Enhancing Energy Efficiency among Communication, Computation and Caching with Qol-Guarantee

Faheem Zafari¹, Jian Li², Kin K. Leung¹, Don Towsley², Ananthram Swami³

¹Imperial College London ²University of Massachusetts Amherst ³US Army Research Laboratory

DAIS-ITA Annual Fall Meeting 2017

• Energy is one of the fundamental limitations of sensors

- Energy is one of the fundamental limitations of sensors
- Sensors are responsible for
 - Communication
 - Computation
 - Caching

- Energy is one of the fundamental limitations of sensors
- Sensors are responsible for
 - Communication
 - Computation
 - Caching
- All consume energy
 - Computation reduces communication cost
 - Caching reduces communication cost

- Is computation the solution for energy consumption problem?
 - $\bullet~\mbox{No}.$ Computation reduces communication cost but also incurs energy \mbox{cost}^1
 - Trade-off between communication and computation costs

¹Barr, Kenneth C., and Krste Asanovi. "Energy-aware lossless data compression." ACM Transactions on Computer Systems (TOCS) 24.3 (2006): 250-291.

- Is computation the solution for energy consumption problem?
 - $\bullet~\mbox{No}.$ Computation reduces communication cost but also incurs energy \mbox{cost}^1
 - Trade-off between communication and computation costs
- Caching the data also incurs cost
 - Should the data be cached?
 - Where should the data be cached?

¹Barr, Kenneth C., and Krste Asanovi. "Energy-aware lossless data compression." ACM Transactions on Computer Systems (TOCS) 24.3 (2006): 250-291.

Decision to make

• How much to compress?

Decision to make

- How much to compress?
- Where to cache the data?

• A directed graph G = (V, E)

- A directed graph G = (V, E)
- $\mathcal{K} \subseteq V$: the set of leaf nodes with $|\mathcal{K}| = K$

- A directed graph G = (V, E)
- *K* ⊆ *V* : the set of leaf nodes with |*K*| = *K*
- Only leaf nodes k ∈ K can generate data

- A directed graph G = (V, E)
- $\mathcal{K} \subseteq V$: the set of leaf nodes with $|\mathcal{K}| = K$
- Only leaf nodes k ∈ K can generate data
- y_k : the amount of data generated by k ∈ K

• Data are transmitted over a given path to sink node s

Image: A matrix

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$
- Per-bit transmission cost ε_{vT}

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$
- Per-bit transmission cost ε_{vT}
- Per-bit reception cost ε_{vR}

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$
- Per-bit transmission cost ε_{vT}
- Per-bit reception cost ε_{vR}
- Per-bit computation cost ε_{vC}

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$
- Per-bit transmission cost ε_{vT}
- Per-bit reception cost ε_{vR}
- Per-bit computation cost ε_{vC}
- S_v : the storage capacity at node $v \in V$

- Data are transmitted over a given path to sink node s
- Denote \mathcal{H}^k as the path from node k to s, where $\mathcal{H}^k = \{h_0^k, h_1^k, \cdots, h_{h(k)}^k\}$, with $h_j^k \in V$, $(h_j^k, h_{j+1}^k) \in E$, $h_0^k \triangleq s$ and $h_{h(k)}^k \triangleq k$
- Per-bit transmission cost ε_{vT}
- Per-bit reception cost ε_{vR}
- Per-bit computation cost ε_{vC}
- S_v : the storage capacity at node $v \in V$
- Node h^k_i along path H^k can compress the data generated by leaf node k with a data reduction rate δ_{k,i}, where 0 < δ_{k,i} ≤ 1, ∀i, k

• E_v : the total energy consumption at node v

$$E_{v} = E_{vR} + E_{vT} + E_{vC} + E_{vS},$$
 (1)

- $E_{vR} = y_v \varepsilon_{vR}$ is the reception cost
- $E_{vT} = y_v \varepsilon_{vT} \delta_v$ is the transmission cost
- $E_{vC} = y_v \varepsilon_{vC} l_v(\delta_v)$ is the computation cost
- $E_{vS} = w_{ca}y_v T$ is the storage cost
- $I_v(\delta_v)$:a decreasing differentiable function of the reduction rate, e.g., $I_v(\delta_v) = \frac{1}{\delta_v} 1^2$

²Eswaran, Sharanya, et al. "Adaptive in-network processing for bandwidth and energy constrained mission-oriented multihop wireless networks." IEEE Transactions on Mobile Computing 11.9 (2012): 1484-1498.

