, such as data aggregation, has been widely

used as a way to reduce system energy cost by lowering data volume

for transmission. Yu et al. [35] proposed an efficient algorithm for

data compression in a tree structured networks. Nazemi et al. [26]

further presented a distributed algorithm to obtain the optimal

compression ratio at each node in a tree structured network so as

to minimize the overall energy consumption.

However, none of these works considered caching costs. As

caches have been widely deployed in many modern data communi-

cation networks, they can be used to enhance system performance

by making data available close to end users, which in turn reduces

the communication costs [9] and latencies.

A number of authors have studied optimization problems for

cache allocation [2, 3, 6, 16, 23, 27–29, 31]. Ioannidis, Li and Shan-

mugam et. al [16, 22, 31] showed that it is NP-hard to determine

the optimal data caching location, and an (1 − 1/e) approximation

algorithm was obtained through the pipage rounding algorithm

[1, 8]. Beyond cache placement, [13] and [17] have jointly optimized

routing and caching under a single hop bipartite graph and general

graph, respectively. However, none of the existing work consid-

ered data compression and the corresponding costs for caching and

compression.

The recent paper by Zafari et al. [36] is closest to the problem

we tackle here. The differences between our work and [36] are

mainly from two perspectives. First, the mathematical formula-

tions (objectives) are quite different. Zafari et al. [36] considered

energy tradeoffs among communication, compression, and caching

in communication network, while we focus on maximizing the over-

all compression and caching gain by characterizing the tradeoff

between compression and caching costs with an overall energy con-

sumption constraint. This difference requires different techniques

to handle the problem. Second, the methodologies are different.

[36] aimed to provide a solution to the non-convex mixed integer

programming problem (MINLP) with an ϵ-global1optimality guar-

antee. Since MINLP is NP-hard in general, the proposed algorithm

V-SBB in [36] is complex and slow to converge to an ϵ-global op-
timal solution. Furthermore, it is difficult to generalize V-SBB to

larger network topologies as the algorithm relies on symbolically

reformulating the original non-convex MINLP problem that results

in extra constraints and variables. Instead, in this paper, we focus

on developing an approximation algorithm to optimize the gain

defined above. In doing so, we first allow the caching decision vari-

ables to be continuous, approximate the objective function and

then convert the problem into a convex one. Finally, we propose a

master-slave based algorithm to efficiently solve the approximated

relaxed problem, and show that the rounded solutions are feasible

to the original problem with performance guarantee, and our al-

gorithm is more efficient than that in [36] and can be applied to a

larger problem size.

Note that we focus onminimizing the latency and ignore through-

put issues, since we do not model congestion. Combing these two

issues together and proposing efficient approximation algorithms

is an interesting problem, which is out of the scope of this paper.

3 MODEL
We represent the network as a directed graph G = (V ,E). For sim-

plicity, we consider a tree, with N = |V | nodes, as shown in Figure 1.
Node v ∈ V is capable of storing Sv amount of data. Let K ⊆ V
with K = |K | be the set of leaf nodes, i.e., K = {1, 2, · · · ,K }. Time

is partitioned into periods of equal lengthT > 0 and data generated

1ϵ -global optimality means that the obtained solution is within ϵ tolerance of the

global optimal solution i.e., achieved cost/optimal cost ≤ 1+ϵ . The value of ϵ depends

on the requirement of different problems. Usually it is very small such as 0.0001.

3

Figure 1: Tree-Structured Network Model.
Table 1: Summary of Notations

Notation Description
G (V ,E) Network graph with |V | = N nodes

K Set of leaf nodes with |K | = K
Sv Cache capacity at node v ∈ V

hki The i-th node on the path between leaf node k
and sink node

δk,i Compression ratio for data generated by leaf

node k at ith node on path from k ∈ K to sink

li j Latency of edge (i, j) ∈ E
εvR per-bit reception cost of node v ∈ V
εvT per-bit transmission cost of node v ∈ V
εvC per-bit compression cost of node v ∈ V
yk Number of data (bits) generated at node k ∈ K

bk,i Variable indicating whether ith node on path

from k to sink caches the data from leaf node

k ∈ K
wca Caching power efficiency

Rk Request rate for data from node k ∈ K
W Global Energy constraint

T Time duration for which data are cached

δv Reduction rate at node v
Cv Set of leaf nodes that are children of node v
s.t. Subject to

in each period are independent. Without loss of generality (w.l.o.g.),

we consider one particular period in the remainder of the paper.

We assume that only leaf nodes k ∈ K can generate data, and all

other nodes in the tree receive and compress data from their chil-

dren nodes, and transmit and/or cache the compressed data to their

parent nodes during time T . In Section 3.5, we discuss how these

assumptions can be relaxed. For ease of exposition, the parameters

used throughout this paper are summarized in Table 1.

Our objective is to determine the optimal data compression ratio

and caching locations across the network to minimize average

latency under an energy constraint.

3.1 Compression and Caching Costs
Let yk be the amount of data generated by leaf node k ∈ K . Data

generated at the leaf nodes are transmitted up the tree to the sink

node s,which serves requests for the data generated in the network.

Let h(k) be the depth of node k in the tree. W.l.o.g., we assume that

the sink node is located at level h(s) = 0.We represent the unique

path from node k to the sink node byH k
of length h(k), a sequence

{hk
0
,hk

1
, · · · ,hkh (k) } of nodesh

k
j ∈ V such that (hkj ,h

k
j+1) ∈ E,where

hk
0
≜ s (i.e., the sink node) and hkh (k) ≜ k (i.e., the node itself).

We denote the per-bit reception, transmission, and compression

costs of node v ∈ V as εvR , εvT , and εvC , respectively. Each node

hki along the pathH k
compresses the data generated by leaf node

k at a data reduction rate2 δk,i , where 0 < δk,i ≤ 1, ∀i,k . The
higher the value of δk,i , the lower the compression will be, and

vice versa. The higher the degree of data compression, the larger

will be the amount of energy consumed by compression (compu-

tation). Similarly, caching data closer to the sink node can reduce

the transmission cost for serving the request, however, each node

only has a finite storage capacity. We study the tradeoff among the

energy consumed at each node for transmitting, compressing and

caching data to minimize the average delay (which will be defined

in (4)) in serving a request.

We consider an energy-proportional model [9] for caching, i.e.,

wcaδvyvT units of energy is consumed if the received data yv is

cached for a duration of T where wca represents the power effi-

ciency of caching, which strongly depends on the storage hardware

technology.wca is assumed to be identical for all the nodes.

Data produced by every leaf node k is received, transmitted, and

possibly compressed by all nodes in the path from the leaf node k
to the root node. On the first request, the energy consumed for this

processing of the data from leaf node k is

ECk =

h (k)∑
i=0

yk f (δk,i)

h (k)∏
m=i+1

δk,m , (1)

where

∏j
m=i δk,m := 1 if i ≥ j and f (δv) = εvR + εvT δv +

εvC lv (δv) is the sum of per-bit reception, transmission and com-

pression cost at node v per unit time. We take lv (δv) = 1/δv − 1
which was used in [26, 36] to capture compression costs.

