
Jointly Compressing and Caching Data
in Wireless Sensor Networks

Nitish K. Panigrahy1,∗, Jian Li2,∗, Faheem Zafari3, Don Towsley4 and Paul Yu5
1,2,4University of Massachusetts Amherst, 3Imperial College London, 5U.S. Army Research Laboratory

1,2,4{nitish, jianli, towsley}@cs.umass.edu, 3faheem16@imperial.ac.uk, 5paul.l.yu.civ@mail.mil

Abstract—We propose a novel policy for data compression
and caching in a wireless sensor network (WSN) that provably
optimizes utility and cost jointly, providing a theoretical basis to
understand the compression-caching tradeoff for data analytics in
a WSN. Our optimization framework provides analytical answers
to how much compression should be performed at each sensor,
and where the data should be cached in the network. We propose
a distributed algorithm to implement the optimal policy and
adapt to the changes (e.g., cache size and request processes)
in the network. We evaluate our approach through extensive
simulations on WSNs.

I. INTRODUCTION

Nowadays, a large amount of data is continuously generated
by distributed sources such as smart-wearables, sensors, and
Internet-of-Thing devices in many applications [1]. For exam-
ple, services like Facebook, Twitter and Netflix continuously
gather these data from agents for many analytical purposes,
like finding popular contents among agents, and popular words
in tweets. In this paper, we focus on such data analytics in a
wireless sensor network (WSN).

Tree-structured model. A typical analytics infrastructure
for processing such data streams in a WSN usually follow a
tree structure (See Figure 1), which conceptually comprises
a single centralized “sink” node connected to multiple end
sensors through many routers by a WSN. The data is usually
generated at end sensors, and then sent through routers to the
sink node. Analysts make their queries to retrieve relevant data
at the sink. Without loss of generality (w.l.o.g.), we assume
that there is a path from each end sensor to the sink node,
consisting of multiple routers between them. Note that in such
a WSN, only end sensors generate data.

Data compression. Various data compression algorithms
have been developed in a WSN, which are widely applied to
medical imaging, cameras, and video-on-demand systems [2].
Furthermore, data summarization can be viewed as compres-
sion. By adopting data compression, data processing can be
pushed towards the edge to assign tags/labels, pull meta data
and answer queries. In this work we focus on optimizing data
compression in a WSN. We consider a case where each router
j can compress the incoming data i generated by sensor k
with a reduction rate δ

(k)
ij , where 0 < δ

(k)
ij ≤ 1. A smaller

δ
(k)
ij value means that data from sensor k is compressed to a

larger extent at node j, resulting in lower data quality at a
higher energy cost.

∗Authors with equal contribution.

Fig. 1. An illustrative example for data generating, request and propagating
in a wireless sensor network.

TTL-caches. Caching data in a WSN can be beneficial in
the case when multiple requesters with different processing
capabilities have different requirements from a single content.
For example, from a received image, one requester may look
for vehicle information while another may look for people.
Also if a sensor dies, it may be useful for its data to be
cached for later consumption. In this work each router/end
sensor is associated with a cache to store a finite amount of
incoming data for compression. A Time-to-Live (TTL) value
Tij is associated with every data i at router j. Tij basically
indicates the time period for which data i must be kept in the
cache associated with router j. This will be described in detail
in Section II.

Compression-Caching tradeoff. Data transfer from router
to router happens over WSN links, which are generally scarce
or expensive. To save bandwidth, incoming data at each router
is compressed before sending it to the next router on the
path, or to be cached in routers. Such data compression and
caching along the path leads to a fundamental tradeoff between
two key metrics: utility and cost. Here, utility corresponds
to user satisfaction on their requests, which is a function of
“hit probability” and “reduction rate”, while cost is caused
by routing the compressed data from the end sensor to sink
node to satisfy analysts’ requests. These will be described
in details in Section III. In general, a smaller reduction rate
incurs a lower cost but results in a lower utility. On the other
hand, caching the compressed data at routers closer to the

Nitish Panigrahy

sink achieves higher utility but results at higher cost. However,
the cache associated with each router can only store a finite
amount of data. A goal of this work is to devise optimal data
compression and caching policy in a WSN that can provably
achieve the desired (maximal) difference between utility and
cost.

Contributions. In this paper, we propose a novel policy
for data compression and caching in a WSN that provably
optimizes utility and costs jointly. In this policy, data is
compressed to a certain extent and cached at routers for a
certain time period dictated by its TTL. To the best of our
knowledge, we are the first to provide a theoretical basis
for understanding the compression-caching tradeoff for data
analytics in a WSN. In doing so, we provide analytical answers
to how much compression should be performed at each router,
and where the data should be cached in the network. Our
contributions can be summarized as follows:
• To the best of our knowledge, the proposed joint data

compression and caching framework is the first to provide
a theoretical basis for understanding the tradeoff between
data compression and caching in a WSN.