Zafari et al. ()

• E_v : the total energy consumption at node v

$$E_{v} = E_{vR} + E_{vT} + E_{vC} + E_{vS}, \tag{1}$$

- $E_{vR} = y_v \varepsilon_{vR}$ is the reception cost
- $E_{vT} = y_v \varepsilon_{vT} \delta_v$ is the transmission cost
- $E_{vC} = y_v \varepsilon_{vC} l_v(\delta_v)$ is the computation cost
- $E_{vS} = w_{ca}y_v T$ is the storage cost
- $l_v(\delta_v)$:a decreasing differentiable function of the reduction rate, e.g., $l_v(\delta_v) = \frac{1}{\delta_v} 1^2$
- During a time period of *T*, *R_k* requests for the data *y_k* generated by leaf node *k*

²Eswaran, Sharanya, et al. "Adaptive in-network processing for bandwidth and energy constrained mission-oriented multihop wireless networks." IEEE Transactions on Mobile Computing 11.9 (2012): 1484-1498

Zafari et al. ()

$b_{k,i} = \begin{cases} 1, \text{data from node } k \text{ is stored along path } \mathcal{H}^k \text{ at node } h_i^k, \\ 0, \text{otherwise.} \end{cases}$

• The network is structured, i.e. sink node *s* knows which unique path to follow for a specific request

- The network is structured, i.e. sink node *s* knows which unique path to follow for a specific request
- C_v : the set of leaf nodes $k \in \mathcal{K}$ that are descendant of node v

- The network is structured, i.e. sink node *s* knows which unique path to follow for a specific request
- C_v : the set of leaf nodes $k \in \mathcal{K}$ that are descendant of node v

•
$$f(\delta_v) = \varepsilon_{vR} + \varepsilon_{vT}\delta_{k,i} + \varepsilon_{kC}(\frac{1}{\delta_{k,i}} - 1)$$

- The network is structured, i.e. sink node *s* knows which unique path to follow for a specific request
- C_v : the set of leaf nodes $k \in \mathcal{K}$ that are descendant of node v
- $f(\delta_v) = \varepsilon_{vR} + \varepsilon_{vT}\delta_{k,i} + \varepsilon_{kC}(\frac{1}{\delta_{k,i}} 1)$
- For convenience, let $f_{k,h(k)} \triangleq f_k$ and $\delta_{k,h(k)} \triangleq \delta_k$

• E_k^{C} : energy for data received, transmitted, and possibly compressed by all nodes on the path from leaf node k to sink node s

$$E_{k}^{\mathsf{C}} = \sum_{i=0}^{h(k)} y_{k} f(\delta_{k,i}) \prod_{m=i+1}^{h(k)} \delta_{k,m}$$
(2)

• E_k^{C} : energy for data received, transmitted, and possibly compressed by all nodes on the path from leaf node k to sink node s

$$E_{k}^{\mathsf{C}} = \sum_{i=0}^{h(k)} y_{k} f(\delta_{k,i}) \prod_{m=i+1}^{h(k)} \delta_{k,m}$$
(2)

• E^{R} : the total energy consumed in responding to the subsequent $(R_{k} - 1)$ requests

$$E_{k}^{\mathsf{R}} = \sum_{i=0}^{h(k)} y_{k}(R_{k} - 1) \left\{ f(\delta_{k,i}) \prod_{m=i+1}^{h(k)} \delta_{k,m} \left(1 - \sum_{j=0}^{i-1} b_{k,j} \right) + \left(\prod_{m=i}^{h(k)} \delta_{k,m} \right) b_{k,i} \left(\frac{w_{ca}T}{(R_{k} - 1)} + \varepsilon_{kT} \right) \right\}.$$
 (3)

$$E^{\text{total}}(\boldsymbol{\delta}, \mathbf{b}) \triangleq \sum_{k \in \mathcal{K}} \left(E_k^{\mathsf{C}} + E_k^{\mathsf{R}} \right)$$
(4)