Let ERk be the total energy consumed in responding to the sub-

sequent (Rk − 1) requests for the data originally generated by leaf

node k. We have

ERk =

h (k)∑
i=0

yk (Rk − 1)


f (δk,i)

h (k)∏
m=i+1

δk,m

(
1 −

i−1∑
j=0

bk, j

)

+

(h (k)∏
m=i

δk,m

)
bk,i

(
wcaT

Rk − 1
+ εkT

)

, (2)

where bk, j = 1 if node j caches data generated by k, otherwise
bk, j = 0. The first term captures the energy cost for reception,

transmission, and compression up the tree from node vk,i−1 to

vk,0 and the second term captures the energy cost for storage and

transmission by node vk,i . A detailed explanation of (1) and (2)

with a toy example is provided in [24].

To consider data generated by all leaf nodes, the total energy

consumed in the network is

Etotal (δ ,b) ≜
∑
k ∈K

(
ECk + E

R

k

)
2
defined as the ratio of the volume of the output data to the volume of input data at

any node

4

=
∑
k ∈K

h (k)∑
i=0

ykRk f (δk,i)

h (k)∏
m=i+1

δk,m −
∑
k ∈K

h (k)∑
i=0

yk (Rk − 1)

· f (δk,i)

h (k)∏
m=i+1

δk,m

i−1∑
j=0

bk, j +
∑
k ∈K

h (k)∑
i=0

yk (Rk − 1)

·

(h (k)∏
m=i

δk,m

)
bk,i

(
wcaT

Rk − 1
+ εkT

)

=
∑
k ∈K

h (k)∑
i=0

yk


Rk f (δk,i)

h (k)∏
m=i+1

δk,m +

(h (k)∏
m=i

δk,m

)
bk,i (wcaT+

(Rk − 1)εkT)


−

∑
k ∈K

h (k)∑
i=0

yk (Rk − 1) f (δk,i)

h (k)∏
m=i+1

δk,m

i−1∑
j=0

bk, j

≤
∑
k ∈K

h (k)∑
i=0

yk


Rk f (δk,i)

h (k)∏
m=i+1

δk,m +

(h (k)∏
m=i

δk,m

)
bk,i (wcaT+

(Rk − 1)εkT)


≜ Ẽtotal (δ ,b), (3)

where δ = {δk,i ,∀k ∈ K , i = 0, · · · ,h(k)} and b = {bk,i ,∀k ∈
K , i = 0, · · · ,h(k)}.

Note that Ẽtotal (δ ,b) is an upper bound of Etotal (δ ,b), which is

tight when there is no caching in the network. In the following

optimization, we use Ẽtotal (δ ,b) for energy constraint.

3.2 Latency Performance
W.l.o.g., we consider the path {hk

0
,hk

1
, · · · ,hkh (k) }. A request for data

generated by leaf node k is forwarded along this path from the root

node s until it reaches the node that has cached the requested data.

Upon finding the requested data, it is propagated along the reverse

direction of the path, i.e., carrying the requested data to the sink

node where the request originated. To capture the average latency

due to data transfer at any particular link, we associate each link

with a cost li, j for (i, j) ∈ E, representing the latency of transmitting

the data across the link (i, j). Denote the latency associated with

path {hk
0
,hk

1
, · · · ,hkh (k) } as {l

k
0,1, l

k
1,2, · · · , l

k
h (k)−1,h (k) }.

Then the overall latency for all the paths is

L(δ ,b) =
∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

i∏
j=0

(1 − bk, j). (4)

3.3 Optimization
Our objective is to determine the optimal compression ratio δ =
{δk,i ,∀k ∈ K , i = 0, · · · ,h(k)} and data caching location b =
{bk,i ,∀k ∈ K , i = 0, · · · ,h(k)} to minimize the expected total

latency subject to the energy constraint. That is,

min L(δ ,b) (5a)

s.t.

∑
k ∈K

h (k)∑
i=0

yk


Rk f (δk,i)

h (k)∏
m=i+1

δk,m +

(h (k)∏
m=i

δk,m

)
bk,i

· (wcaT + (Rk − 1)εkT)


≤W , (5b)

bk,i ∈ {0, 1},∀k ∈ K , i = 0, · · · ,h(k), (5c)∑
k ∈Cv

bk,h (v)yk

h (v)∏
j=h (k)

δk, j ≤ Sv ,∀ v ∈ V , (5d)

h (k)∑
i=0

bk,i ≤ 1,∀k ∈ K . (5e)

Now suppose that there is no compression or caching, then all

the requests need to be served from leaf nodes. The corresponding

total latency Lu is given as

Lu =
∑
k ∈K

h (k)−1∑
i=0

yk l
k
i,i+1Rk . (6)

Clearly, Lu is an upper bound on the expected total latency.

Then the compression and caching gain is

G (δ ,b) = Lu − L(δ ,b)

=
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j=0

(1 − bk, j)+
-
.

(7)

An equivalent optimization problem to (5) is to maximize the

above gain, given as follows

max G (δ ,b)

s.t. Constraints in (5). (8)

The objective in (8) is to maximize the expected compression and

caching gain. Constraint (5b) ensures that the total energy consump-

tion in the network as given in (3) is limited. Constraint (5c) con-

strains our caching decision variables to be binary. Constraint (5d)

ensures that each cache v stores no more than Sv amount of data.

Constraint (5e) ensures that at most one copy of the generated data

can be cached at any node along the path between the leaf and the

sink node. Each node potentially compresses data from different

leaf nodes differently; the coupling occurs due to the storage and

energy constraints.

3.4 Complexity Analysis
There are two decision variables in (8), i.e., the compression ratio

and the caching decision variables. In the following, we show the

impact of these variables on the hardness of our problem, i.e., we

consider two cases, (i) given the caching decisions variables b; (ii)
given the compression ratio δ .

3.4.1 Given Caching Decisions: For given caching decision vari-

ables b, the optimization problem in (8) turns into a geometric

programming problem over the compression ratio δ that can be

solved in polynomial time.

Theorem 3.1. Given fixed caching decisions b, the optimization
problem in (8) is polynomial-time solvable.

Proof. Once b is given, (8) becomes a geometric programming

problem in δ ; we will show in Section 4.2 that it can be trans-

formed into a convex optimization problem, which can be solved

in polynomial time. □

5

3.4.2 Given Compression Ratios: Given compression ratios δ ,
the optimization problem in (8) is only over the caching decision

variables b . Hence, we obtain an integer programming problem,

which is NP-hard.

Theorem 3.2. Given a fixed compression ratio δ , the optimization
problem in (8) is NP-hard.

Proof. We prove the hardness by reduction from the classical

job-shop problem which is NP-hard [19].

We can reduce the job-shop problem to our problem in (8) with

fixed compression ratios δ as follows. Consider each node v ∈ V
in our model to be a machine Mi . Denote the set of machines as

M = {M1,M2 · · ·M |V | }. The caching decision constitutes the set

of jobs J = {J1, J2}, where J1 means that the data is cached and J2
means otherwise. Let X be the set of all sequential job assignments

to different machines so that everymachine performs every job only

once. The elements x ∈ X can be written as 2× |V | matrices, where

column v order-wise lists the sequential jobs that the machineMv
will perform. There is a cost function C that captures the cost (i.e.,

latency) for any machine to perform a particular job. Our objective

in the optimization problem (8) is to find assignments of job x ∈ X
to minimize the latency or maximize the gain, which is equivalent

to the classical job-shop problem. Since job-shop problem is NP-

hard [19], our problem in (8) with given compression ratios δ is

also NP-hard. □

Therefore, given the results in Theorems 3.1 and 3.2, we know

that our optimization problem is NP-hard in general.

