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Motivation

Energy is one of the fundamental limitations of sensors

Sensors are responsible for

Communication
Computation
Caching

All consume energy

Computation reduces communication cost
Caching reduces communication cost
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The Big Question?

Is computation the solution for energy consumption problem?

No. Computation reduces communication cost but also incurs energy
cost1

Trade-off between communication and computation costs

Caching the data also incurs cost

Should the data be cached?
Where should the data be cached?

1Barr, Kenneth C., and Krste Asanovi. ”Energy-aware lossless data
compression.” ACM Transactions on Computer Systems (TOCS) 24.3 (2006):
250-291.
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The Big Question?

Decision to make

How much to compress?

Where to cache the data?
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System Model

A directed graph G = (V ,E )

K ⊆ V : the set of leaf nodes
with |K | = K

Only leaf nodes k ∈ K can
generate data

yk : the amount of data
generated by k ∈ K

Figure: Tree-Structured Network
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System Model

Data are transmitted over a given path to sink node s

Denote Hk as the path from node k to s, where Hk = {hk
0, h

k
1, · · · , hk

h(k)},
with hk

j ∈ V , (hk
j , h

k
j+1) ∈ E, hk

0 , s and hk
h(k) , k

Per-bit transmission cost εvT

Per-bit reception cost εvR

Per-bit computation cost εvC

Sv : the storage capacity at node v ∈ V

Node hk
i along path Hk can compress the data generated by leaf node k

with a data reduction rate δk,i , where 0 < δk,i ≤ 1, ∀i, k
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System Model

Ev : the total energy consumption at node v

Ev = EvR + EvT + EvC + EvS, (1)

EvR = yvεvR is the reception cost
EvT = yvεvT δv is the transmission cost
EvC = yvεvC lv (δv ) is the computation cost
EvS = wcayvT is the storage cost
lv (δv ) :a decreasing differentiable function of the reduction rate, e.g.,
lv (δv ) = 1

δv
− 12

During a time period of T , Rk requests for the data yk generated by
leaf node k

2Eswaran, Sharanya, et al. ”Adaptive in-network processing for bandwidth
and energy constrained mission-oriented multihop wireless networks.” IEEE
Transactions on Mobile Computing 11.9 (2012): 1484-1498.

Zafari et al. () C3 Energy Optimization Sept 10, 2017 7 / 25



System Model

Ev : the total energy consumption at node v

Ev = EvR + EvT + EvC + EvS, (1)

EvR = yvεvR is the reception cost
EvT = yvεvT δv is the transmission cost
EvC = yvεvC lv (δv ) is the computation cost
EvS = wcayvT is the storage cost
lv (δv ) :a decreasing differentiable function of the reduction rate, e.g.,
lv (δv ) = 1

δv
− 12

During a time period of T , Rk requests for the data yk generated by
leaf node k

2Eswaran, Sharanya, et al. ”Adaptive in-network processing for bandwidth
and energy constrained mission-oriented multihop wireless networks.” IEEE
Transactions on Mobile Computing 11.9 (2012): 1484-1498.

Zafari et al. () C3 Energy Optimization Sept 10, 2017 7 / 25



System Model

bk,i =

{
1, data from node k is stored along path Hk at node hk

i ,

0, otherwise.

The network is structured, i.e. sink node s knows which unique path
to follow for a specific request

Cv : the set of leaf nodes k ∈ K that are descendant of node v

f (δv ) = εvR + εvT δk,i + εkC ( 1
δk, i
− 1)

For convenience, let fk,h(k) , fk and δk,h(k) , δk
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Energy Efficiency Optimization

E C
k : energy for data received, transmitted, and possibly compressed

by all nodes on the path from leaf node k to sink node s

E C
k =

h(k)∑
i=0

yk f (δk,i )
h(k)∏

m=i+1

δk,m (2)

E R : the total energy consumed in responding to the subsequent
(Rk − 1) requests

E R
k =

h(k)∑
i=0

yk (Rk − 1)
{

f (δk,i )
h(k)∏

m=i+1

δk,m

(
1 −

i−1∑
j=0

bk,j

)
+

( h(k)∏
m=i

δk,m

)
bk,i (

wcaT

(Rk − 1) + εkT )
}
. (3)
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Energy Efficiency Optimization

E total(δ, b) ,
∑
k ∈K

(
E C
k + E R

k

)
(4)

Non-convex Mixed Integer Nonlinear Programming (MINLP)

min
δ,b

E total(δ, b)

s.t.
∑
k ∈K

yk

h(k)∏
i=0

δk,i ≥ γ,

bk,i ∈ {0, 1}, ∀k ∈ K, i = 0, · · · , h(k),∑
k ∈Cv

bk,h(v )yk

h(v )∏
j=h(k)

δk,j ≤ Sv, ∀ v ∈ V ,

h(k)∑
i=0

bk,i ≤ 1, ∀k ∈ K . (5)
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Energy Efficiency Optimization

Theorem

The optimization problem defined in (5) is NP-hard.