Non-convex Mixed Integer Nonlinear Programming (MINLP)

 $\min_{\boldsymbol{\delta}, \mathbf{b}} \quad E^{\mathbf{total}}(\boldsymbol{\delta}, \mathbf{b})$ s.t. $\sum_{i=1}^{k} y_k \prod_{i=1}^{h(k)} \delta_{k,i} \ge \gamma,$ $b_{k,i} \in \{0,1\}, \forall k \in \mathcal{K}, i = 0, \cdots, h(k),$ $\sum_{k \in C_v} b_{k,h(v)} y_k \prod_{j=h(k)}^{h(v)} \delta_{k,j} \leq S_v, \forall v \in V,$ $\sum^{h(k)} b_{k,i} \leq 1, \forall k \in \mathcal{K}.$ (5)

Theorem

The optimization problem defined in (5) is NP-hard.

Proof.

The optimization problem (5) can be reduced to a general non-convex MINLP problem. Since non-convex MINLP is NP-hard, the optimization problem described in (5) is NP-hard.

Remark

The objective function E^{total} defined in (5) is monotonically increasing in the number of requests R_k for all $k \in \mathcal{K}$ provided that δ and **b** are fixed.

Notice that (2) is independent of R_k and (3) is linear in R_k , and its multipliers are positive. Hence, for any fixed **b** and δ , (4) increases monotonically with R_k .

Zafari et al. ()

Remark

Given a fixed network scenario, if we increase the number of requests R_k for the data generated by leaf node k, then these data will be cached closer to the sink node or at the sink node, if there exists enough cache capacity, to reduce the overall energy consumption.

For fixed δ , observe from (3) that energy consumption decreases if the cache is moved closer to the root as the nodes deep in the tree do not need to retransmit.

Non-Convex MINLP problem

min
$$\psi(X, Y)$$

s.t. $G(X, Y) \le 0$
 $H(X, Y) = 0$
 $X^{L} \le X \le X^{U}, X \in R$
 $Y \in [Y^{L}, \dots, Y^{U}]$

Reformulated Problem

$$\begin{split} \min_{w} & w_{obj} \\ \text{s.t.} & Aw = b \\ & w^{I} \leq w \leq w^{u} \\ & Y \in [Y^{L}, \dots, Y^{U}] \\ & w_{k} \equiv w_{i}w_{j} \quad \forall \quad (i, j, k) \in \tau_{bt} \\ & w_{k} \equiv \frac{w_{i}}{w_{j}} \quad \forall \quad (i, j, k) \in \tau_{lft} \\ & w_{k} \equiv w_{i}^{n} \quad \forall \quad (i, k, n) \in \tau_{et} \\ & w_{k} \equiv fn(w_{i}) \quad \forall \quad (i, k) \in \tau_{uft} \end{split}$$

Symbolic Reformulation

Example

We consider k = 1 and h(k) = 1 in (5), i.e., one leaf node and one sink node. Then (2) and (3) reduce to

I

$$E_{1}^{C} = y_{1}f(\delta_{1,0})\delta_{1,1} + y_{1}f(\delta_{1,1}),$$

$$E_{1}^{R} = y_{1}(R_{1} - 1) \left[f(\delta_{1,0})\delta_{1,1} + \delta_{1,0}\delta_{1,1}b_{1,0}(w_{ca}T + \delta_{1T}) \right]$$

$$+ y_{1}(R_{1} - 1) \left[f(\delta_{1,1})(1 - b_{1,0}) + \delta_{1,0}\delta_{1,1}b_{1,1}(w_{ca}T + \delta_{1T}) \right]$$
(6)

$$\min_{\boldsymbol{\delta}, \mathbf{b}} \quad E^{\text{total}}(\boldsymbol{\delta}, \mathbf{b}) = E_1^C + E_1^R$$
s.t. $y_1 \delta_{1,0} \delta_{1,1} \ge \gamma,$
 $b_{1,0}, b_{1,1} \in \{0, 1\},$
 $b_{1,0} y_1 \delta_{1,0} \delta_{1,1} \le S_0,$
 $b_{1,1} y_1 \delta_{1,1} \le S_1,$
 $b_{1,0} + b_{1,1} \le 1.$