Corollary 3.3. The optimization problem defined in (8) is NP-
hard.

3.5 Relaxation of Assumptions
We made several assumptions in the above for the sake of model

simplicity. In the following, we discuss how these assumptions can

be relaxed.

First, the network is assumed to be structured as a tree, however,

we can easily relax this assumption by incorporating routing into

our joint optimization problem. We take the tree structure as our

motivating example since it is a simple and representative topology

that captures the key parameters in the optimization formulation

without introducing more complexity for a general network topol-

ogy.

Second, while we only allow leaf nodes to generate data, our

model can be extended to allow intermediate nodes to generate

data at the cost of added complexity, i.e., the number of decision

variables will be increased to represent the caching decision and

compression ratio for the data produced at the intermediate nodes.

Furthermore, rather than having a constant Rk requests for data

generated at the leaf node k , we can generalize our approach to the

case where Rk for various leaf nodes are drawn from a distribution

such as the Zipf distribution [9].

Third, in our model, we assume that the requests for the data

that are generated and valid for a time periodT are known. But our

solutions can be applied to an online setting with predicted user

requests.

4 APPROXIMATION ALGORITHM
Since our optimization problem (8) is NP-hard, we focus on devel-

oping efficient approximation algorithms. In particular, we develop

a polynomial-time solvable algorithm that produces compression

ratios and cache decisions with a constant approximation of the

minimum average latency. In the following, we first derive several

properties that allow us to develop such an approximation algo-

rithm. Then we discuss how to obtain a constant approximation

solution in polynomial time.

4.1 Properties of the Problem Formulation
In this section, we show that (8) is a submodular maximization

problem under matroid constraints. To begin, we first review the

concepts of submodular functions and matroids.

Definition 4.1. (Submodular function [30]) If Ω is a finite set, a

submodular function is a set function f : 2Ω → R, where 2Ω denotes

the power set of Ω, which satisfies one of the following equivalent

conditions:

(1) For every X ,Y ⊆ Ω with X ⊆ Y and every x ∈ Ω \ Y , we
have f (X ∪ {x }) − f (X) ≥ f (Y ∪ {x }) − f (Y);

(2) For every S,T ⊆ Ω,we have f (S)+f (T) ≥ f (S∪T)+f (S∩T);
(3) For every X ⊆ Ω and x ,y ∈ Ω \ X , we have f (X ∪ {x }) +

f (X ∪ {y}) ≥ f (X ∪ {x ,y}) + f (X).

Definition 4.2. (Monotone sub-modular function [20]) A sub-

modular function f is monotone if for everyT ⊆ S,we have f (T) ≥
f (S).

Definition 4.3. (Matroid [32]) A finite matroidM is a pair (E,I),
where E is a finite set and I is a family of subsets of E (called the

independent sets) with the following properties:

(1) The empty set is independent, i.e., ∅ ∈ I;

(2) Every subset of an independent set is independent, i.e., for

each A ⊂ B ⊂ E, if B ∈ I then A ∈ I;
(3) If A and B are two independent set of I and A has more

elements than B, then there exists x ∈ A\B such that B∪ {x }
is in I.

Given the above concepts, we easily obtain the following result

Theorem 4.4. The objective function in (8) is monotone and sub-
modular, and the constraints in (8) are matroid.

The proof is simply to verify that the objective function and

constraints in (8) satisfy Definitions 4.1, 4.2 and 4.3. We skip the

details due to space limitations.

Corollary 4.5. Since (8) is a sub-modular maximization problem
under matroid constraints, a solution with 1/2 approximation from
the optimum can be constructed by a greedy algorithm3.

Now we are ready to develop a polynomial-time solvable ap-

proximation algorithm with improved approximation ratio when

compared to the greedy algorithm. Since the optimization problem

in (8) is a non-convexmixed integer non-linear programing problem

(MINLP), we first relax the integer variables and transform it into a

3
Start with caching all data at the leaf nodes, then compute the optimal compression

ratio, and then iteratively add the data to caches by selecting feasible caching decisions

at each step that leads to the largest increase in the compression and caching gain.

6

convex optimization problem, which can be solved in polynomial

time. Then we round the achieved solutions to ones that satisfy the

original integer constraints, if there are any fractional solutions.

4.2 Convex Relaxation
We first relax the integer variables bk,i ∈ {0, 1} to ˜bk,i ∈ [0, 1] for
∀k ∈ K and i = 0, · · · ,h(k), in (4), (5), (7) and (8). Let µ be the joint

distribution over b, and let Pµ (·) and Eµ (·) be the corresponding
probability and expectation with respect to µ, i.e.,

˜bk,i = Pµ [bk,i = 1] = Eµ [bk,i]. (9)

Then the relaxed expected latency and gain are given as

L(δ , ˜b) =
∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

i∏
j=0

(1 − ˜bk, j),

G (δ , ˜b) = Lu − L(δ , ˜b)

=
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j=0

(1 − ˜bk, j)+
-
.

(10)

Therefore, the relaxed optimization problem is

max G (δ , ˜b)

s.t.

∑
k ∈K

h (k)∑
i=0

yk


Rk f (δk,i)

h (k)∏
m=i+1

δk,m +

(h (k)∏
m=i

δk,m

)
˜bk,i

· (wcaT + (Rk − 1)εkT)


≤W ,

˜bk,i ∈ [0, 1],∀k ∈ K , i = 0, · · · ,h(k),∑
k ∈Cv

˜bk,h (v)yk

h (v)∏
j=h (k)

δk, j ≤ Sv ,∀ v ∈ V ,

h (k)∑
i=0

˜bk,i ≤ 1,∀k ∈ K . (11)

Theorem 4.6. Suppose that (δ∗,b∗) and (˜δ
∗
, ˜b
∗
) are the optimal

solutions to (8) and (11), respectively, then

G (˜δ
∗
, ˜b
∗
) ≥ G (δ∗,b∗). (12)

Proof. The results hold since (11) maximizes the same objective

function over a larger domain due to relaxation of integer variables

b and energy constraint in (3). □

However, (11) is not a convex optimization problem. Since ex ≈
1 + x for x → 0 and log(1 − x) ≈ −x for x → 0, we obtain an

approximation for (10). The approximated expected total latency

and approximated compression and caching gain are given as follows

L(δ , ˜b) =
∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

i∏
j=0

(1 − ˜bk, j)

=
∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1e

∑i
j=0 log(1−

˜bk, j)

(a)
≈

∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

*.
,
1 −min



1,

i∑
j=0

˜bk, j




+/
-

≜ L̃(δ , ˜b),

G̃ (δ , ˜b) = Lu − L̃(δ , ˜b) =
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

·
*.
,
1 −min



1,

i∑
j=0

˜bk, j




+/
-

+
-
, (13)

where (a) is based on the two approximate properties discussed

above.

Then, the relaxed approximated optimization problem is given as

max G̃ (δ , ˜b) (14a)

s.t.