Proof.

The optimization problem (5) can be reduced to a general non-convex
MINLP problem. Since non-convex MINLP is NP-hard, the optimization
problem described in (5) is NP-hard. �

Remark

The objective function E total defined in (5) is monotonically increasing in
the number of requests Rk for all k ∈ K provided that δ and b are fixed.

Notice that (2) is independent of Rk and (3) is linear in Rk , and its
multipliers are positive. Hence, for any fixed b and δ, (4) increases
monotonically with Rk .
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Energy Efficiency Optimization

Remark

Given a fixed network scenario, if we increase the number of requests Rk

for the data generated by leaf node k, then these data will be cached
closer to the sink node or at the sink node, if there exists enough cache
capacity, to reduce the overall energy consumption.

For fixed δ, observe from (3) that energy consumption decreases if the
cache is moved closer to the root as the nodes deep in the tree do not
need to retransmit.
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Symbolic Reformulation

Non-Convex MINLP problem

min ψ(X,Y )
s.t. G (X,Y ) ≤ 0

H(X,Y ) = 0

X L ≤ X ≤ XU,X ∈ R

Y ∈ [Y L, . . . ,Y U ]

Reformulated Problem

min
w

wobj

s.t. Aw = b

w l ≤ w ≤ wu

Y ∈ [Y L, . . . ,Y U ]
wk ≡ wiwj ∀ (i, j, k) ∈ τbt
wk ≡

wi

wj
∀ (i, j, k) ∈ τlft

wk ≡ wn
i ∀ (i, k, n) ∈ τet

wk ≡ fn(wi ) ∀ (i, k) ∈ τuft
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Symbolic Reformulation

Example
We consider k = 1 and h(k) = 1 in (5), i.e., one leaf node and one sink node. Then (2) and (3) reduce to

EC
1 = y1f (δ1,0)δ1,1 + y1f (δ1,1),

ER
1 = y1(R1 − 1)

[
f (δ1,0)δ1,1 + δ1,0δ1,1b1,0(wcaT + δ1T )

]
+ y1(R1 − 1)

[
f (δ1,1)(1 − b1,0) + δ1,0δ1,1b1,1(wcaT + δ1T )

]
(6)

min
δ,b

E total(δ, b) = EC
1 + ER

1

s.t. y1δ1,0δ1,1 ≥ γ,
b1,0, b1,1 ∈ {0, 1},
b1,0y1δ1,0δ1,1 ≤ S0,

b1,1y1δ1,1 ≤ S1,

b1,0 + b1,1 ≤ 1. (7)
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Symbolic Reformulation

min
δ,b

wobj

s.t. y1w bt
1,0 ≥ γ,

b1,0, b1,1 ∈ {0, 1},
y1w bt

1,0 ≤ S0,

y1w̃ bt
1,1 ≤ S1,

b1,0 + b1,1 ≤ 1,

w bt
1,0 = δ1,1 × δ1,0,

w lft
1,0 = δ1,1/δ1,0,

w bt
1,0 = b1,0 × wb

1,0,

w̃ bt
1,1 = b1,1 × δ1,1,

w̃ bt
1,0 = δ1,1 × b1,0,

w̃ lft
1,0 = b1,0/δ1,1,

wobj = y1ε1Rδ1,1 + ε1T y1w bt
1,0 + y1ε1Cw lft

1,0 − y1ε1C δ1,1

+ y1ε1R + ε1T y1δ1,1 + y1ε1C/δ1,1 − y1ε1C

+ y1(R1 − 1)
[
ε1Rδ1,1 + ε1Tw bt

1,0 + ε1Cw lft
1,0 − ε1C δ1,1

+ wcaT wbt
1,0/(R1 − 1) + ε1Twbt

1,0

]
+ y1(R1 − 1)