min W_{obj} δ,b

s.t. $y_1 w_{1,0}^{\text{bt}} \ge \gamma$, $b_{1,0}, b_{1,1} \in \{0, 1\},\$ $y_1 \overline{w}_{1,0}^{\text{bt}} \leq S_0,$ $y_1 \tilde{w}_{1\,1}^{\text{bt}} \leq S_1,$ $b_{1,0} + b_{1,1} \le 1$, $w_{1,0}^{\text{bt}} = \delta_{1,1} \times \delta_{1,0},$ $w_{1,0}^{\text{lft}} = \delta_{1,1}/\delta_{1,0},$ $\overline{w}_{1\,0}^{\rm bt} = b_{1,0} \times w_{1\,0}^{b},$ $\tilde{w}_{1,1}^{\text{bt}} = b_{1,1} \times \delta_{1,1},$ $\tilde{w}_{1,0}^{\text{bt}} = \delta_{1,1} \times b_{1,0},$ $\tilde{w}_{1\,0}^{\text{lft}} = b_{1,0}/\delta_{1,1},$

$$\begin{split} w_{obj} &= y_{1}\varepsilon_{1R}\delta_{1,1} + \varepsilon_{1T}y_{1}w_{1,0}^{bt} + y_{1}\varepsilon_{1C}w_{1,0}^{lft} - y_{1}\varepsilon_{1C}\delta_{1,1} \\ &+ y_{1}\varepsilon_{1R} + \varepsilon_{1T}y_{1}\delta_{1,1} + y_{1}\varepsilon_{1C}/\delta_{1,1} - y_{1}\varepsilon_{1C} \\ &+ y_{1}(R_{1} - 1) \bigg[\varepsilon_{1R}\delta_{1,1} + \varepsilon_{1T}w_{1,0}^{bt} + \varepsilon_{1C}w_{1,0}^{lft} - \varepsilon_{1C}\delta_{1,1} \\ &+ w_{ca}T\overline{w}_{1,0}^{bt}/(R_{1} - 1) + \varepsilon_{1T}\overline{w}_{1,0}^{bt} \bigg] + y_{1}(R_{1} - 1) \bigg[\varepsilon_{1R} \\ &+ \delta_{1,1}\varepsilon_{1T} + \varepsilon_{1C}/\delta_{1,1} - \varepsilon_{1C} - \varepsilon_{1R}b_{1,0} - \varepsilon_{1T}\overline{w}_{1,0}^{bt} \\ &- \varepsilon_{1C}\overline{w}_{1,0}^{lft} + \varepsilon_{1C}b_{1,0} + \overline{w}_{1,1}^{bt} \bigg| w_{ca}T/(R_{1} - 1) + \varepsilon_{1T} \bigg) \bigg] \end{split}$$

Branch-and-Bound

Figure: BBM example (taken from
https://optimization.mccormick.northwestern.edu/index.php/File:
SBB_flowchart.png)

Zafari et al. ()

< ロト < 同ト < ヨト < ヨト

Branch-and-Bound

Figure: BBM example (taken from https:

//optimization.mccormick.northwestern.edu/index.php/File:SBB.png)

• Decomposes non-linear functions of the original problem symbolically and recursively with simple operators into simple functions

Table: Summary of notations

Notation	Description
ϕ^{u}	upper bound of the objective function
L	list of regions
R	any sub-region in ${\cal L}$
$\phi^{\mathcal{R}, u}$	upper bound on the objective function in subregion ${\cal R}$
$\phi^{\mathcal{R},I}$	lower bound on the objective function in subregion ${\mathcal R}$
ϵ	difference between the upper and lower bound
$w_i^{\mathcal{R},I}$	lower bound on auxiliary variable w_i in subregion ${\cal R}$
w ^{R, u}	upper bound on auxiliary variable w_i in subregion ${\cal R}$

Algorithm 1 Variant of Spatial Branch-and-Bound (V-SBB)