∑
k ∈K

h (k)∑
i=0

yk


Rk f (δk,i)

h (k)∏
m=i+1

δk,m +

(h (k)∏
m=i

δk,m

)
˜bk,i

· (wcaT + (Rk − 1)εkT)


≤W , (14b)

˜bk,i ∈ [0, 1],∀k ∈ K , i = 0, · · · ,h(k), (14c)∑
k ∈Cv

˜bk,h (v)yk

h (v)∏
j=h (k)

δk, j ≤ Sv ,∀ v ∈ V , (14d)

h (k)∑
i=0

˜bk,i ≤ 1,∀k ∈ K . (14e)

However, G̃ (δ , ˜b) is not concave. In the following, we transform

it into a convex term through Boyd’s method (Section 4.5 [7]) to

deal with posynomial terms in (14a), (14b) and (14d).

4.2.1 Transformation of the Objective Function. Given our ap-

proximated objective function

L̃(δ , ˜b) ≜
∑
k ∈K

h (k)−1∑
i=0

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

*.
,
1 −min



1,

i∑
j=0

˜bk, j




+/
-
,

(15)

we define two new variables as follows

log(˜bk, j) ≜ uk, j , i .e ., ˜bk, j = euk, j ,

logδk,m ≜ τk,m , i .e ., δk,m = eτk,m . (16)

Then the approximated objective function can be transformed

into

L̃(τ , u) ≜
∑
k∈K

h (k)−1∑
i=0

h (k)∑
m=i+1

eτk,m+log(ykRk l
k
i,i+1) *.

,
1 −min



1,

i∑
j=0

euk, j



+/
-
.

(17)

Therefore, we can transform G̃ (δ , ˜b) into

G̃ (τ , u) = Lu − L̃(τ , u)

=
∑
k∈K

h (k)−1∑
i=0

e log(Rkyk l
k
i,i+1) *.

,
1 −

h (k)∑
m=i+1

eτk,m *.
,
1 −min



1,

i∑
j=0

euk, j



+/
-

+/
-
.

(18)

7

Next we need to transform the constraints following Boyd’s

method.

4.2.2 Transformation of the Constraints.

Constraint (14b):We take the left hand side of the constraint and

transform it. To simplify, we divide the equation into multiple parts,

∑
k ∈K

h (k)∑
i=0

Rkyk f (δk,i)

h (k)∏
m=i+1

δk,m︸ ︷︷ ︸
Part 1

+
∑
k ∈K

h (k)∑
i=0

ykwcaT ˜bk,i

h (k)∏
m=i

δk,m︸ ︷︷ ︸
Part 2

+
∑
k ∈K

h (k)∑
i=0

ykεkT (Rk − 1) ˜bk,i

h (k)∏
m=i

δk,m︸ ︷︷ ︸
Part 3

. (19)

Part 1: From (16), i.e., τk,i = logδk,i , we have

Part 1 =
∑
k ∈K

h (k)∑
i=0

Rkyk (εkR − εkC + δk,iεkT +
εkC
δk,i

)

h (k)∏
m=i+1

δk,m

=
∑
k ∈K

h (k)∑
i=0

Rkyk (εkR − εkC + e
τk,i εkT +

εkC
eτk,i

)

h (k)∏
m=i+1

δk,m

=
∑
k ∈K

h (k)∑
i=0

Rkyk (εkR − εkc + εkT e
τk,i + εkce

−τk,i)e
∑h (k)
m=i+1 τk,m .

(20)

Part 2: From (16), i.e.,
˜bk, j = euk, j , we have

Part 2 =
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log(ykwcaT)+uk,i . (21)

Part 3: Similarly, we have

Part 3 =
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log (yk (Rk−1)εkT)+uk,i . (22)

Combining (20), (21) and (22), Constraint (14b) becomes

∑
k ∈K

h (k)∑
i=0

Rk (ykεkR − ykεkc + ykεkT e
τk,i + ykεkce

−τk,i)e
∑h (k)
m=i+1 τk,m

+
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log(ykwcaT)+uk,i

+
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log (yk (Rk−1)εkT)+uk,i ≤W ,

(23)

which is convex in τ and u on the left hand side, respectively.

Constraint (14d): Similarly, we have∑
k ∈Cv

e
∑h (v)
j=h (k) τk, j+logyk+uk,h (v) ≤ Sv , (24)

which is convex in τ and u on the left hand side, respectively.

4.2.3 Optimization Problem in Convex Form. Following the trans-
formation given in (18), (23) and (24), we obtain the convex form

for the optimization problem, i.e.,

max G̃ (τ ,u)

s.t.

∑
k ∈K

h (k)∑
i=0

Rkyk (εkR − εkc + εkT e
τk,i + εkce

−τk,i)e
∑h (k)
m=i+1 τk,m

+
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log(ykwcaT)+uk,i

+
∑
k ∈K

h (k)∑
i=0

e
∑h (k)
m=i τk,m+log (yk (Rk−1)εkT)+uk,i ≤W ,

euk,i ∈ [0, 1],∀k ∈ K , i = 0, · · · ,h(k),∑
k ∈Cv

e
∑h (v)
j=h (k) τk, j+logyk+uk,h (v) ≤ Sv ,

h (k)∑
i=0

euk,i ≤ 1,∀k ∈ K . (25)

Theorem 4.7. The optimization problem given in (25) is convex
in τ and u, respectively.

Proof. It can be easily checked that the objective function in (25)

satisfies the second order condition [7] for τ and u, respectively.
We omit the details due to space constraints. □

Remark 1. Note that the optimization problem given in (25) is con-
vex in τ for a givenu, and vice versa. In the following, we will present
an efficient master-slave algorithm to solve the convex optimization
problem in τ and u, respectively.

4.3 Efficient Algorithms
Theorem 4.8. The optimization problems given in (14a) and (25)

are equivalent.

Proof. This is clear from the way we convexified the problem.

□

Note that after the convex relaxation and transformation, the

optimization problem in (25) is point-wise convex in τ and u .We

focus on designing a polynomial-time solvable algorithm.

Algorithm: We consider the master-slave algorithm shown in Al-

gorithm 1, i.e., given a fixed τ 0, we solve (25) to obtain u0, and then
given u0, we solve (25) to obtain τ 1.We repeat the above process

until that the values of τ and u converge
45
. We denote this as the

optimal solution of (25) as (τ∗,u∗)6.
Given the optimal solution to (25) as (τ∗,u∗), then from The-

orem 4.8, we know there exists (δ∗∗, ˜b
∗∗
), which is the optimal

4
If the difference between the current value and the previous one is within a tolerance,

we say the value converges.

5
Since our objective function is a function of the variablesu and τ , once these variables
converge, the value of the objective function must converge. As we are interested in

the objective value, in Algorithm 1, we write the convergence criteria with respect to

the objective function value, where ϵ equals to 0.001.
6
Note that our master-slave algorithm is very efficient to solve this convex optimization

problem, we can obtain a solution within one or two iterations.