[
ε1R

+ δ1,1ε1T + ε1C/δ1,1 − ε1C − ε1Rb1,0 − ε1T w̃bt
1,0

− ε1C w̃ lft
1,0 + ε1Cb1,0 + w̃bt

1,1

(
wcaT/(R1 − 1) + ε1T

)]
(8)
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Branch-and-Bound

Figure: BBM example (taken from
https://optimization.mccormick.northwestern.edu/index.php/File:

SBB_flowchart.png)
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Spatial Branch and Bound

Decomposes non-linear functions of the original problem symbolically
and recursively with simple operators into simple functions

Table: Summary of notations

Notation Description
φu upper bound of the objective function
L list of regions
R any sub-region in L
φR,u upper bound on the objective function in subregion R
φR, l lower bound on the objective function in subregion R
ε difference between the upper and lower bound

w
R, l
i

lower bound on auxiliary variable wi in subregion R
w
R,u
i

upper bound on auxiliary variable wi in subregion R
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V-SBB

Algorithm 1 Variant of Spatial Branch-and-Bound (V-SBB)

Step 1: Initialize φu := ∞ and L to a single domain
Step 2: Choose a subregion R ∈ L using least lower bound rule
if L = ∅ then Go to Step 6

if for chosen region R, φR,l is infeasible or φR,l ≥ φu − ε then Go to Step 5

Step 3: Obtain the upper bound φR,u

if upper bound cannot be obtained or if φR,u > φu then Go to Step 4
else φu :=φR,u and, from the list L, delete all subregions S ∈ L such that
φS,l ≥ φu − ε
if φR,u − φR,l ≤ ε then Go to Step 5

Step 4: Partition R into new subregions Rright and Rleft

Step 5: Delete R from L and go to Step 2
Step 6: Terminate Search
if φu = ∞ then Problem is infeasible
else φu is ε-global optimal
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Evaluation

Table: Parameters used
in simulations

Parameter Value
yk 1000
Rk 100

wca 1.88 × 10−6

T 10s

εvR 50 × 10−9

εvT 200 × 10−9

εcR 80 × 10−9

γ [1,
∑

k∈K yk ]

Figure: Candidate network topologies used in the
experiments
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Evaluations

Table: The Best Solution to the Objective Function (Obj.) and Convergence time
for seven nodes network

Solver
γ = 1 γ = 1000 γ = 2000 γ = 3000 γ = 4000

Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)
Bonmin 0.0002 0.214 0.039 0.164 0.078 0.593 0.117 0.167 0.156 0.212
NOMAD 0.004 433.988 0.121 381.293 0.108 203.696 0.158 61.093 0.181 26.031
GA 0.043 44.538 0.096 30.605 0.164 44.970 0.226 17.307 0.303 28.820
V-SBB 0.0001 1871.403 0.039 25.101 0.078 30.425 0.117 23.706 0.156 19.125
Relaxed 0.0002 0.201 0.039 0.111 0.078 0.095 0.117 0.102 0.156 0.105
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Evaluations

Table: Infeasibility of Bonmin for different networks

Networks (a) (b) (c) (d)
# of test values 1000 2000 2000 4000

# of infeasible solutions 0 0 1 216
Infeasibility (%) 0 0 0.05 5.4

Table: Comparison between V-SBB and Bonmin for smaller values of γ in seven
nodes network

Solver
γ =1 γ =5 γ =50

Obj. Time (s) Obj. Time Obj. Time
Bonmin 0.0002 0.214 0.0003 0.224 0.0021 0.364
V-SBB 0.00011 1871 0.00019 1243 0.0020 3325
Imp. (%) 52.45 50.30 4.62
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Evaluations
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Figure: Comparison of C3 and C2
optimization for the seven nodes network
in Figure 4.
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Figure: Total Energy Costs vs. Number
of Requests.
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Conclusions

Investigated energy efficiency tradeoff among communication,
computation and caching with QoI guarantee in communication
networks

Proposed a variant of the spatial branch-and-bound (V-SBB)
algorithm, which can solve the MINLP with ε-optimality guarantee

Observed that C3 optimization framework improves energy efficiency
by as much as 88% compared with either of the C2 optimizations
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Thank you!

Zafari et al. () C3 Energy Optimization Sept 10, 2017 25 / 25


	Motivation
	System Model
	Energy Efficiency Optimization
	V-SBB
	Symbolic Reformulation
	Branch-and-Bound
	V-SBB

	Evaluation
	Conclusions