Step 1: Initialize $\phi^u := \infty$ and \mathcal{L} to a single domain **Step 2**: Choose a subregion $\mathcal{R} \in \mathcal{L}$ using *least lower bound rule* if $\mathcal{L} = \emptyset$ then Go to Step 6 if for chosen region \mathcal{R} , $\phi^{\mathcal{R},l}$ is infeasible or $\phi^{\mathcal{R},l} \geq \phi^u - \epsilon$ then Go to Step 5 **Step 3**: Obtain the upper bound $\phi^{\mathcal{R},u}$ if upper bound cannot be obtained or if $\phi^{\mathcal{R},u} > \phi^u$ then Go to Step 4 else $\phi^{u} := \phi^{\mathcal{R}, u}$ and, from the list \mathcal{L} , delete all subregions $\mathcal{S} \in \mathcal{L}$ such that $\phi^{S,l} > \phi^u - \epsilon$ **if** $\phi^{\mathcal{R},u} - \phi^{\mathcal{R},l} \leq \epsilon$ **then** Go to Step 5 **Step 4**: Partition \mathcal{R} into new subregions \mathcal{R}_{right} and \mathcal{R}_{left} **Step 5**: Delete \mathcal{R} from \mathcal{L} and go to Step 2

Step 6: Terminate Search

if $\phi^u = \infty$ then Problem is infeasible

else ϕ^u is ϵ -global optimal

Table: Parameters used in simulations

Parameter	Value			
Уk	1000			
R _k	100			
Wca	1.88×10^{-6}			
Т	10s			
€ _{vR}	50×10^{-9}			
ε_{vT}	200×10^{-9}			
ε_{cR}	80×10^{-9}			
γ	$[1, \sum_{k \in \mathcal{K}} y_k]$			

Figure: Candidate network topologies used in the experiments

Table: The Best Solution to the Objective Function (Obj.) and Convergence time for seven nodes network

Solver	$\gamma = 1$		$\gamma = 1000$		$\gamma = 2000$		$\gamma = 3000$		$\gamma = 4000$	
	Obj.	Time (s)	Obj.	Time (s)	Obj.	Time (s)	Obj.	Time (s)	Obj.	Time (s)
Bonmin	0.0002	0.214	0.039	0.164	0.078	0.593	0.117	0.167	0.156	0.212
NOMAD	0.004	433.988	0.121	381.293	0.108	203.696	0.158	61.093	0.181	26.031
GA	0.043	44.538	0.096	30.605	0.164	44.970	0.226	17.307	0.303	28.820
V-SBB	0.0001	1871.403	0.039	25.101	0.078	30.425	0.117	23.706	0.156	19.125
Relaxed	0.0002	0.201	0.039	0.111	0.078	0.095	0.117	0.102	0.156	0.105

Table: Infeasibility of Bonmin for different networks

Networks	(a)	(b)	(c)	(d)
# of test values	1000	2000	2000	4000
# of infeasible solutions	0	0	1	216
Infeasibility (%)	0	0	0.05	5.4

Table: Comparison between V-SBB and Bonmin for smaller values of γ in seven nodes network

Solver	γ	=1	$\gamma =$	5	$\gamma = 50$		
Joiver	Obj.	Time (s)	Obj.	Time	Obj.	Time	
Bonmin	0.0002	0.214	0.0003	0.224	0.0021	0.364	
V-SBB	0.00011	1871	0.00019	1243	0.0020	3325	
Imp. (%)	52.45		50.3	30	4.62		

Figure: Comparison of C3 and C2 optimization for the seven nodes network in Figure 4.

Figure: Total Energy Costs vs. Number of Requests.

< ∃ >

Image: Image:

• Investigated energy efficiency tradeoff among communication, computation and caching with QoI guarantee in communication networks

- Investigated energy efficiency tradeoff among communication, computation and caching with Qol guarantee in communication networks
- Proposed a variant of the spatial branch-and-bound (V-SBB) algorithm, which can solve the MINLP with ϵ -optimality guarantee

- Investigated energy efficiency tradeoff among communication, computation and caching with Qol guarantee in communication networks
- Proposed a variant of the spatial branch-and-bound (V-SBB) algorithm, which can solve the MINLP with ϵ -optimality guarantee
- Observed that C3 optimization framework improves energy efficiency by as much as 88% compared with either of the C2 optimizations

Thank you!

• • • • • • • •