8

Algorithm 1Master-Slave Algorithm

Input: Rk , yk ,W , l , obj
0

Output: b, δ , objf
Step 1: Initialize u
Step 2: τ ←− Random(lb,ub) ▷ Generate random τ between

lower bound lb and upper bound ub
while objχ − objχ−1 ≥ ϵ do

Step 3: u χ ←− Convex(master,τ χ) ▷ Solve the master

optimization problem for u χ
Step 4: τ χ ←− Convex(slave,u χ) ▷ Solve the slave

optimization problem for τ χ
Step 5: (b χ ,δχ , objχ) ←− Rounding(u χ ,τ χ) ▷ Round the

values of u χ , remap u χ ,τ χ to b χ and δ χ and obtain the new

objective function value

solution to (14a) such that G̃ (τ∗,u∗) = G̃ (δ∗∗, ˜b
∗∗
) andG (τ∗,u∗) =

G (δ∗∗, ˜b
∗∗
).

Theorem 4.9. Denote the optimal solutions to (11) and (25) as
(˜δ
∗
, ˜b
∗
) and (τ∗,u∗), respectively. Then, we have(

1 −
1

e

)
G (˜δ

∗
, ˜b
∗
) ≤ G (τ∗,u∗) ≤ G (˜δ

∗
, ˜b
∗
). (26)

Proof. Consider any (δ , ˜b) that satisfies the constraints in (11)

and (14a).

First, we show that G (δ , ˜b) ≤ G̃ (δ , ˜b), as follows

G (δ , ˜b)
(a)
=

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1E

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j=0

(1 − bk, j)+
-

=
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

·

h (k)∏
m=i+1

δk,mE



i∏
j=0

(1 − bk, j)



=
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

·

h (k)∏
m=i+1

δk,mE


1 −min



1,

i∑
j=0

bk, j





(b)
≤

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

·

h (k)∏
m=i+1

δk,m
*.
,
1 −min



1,E



i∑
j=0

bk, j






+/
-

=G̃ (δ , ˜b), (27)

where the expectation E in (a) is taken overb due to the linear relax-

ation, and (b) holds true due to the concavity of the min operator.

Next, we show that G (δ , ˜b) ≥
(
1 − 1

e

)
G̃ (δ , ˜b), as follows

G (δ , ˜b) =
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j=0

(1 − ˜bk, j)+
-

≥
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

i∏
j=0

(1 − ˜bk, j)+
-

(a)
≥

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

(
1 − (1 − 1/i)i

)
min



1,

i∑
j=0

˜bk, j




(b)
≥

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1min



1,

i∑
j=0

˜bk, j



, (28)

where (a) holds true since [11, 14]

1 −

i∏
j=0

(1 − ˜bk, j) ≥
(
1 − (1 − 1/i)i

)
min



1,

i∑
j=0

˜bk, j



, (29)

and (b) holds true since (1 − 1/i)i ≤ 1/e . Also we have(
1 −

1

e

)
G̃ (δ , ˜b) =

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

(
1 −

1

e

)
L̃(δ , ˜b)

=

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

·

h (k)∏
m=i+1

δk,mykRk l
k
i,i+1

*.
,
1 −min



1,

i∑
j=0

˜bk, j




+/
-

=

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1 −

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

ykRk l
k
i,i+1

·
*.
,
1 −min



1,

i∑
j=0

˜bk, j




+/
-

=

(
1 −

1

e

) ∑
k ∈K

h (k)−1∑
i=0

ykRk l
k
i,i+1min



1,

i∑
j=0

˜bk, j



, (30)

then from (28) and (30), we immediately have

G (δ , ˜b) ≥
(
1 −

1

e

)
G̃ (δ , ˜b), (31)

therefore, for any (δ , ˜b) that satisfies the constraints in (11) and (14a),
we have (

1 −
1

e

)
G̃ (δ , ˜b) ≤ G (δ , ˜b) ≤ G̃ (δ , ˜b). (32)

Now, since (˜δ
∗
, ˜b
∗
) is optimal to (11), then

G (δ∗∗, ˜b
∗∗
) ≤ G (˜δ

∗
, ˜b
∗
). (33)

Similarly, since (δ∗∗, ˜b
∗∗
) is optimal to (14a),

G (˜δ
∗
, ˜b
∗
) ≤ G̃ (˜δ

∗
, ˜b
∗
) ≤ G̃ (δ∗∗, ˜b

∗∗
) ≤

e

e − 1
G (δ∗∗, ˜b

∗∗
), (34)

where the first and third inequality hold due to (32).

Therefore, we have(
1 −

1

e

)
G (˜δ

∗
, ˜b
∗
) ≤ G (δ∗∗, ˜b

∗∗
) ≤ G (˜δ

∗
, ˜b
∗
), (35)

i.e., (
1 −

1

e

)
G (˜δ

∗
, ˜b
∗
) ≤ G (τ∗,u∗) ≤ G (˜δ

∗
, ˜b
∗
). (36)

□

9

Since (25) is a convex optimization problem, (τ∗,u∗) can be

obtained in strongly polynomial time.

4.4 Rounding
To provide a constant approximation solution to (8), the optimal

solution (δ∗∗, ˜b
∗∗
) needs to be rounded.

Property: W.l.o.g., we consider a feasible solution (δ , ˜b) and as-

sume that there are two fractional solutions
˜bk, j and ˜bk,l . We define

ϵ1 = min{ ˜bk, j , 1 − ˜bk,l },

ϵ2 = min{1 − ˜bk, j , ˜bk,l }, (37)

and set

˜b
′
(1) = (˜b−(j,l) , ˜bk, j − ϵ1, ˜bk,l + ϵ1),

˜b
′
(2) = (˜b−(j,l) , ˜bk, j + ϵ2, ˜bk,l − ϵ2), (38)

where
˜b−(j,l) means all other components in

˜b remain the same be-

sides
˜bk, j and ˜bk,l . Set

˜b = ˜b
′
(1), ifG (˜b

′
(1)) > G (˜b

′
(2)), otherwise

set
˜b = ˜b

′
(2).

Remark 2. From the above rounding steps (37) and (38), it is clear
that ˜b

′
has smaller number of fractional components than ˜b . Since

the number of components in ˜b is finite, the rounding steps terminate
in a finite number of steps. Also, it is clear that ˜b

′
satisfies the second

and the fourth constraints in (11) and (14a) for ∀ϵ ∈ [−ϵ1, ϵ2] or
∀ϵ ∈ [−ϵ2, ϵ1].

Now suppose that (δ , ˜b
′
) is the rounded solution. Then following

an argument similar to that in [1], we have

Lemma 4.10. Fork ∈ K , if
∑h (k)
j=1 bk, j is an integer, then

∑h (k)
j=1 b ′k, j

is also an integer; if
∑h (k)
j=1 bk, j is a fraction, then

⌊∑h (k)
j=1 bk, j

⌋
≤∑h (k)

j=1 b ′k, j ≤
⌊∑h (k)

j=1 bk, j

⌋
+ 1.

We refer the interested reader to [1] for more details.

Now since the energy constraint is integer, given that (wcaT +

(Rk −1)εkT) ≤ 1, Lemma (4.10) implies that (δ , ˜b
′
) satisfies the con-

straints in (11). Therefore, after the rounding, we obtain a feasible

solution obeying the constraints in (11).

Theorem 4.11. We consider a feasible solution (δ , ˜b) and assume
that there are two fractional solutions ˜bk, j and ˜bk,l . W.l.o.g., we as-

sume that ˜b
′
= (˜b−(j,l) , ˜bk, j−ϵ, ˜bk,l+ϵ) following rounding steps (37)

and (38), then G (·) is convex in ϵ .

Proof. Recall that

G (δ , ˜b) =
∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j=0

(1 − ˜bk, j)+
-
,

then

G (δ , ˜b
′
, ϵ) =

∑
k ∈K

h (k)−1∑
i=0

Rkyk l
k
i,i+1

*
,
1 −

h (k)∏
m=i+1

δk,m

i∏
j′,j,l

(1 − ˜bk, j′)

· (1 − ˜bk, j + ϵ) (1 − ˜bk,l − ϵ)+
-
,

by the second order condition, it is obvious that G (·) is convex in
ϵ . This property is called ϵ-convexity property in [1]. □

Corollary 4.12. Since G (·) is convex in ϵ , it should achieve its
maximum at the endpoint of [−ϵ1, ϵ2] or ϵ ∈ [−ϵ2, ϵ1]. Therefore,
following the above rounding steps (37) and (38), we have G (δ , ˜b

′
) ≥

G (δ , ˜b).

Proof. G (δ , ˜b
′
) ≥ G (δ , ˜b) follows directly from the convexity

of G (·) in ϵ and the rounding steps in (37) and (38). □

Rounding Scheme: Now for any solution (δ , ˜b) that satisfies the

constraints in (11) and (14a), where
˜b contains fractional terms.

There always exists a way to transfer mass between any two frac-

tional variables
˜bk, j and ˜bk,l such that

• (i) at least one of them becomes 0 or 1;

• (ii) the resultant solution (δ , ˜b
′
) is feasible, i.e., (δ , ˜b

′
) satisfy

the constraints in (11) and (14a);

• (iii) the gain satisfies G (δ , ˜b
′
) ≥ G (δ , ˜b).

Then we can obtain an integral solution with the following

iterative algorithm:

(1) Given the optimal solution (τ∗,u∗) to (25) , we first obtain the

optimal solution (δ∗∗, ˜b
∗∗
) through the convexity mapping

defined in (16).

(2) If there are fractional solutions in
˜b
∗∗
, the number of frac-

tional solutions must be at least two since the capacities are

integer. W.l.o.g., consider two fractional solutions
˜b∗∗k, j and

˜b∗∗k,l , for j, l ∈ {1, · · · ,h(k)} and j , l .

(3) Following the above properties (i) (ii) and (iii) to transform

at least one of them into 0 or 1 and the resultant gain G is

increased.

(4) Repeat steps 2 and 3 until there are no fractional solutions

in
˜b
∗∗
.

Denote the resultant solution as (δ∗∗, ˜b
∗∗′

) which satisfies the

constraints in (8). Note that each step can round at least one frac-

tional solution to an integer one, the above iterative algorithm can

terminate at most in |K | ×
∑
k ∈K |h(k) | steps. As each rounding

step increases the gain, we have

G (δ∗∗, ˜b
∗∗′

) ≥ G (δ∗∗, ˜b
∗∗
)
(a)
≥

(
1 −

1

e

)
G (˜δ

∗
, ˜b
∗
)

(b)
≥

(
1 −

1

e

)
G (δ∗,b∗), (39)

where (a) holds from Theorem 4.9 and (b) holds from Theorem 4.6.

Therefore, we have obtained a (1 − 1/e)-approximation solution to

the original optimization problem (8).

5 PERFORMANCE EVALUATION
We evaluate the performance of our proposed algorithm against

benchmarks over synthetic data-based network topologies.

5.1 Benchmarks
To compare our proposed solution technique with existing ones, we

solve the original non-convex mixed integer non-linear optimiza-

tion (MINLP) in (7) using conventional online solvers, including

10

Table 2: Characteristics of the Online Solvers

Solver Characteristics
Bonmin [5] A deterministic approach based on Branch-and-

Cut method that solves relaxation problem with

Interior Point Optimization tool (IPOPT), as well

as mixed integer problem with Coin or Branch

and Cut (CBC).

NOMAD [21] A stochastic approach based on Mesh Adaptive

Direct Search Algorithm (MADS) that guaran-

tees local optimality. It can be used to solve

non-convex MINLP.

GA [12] A meta-heuristic stochastic approach that can

be tuned to solve global optimization problems.

Bonmin [5], NOMAD [21] and Genetic Algorithm (GA) [12], which

have all been designed to solve classes of MINLP problems. The

characteristics of these solvers are given in Table 2.

Note that GA is a stochastic approachwhose performance greatly

varies from one simulation run to other. In order to reduce the

variance, we run the algorithm 10 times and provide the average,

maximum and minimum time along with objective function value

obtained using GA. For sake of comparison, we also ran our algo-

rithm 10 times. For our proposed algorithm, we use Algorithm 1

to solve the approximate relaxed convex problem and then use

the rounding scheme discussed in Section 4.4 to obtain a feasible

solution to the original problem. We compare the performance of

our proposed algorithm with these benchmarks with respect to

average latency as well as the complexity (measured in units of

time).

Table 3: Parameters Used in Simulations

Parameter Value Parameter Value
yk 100 εvR 50 × 10

−9
J

Rk 1000 εvT 200 × 10
−9

J

wca 1.88 × 10
−6 εcR 80 × 10

−9
J

T 10s l 0.6

Sv 120 W 200

5.2 Synthetic Evaluation
5.2.1 Simulation Setting. We consider binary tree networkswith

7, 15, 31 and 63 nodes, respectively. We assume that each leaf node

generates yk = 100 data items
7
, which will be requested Rk = 1000

times during a time periodT = 10s . Sv = 120 is the storage capacity

of each node. For simplicity, we assume that the latency along each

link in the network is identical and take l = 0.6. Our simulation

parameters are provided in Table 3, which are typical values used

in the literature [15, 26, 34]. We implement Bonmin, NOMAD and

Algorithm 1 inMatlab using OPTI-Toolbox andMatlab’s built-in GA

algorithm on a Windows 7 64 bits, 3.40 GHz Intel Core-i7 Processor

with 16 GB memory.

5.2.2 Evaluation Results. The performance of these algorithms

with respect to the obtained value of the objective function and the

time needed to obtain it, are given in Table 4.

On the one hand, we observe that neither Bonmin or NOMAD

provide feasible solution with the constraint in (5e). We then further

7
Note that this can be equivalently taken as 100 sensors generating data

relax this constraint for Bonmin and NOMAD. Hence, the results

provided in Table 4 for Bonmin and NOMAD are solved without

constraint (5e). Again, we notice that even after relaxing the con-

straint, Bonmin and NOMAD still exhibit poor performance, i.e.

they either provide an infeasible solution or do not converge to a

feasible solution. This is mainly due to the hardness of the original

non-convex MINLP (7). Hence, it is important to provide an efficient

approximation algorithm to solve it.

On the other hand, we observe that both our proposed algorithm

and GA provide encouraging results. We run both GA and our al-

gorithm 10 times and report their average as the obtained solutions

and run time in Table 4. Tables 5 and 6 provide detailed results for

the two algorithms. It is clear that our proposed algorithm signifi-

cantly outperforms these conventional online solvers both in terms

of run time and the obtained objective function value.

In particular, for the 63 node network, GA provides a solution

faster than ours. However, GA is not robust and reliable for larger

networks. We characterize the robustness of GA, as shown in Ta-

ble 6, where the maximal (Max.), minimal (Min.) and average values

of the objective function are presented as well as the corresponding

time to obtain them for 7, 15, 31 and 63 nodes binary tree networks.

We notice that for the 63 nodes network, only 4 out of 10 runs con-

verge to a feasible solution using GA. Therefore, GA cannot always

guarantee a feasible solution though it may complete in less time.

Table 5 provides a detailed overview of our algorithm. The maxi-

mal, minimal and average values in terms of time, obtained solution

and number of iterations are given. Our master-slave algorithm

converges to a solution in small number of iterations.

Also note that our proposed approach always achieves a feasible

solution within the (1−1/e) approximation of the optimal solution
8
.

Therefore, our proposed algorithm can efficiently solve the problem,

i.e., provides a feasible solution in a reasonable time and is robust

to network topologies changes.

We also characterize the impact of the number of requests on the

caching and compression gain, shown in Figure 2. We observe that

as the number of requests increases, the gain increases, as reflected

in the objective function (7). Note that the objective function (7)

is monotonically increasing in the number of requests Rk for all

k ∈ K provided that δ and b are fixed.

Remark 3. Throughout the evaluations, we notice that the com-
pression ratio at a leaf node is much smaller than the ratio at the root
node. For example, in the 63 node network, the compression ratio9

at a leaf node is 0.01 while it is 0.37 at the root node. This captures
the tradeoff between the costs of compression, communication and
caching in our optimization framework. Similar observations can be
made in other networks and hence are omitted here.

5.2.3 Heterogeneous Networks. In the previous section, we con-

sider binary tree networks under homogeneous settings, i.e., the

8
Note that the original optimization problem (7) is non-convex MINLP, which is NP-

hard. Bonmin, NOMAD and GA all claim to solve MINLP with a ϵ -optimal solution.

However, GA and NOMAD are stochastic approaches, they cannot guarantee ϵ -global
optimality. Hence, we compare our solution with these of Bonmin, NOMAD and GA

to verify the approximation ratio.

9
Defined as the ratio of the volume of the output data to that of the input data at a

node. The higher the compression ratio is, the lower is the data compression.

11

Table 4: Comparison Among Selected Algorithms Using Synthetic Data for Various Network Topologies

Nodes Proposed GA Nomad Bonmin
Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)

7 480000 3.30 479820 273.29 Infeasible 9.45 Infeasible 1.01

15 1440000 6.33 1440000 15.12 1439900 16.18 Infeasible > 4000

31 3840000 29.28 3839000 3501.10 Non-Convergence 98.90 Non-Convergence 1232.31

63 9599900 538.17 8792100 158.56 Non-Convergence 966.16 Non-Convergence 2.04

Table 5: Detailed Results for Our Proposed Algorithm

Node Time Obj. Value Iterations
Max. Min. Average Max. Min. Average Max. Min. Average

7 3.5848 3.12 3.30 480000 480000 480000 4 4 4

15 7.23 6.00 6.33 1440000 1440000 1440000 2 2 2

31 30.99 28.57 29.28 3840000 3839900 3840000 2 2 2

63 553.94 531.61 538.17 9600000 9599900 9599900 3 3 3

Table 6: Robustness of GA Algorithm

Node Time (s) Objective Value Convergence (%)Max. Min. Average Max. Min. Average
7 369.43 161.76 273.29 479880 479750 479820 100

15 18.15 12.56 15.12 1440000 1440000 1440000 100

31 4446.70 2552.40 3501.10 3839100 3838900 3839000 100

63 413.28 24.41 158.56 9599100 8041500 8792100 40

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Requests

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
a

c
h

in
g

 a
n

d
 C

o
m

p
re

s
s

io
n

 G
a

in

10
7

7-node network

15-node network

31-node network

63-node network

Figure 2: Impact of number of requests on performance.

value of different parameters are identical for all nodes in the net-

work, as given in Table 3. In this section, we generalize the sim-

ulation setting from two perspectives: (i) First, we consider het-

erogeneous parameter values across the network. For example, for

the node cache capacity Sv , we assume that Sv = 100+rand (1, 20),
where rand (i, j) assigns a random number between i and j. Sim-

ilarly, we assign a random number to εvR , εvT and εcR on each

node; (ii) Second, instead of considering binary tree, we consider

more general network topologies with 7, 15, 31 and 67 nodes, as

shown in Figure 3.

The performance of these algorithmswith respect to the obtained

value of the objective function and the time needed to obtain it,

are given in Table 7. Again, we observe that neither Bonmin nor

NOMAD can effectively solve the original problem in (7), which

Figure 3: Heterogeneous Tree Networks used in Simulations

shows the hardness of the problem. Hence, it is important to provide

an efficient approximation algorithm to solve it.

Similarly, we also observe that both our proposed algorithm and

GA provide encouraging results. We run both GA and our algorithm

10 times and report their average as the obtained solutions and run

time in Table 7. We also obtain detailed results for both algorithms,

where trends similar to Tables 5 and 6 are observed. These are

omitted here due to space constraints, and are available in [24].

It is clear that our proposed algorithm significantly outperforms

these conventional online solvers both in terms of run time and the

obtained objective function value. Furthermore, again we notice

that GA cannot always guarantee a feasible solution.

We also characterize the impact of the number of requests on

the caching and compression gain. Similar to Figure 2, we observe

that as the number of requests increases, the gain increases, hence

the plot is omitted, which is available in [24].

12

Table 7: Comparison Among Selected Algorithms Using Synthetic Data for Various Network Topologies II

Nodes Proposed GA Nomad Bonmin
Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)

7 720000 5.5261 720000 6.14 720000 78.99 Infeasible 45.37

15 1799900 5.87 1800000 20.08 Non-Convergence 37.27 Infeasible 1151.05

31 4319500 33.81 4318700 66.68 Non-Convergence 179.21 Non-Convergence 32293.37

67 7197900 115.17 6531200 399.39 Non-Convergence 1037 Non-Convergence > 40000

6 CONCLUSION
We considered the problem of optimally compressing and caching

data across a communication network, with the goal of minimizing

the total latency under an energy constraint. We reformulated this

as a problem of maximizing compression and caching gain. This

problem is NP-hard. We then proposed an efficient approximation

algorithm that can achieve a (1 − 1/e) approximation solution to

the optimum in strongly polynomial time. Finally, we evaluated the

performance of our proposed algorithm through extensive synthetic

simulations, andmade a comparisonwith benchmarks.We observed

that our proposed algorithm can achieve near-optimal solution and

outperform the benchmarks.

ACKNOWLEDGMENTS
This workwas supported by the U.S. Army Research Laboratory and

the U.K.Ministry of Defence under Agreement NumberW911NF-16-

3-0001. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the U.S. Army

Research Laboratory, the U.S. Government, the U.K. Ministry of

Defence or the U.K. Government. The U.S. and U.K. Governments

are authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copy-right notation hereon. Faheem

Zafari also acknowledges the financial support by EPSRC Centre for

Doctoral Training in High Performance Embedded and Distributed

Systems (HiPEDS, Grant Reference EP/L016796/1), and Department

of Electrical and Electronics Engineering, Imperial College London.

REFERENCES
[1] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage Rounding: A New

Method of Constructing Algorithmswith Proven Performance Guarantee. Journal
of Combinatorial Optimization 8, 3 (2004), 307–328.

[2] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and KK

Ramakrishnan. 2016. Optimal Content Placement for a Large-Scale VoD System.

IEEE/ACM Transactions on Networking 24, 4 (2016), 2114–2127.

[3] Ivan Baev, Rajmohan Rajaraman, and Chaitanya Swamy. 2008. Approximation

Algorithms for Data Placement Problems. SIAM J. Comput. 38, 4 (2008), 1411–
1429.

[4] Kenneth C Barr and Krste Asanović. 2006. Energy-aware Lossless Data Compres-

sion. ACM Transactions on Computer Systems (2006).
[5] Pierre Bonami et al. 2008. An Algorithmic Framework for Convex Mixed Integer

Nonlinear Programs. Disc. Opt. 5, 2 (2008), 186–204.
[6] Sem Borst, Varun Gupta, and AnwarWalid. 2010. Distributed Caching Algorithms

for Content Distribution Networks. In Proc. IEEE INFOCOM. 1–9.

[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press.

[8] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2007. Maximiz-

ing a Submodular Set Function Subject to a Matroid Constraint. In IPCO, Vol. 7.
Springer, 182–196.

[9] Nakjung Choi, Kyle Guan, Daniel C Kilper, and Gary Atkinson. 2012. In-network

Caching Effect on Optimal Energy Consumption in Content-Centric Networking.

In Proc. IEEE ICC.
[10] Edith Cohen and Scott Shenker. 2002. Replication Strategies in Unstructured

Peer-to-Peer Networks. In ACM SIGCOMM CCR, Vol. 32. 177–190.
[11] G Cornnejols, M Fisher, and G Nemhauser. 1977. Location of Bank Accounts

of Optimize Float: An Analytic Study of Exact and Approximate Algorithm.

Management Science 23 (1977), 789–810.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[13] Mostafa Dehghan, Anand Seetharam, Bo Jiang, Ting He, Theodoros Salonidis,

Jim Kurose, Don Towsley, and Ramesh Sitaraman. 2015. On the Complexity of

Optimal Routing and Content Caching in Heterogeneous Networks. In Proc. IEEE
INFOCOM. 936–944.

[14] Michel X. Goemans and David P. Williamson. 1994. NEW 3/4-APPROXIMATION

ALGORITHMS FOR THEMAXIMUM SATISFIABILITY PROBLEM. SIAM Journal
on Discrete Mathematics 7, 4 (1994).

[15] Wendi Rabiner Heinzelman, Anantha Chandrakasan, andHari Balakrishnan. 2000.

Energy-Efficient Communication Protocol for Wireless Microsensor Networks.

In System sciences.
[16] Stratis Ioannidis and Edmund Yeh. 2016. Adaptive Caching Networks with

Optimality Guarantees. In Proc. ACM SIGMETRICS. 113–124.
[17] Stratis Ioannidis and Edmund Yeh. 2017. Jointly Optimal Routing and Caching

for Arbitrary Network Topologies. arXiv preprint arXiv:1708.05999 (2017).
[18] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H

Briggs, and Rebecca L Braynard. 2009. Networking Named Content. In Proc. ACM
CoNEXT. 1–12.

[19] Anant Singh Jain and Sheik Meeran. 1999. Deterministic Job-Shop Scheduling:

Past, Present and Future. European journal of operational research 113, 2 (1999).

[20] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maxi-

mization. http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/

submodular_survey12.pdf. (2014).

[21] Sébastien Le Digabel. 2011. Algorithm 909: NOMAD: Nonlinear Optimization

with the MADS Algorithm. ACM TOMS 37, 4 (2011), 44.
[22] Jian Li, Truong Khoa Phan, Wei Koong Chai, Daphne Tuncer, George Pavlou,

David Griffin, and Miguel Rio. 2018. DR-Cache: Distributed Resilient Caching

with Latency Guarantees. In Proc. IEEE INFOCOM.

[23] Jian Li, Srinivas Shakkottai, John C.S. Lui, and Vijay Subramanian. 2017. Accurate

Learning or Fast Mixing? Dynamic Adaptability of Caching Algorithms. arXiv
preprint arXiv:1701.02214 (2017).

[24] Jian Li, Faheem Zafari, Don Towsley, Kin K. Leung, and Aanathram Swami. 2018.

Joint Data Compression and Caching: Approaching Optimality with Guarantees.

Arxiv preprint arXiv:1801.02099 (2018).
[25] A. Manjeshwar and D. P. Agrawal. 2001. TEEN: a Routing Protocol for Enhanced

Efficiency in Wireless Sensor Networks. In IPDPS.
[26] Sepideh Nazemi, Kin K Leung, and Ananthram Swami. 2016. QoI-aware Tradeoff

Between Communication and Computation in Wireless Ad-hoc Networks. In

Proc. IEEE PIMRC.
[27] Nitish K. Panigrahy, Jian Li, and Don Towsley. 2017. Hit Rate vs. Hit Probability

Based Cache Utility Maximization. In Proc. ACM MAMA.
[28] Nitish K. Panigrahy, Jian Li, and Don Towsley. 2017. Network Cache Design

under Stationary Requests: Challenges, Algorithms and Experiments. Arxiv
preprint arXiv:1712.07307 (2017).

[29] Nitish K. Panigrahy, Jian Li, Faheem Zafari, Don Towsley, and Paul Yu. 2017.

What, When and Where to Cache: A Unified Optimization Approach. Arxiv
preprint arXiv:1711.03941 (2017).

[30] Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency.
Vol. 24. Springer Science & Business Media.

[31] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F

Molisch, and Giuseppe Caire. 2013. Femtocaching: Wireless Content Delivery

through Distributed Caching Helpers. IEEE Transactions on Information Theory
59, 12 (2013), 8402–8413.

[32] Dominic JA Welsh. 2010. Matroid Theory. Courier Corporation.
[33] Mao Ye, Chengfa Li, Guihai Chen, and Jie Wu. 2005. EECS: an Energy Efficient

Clustering Scheme in Wireless Sensor Networks. In IEEE IPCCC.
[34] Wei Ye, John Heidemann, and Deborah Estrin. 2002. An Energy-Efficient MAC

Protocol for Wireless Sensor Networks. In IEEE INFOCOM.

[35] Yang Yu, Bhaskar Krishnamachari, and Viktor K Prasanna. 2008. Data Gathering

with Tunable Compression in Sensor Networks. IEEE Transactions on Parallel
and Distributed Systems 19, 2 (2008), 276–287.

[36] Faheem Zafari, Jian Li, Kin K. Leung, Don Towsley, and Aanathram Swami. 2017.

Optimal Energy Tradeoff among Communication, Computation and Caching

with QoI-Guarantee. Arxiv preprint arXiv:1712.03565 (2017).

http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/submodular_survey12.pdf
http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/submodular_survey12.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Compression and Caching Costs
	3.2 Latency Performance
	3.3 Optimization
	3.4 Complexity Analysis
	3.5 Relaxation of Assumptions

	4 Approximation Algorithm
	4.1 Properties of the Problem Formulation
	4.2 Convex Relaxation
	4.3 Efficient Algorithms
	4.4 Rounding

	5 Performance Evaluation
	5.1 Benchmarks
	5.2 Synthetic Evaluation

	6 Conclusion
	References