• We show how to jointly optimize utility and cost using
this model. We achieve the optimal data compression ratio
and caching location in a WSN. We propose a distributed
algorithm that implements the optimal policy which can
adapt to changes in the presence of limited information
in the network (e.g., cache size and request processes).

• We evaluate our approach through extensive simulations
on WSNs.

The rest of the paper is organized as follows. We present
some technical preliminaries in Section II. We formulate the
optimization problem in Section III, and propose an optimal
distributed algorithm in Section IV. We present evaluation
results in Section V and conclude in Section VII.

II. PRELIMINARIES

We consider a WSN comprised a large number of sensors
and routers. The end sensors usually generate data, and routers
provide resources (such as caching and compression resources)
on the route from end sensors to the sink node. We represent
the WSN as a directed graph G = (V,E). An illustrative
example for data generation and request propagation in a tree-
structured WSN is depicted in Figure 1.

A. TTL-Router

Each router has a cache to store data for compression.
Denote by Bv the cache capacity at node v ∈ V. Let K ⊂ V
be the set of end sensor nodes generating data with |K| = K.
Furthermore, we assume that each node j that receives data i
from an end node k can compress it with a reduction ratio1

δ
(k)
ij , where 0 < δ

(k)
ij ≤ 1, ∀k, j.

1defined as the ratio of the volume of the output data to the volume of
input data at any node. We consider the compression that only reduces the
quality of data (e.g. remove redundant information), but the total number of
distinct data in the system remains the same.

Consider the cache at router j. Each data i is associated with
a timer Tij . When we focus on router j, we omit the subscript
j. Consider the event when data i is requested. There are two
cases: (i) if data i is not in the cache, data i is inserted into the
cache and its timer is set to Ti; (ii) if data i is in the cache,
its timer is reset to Ti. The timer decreases at a constant rate
and the data is evicted once its timer expires.

B. Data Generation and Requests

We assume that sensor k ∈ K continuously generates data,
which will be active for a time interval W and may be
requested by analysts (users). If there is no request for this data
in that time interval, the generated data becomes inactive and is
discarded from the system. The generated data is compressed
and cached along the path between the end sensor and sink
node when a request is made for active data. Thus the total
number of paths is |K| = K, hence, w.l.o.g., K is also used
to denote the set of all paths.

We consider TTL-routers in the WSN G, where each data
has its own timer. Suppose data i is requested and routed along
path p. There are two cases: (i) data i is not in any cache along
path p, in which case data i is generated from the end sensor
and inserted into the first TTL-router (denoted by 1)2 on the
path. Its timer is set to Ti1; (ii) if data i is in TTL-router l
along path p, we consider the following simple strategy [3]
• Move Copy Down with Push (MCDP): data i is moved

to TTL-router l+1 preceding TTL-router l in which i is
found, and the timer at TTL-router l+1 is set to Ti(l+1).
If timer Til expires, data i is pushed one TTL-router back
to TTL-router l − 1 and the timer is set to Ti(l−1).

C. Utility Function

Utility functions capture the satisfaction perceived by a user
after being served a data. We associate each data i ∈ D
with a utility function Ui : [0, 1] → R that is a function
of hit probability hi. Ui(·) is assumed to be increasing,
continuously differentiable, and strictly concave. In particular,
for our numerical studies, we focus on the widely used β-fair
utility functions [4] given by

Ui(h) =

{
wi

h1−β

1−β , β ≥ 0, β 6= 1;

wi log h, β = 1,
(1)

where wi > 0 denotes a weight associated with data i.

III. PROBLEM FORMULATION

In a WSN, each end sensor generates a sequence of data that
analysts are interested in. Different end sensors may generate
different types of data, i.e., there is no common data sharing
between different end sensors.

W.l.o.g., we consider a particular end sensor k and denote
the path from k to the sink as p = (1, · · · , |p|), where TTL-
router |p| is the sink node that serves the requests and TTL-
router 1 is the end sensor that generates the data. Let the set

2Since we consider path p, for simplicity, we move the dependency on p
and v, denote it as 1, · · · , L directly.

of data generated by end sensor k be D(p), where requests for
data i ∈ D(p) follow a Poisson process with rate λi.

Let h(p)ij , T
(p)
ij denote the hit probability and TTL timer

associated with data i ∈ D(p) at node j ∈ {1, · · · , |p|}, respec-
tively. Let h(p)

i = (h
(p)
i1 , · · · , h

(p)
i|p|), δ

(p)
i = (δ

(p)
i1 , · · · , δ

(p)
i|p|)

and T (p)
i = (T

(p)
i1 , · · · , T (p)

i|p|). Let h = (h
(p)
i), δ = (δ

(p)
i) and

T = (T
(p)
i) for i ∈ D(p) and p ∈ K.

A. Utilities

The overall utility for data i fetched over path p is
|p|∑
j=1

ψ|p|−jU
(p)
i

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)
, (2)

where 0 < ψ ≤ 1 is a discount factor capturing the data
utility degradation along the request route. Here utilities not
only capture hit probabilities but also characterize data quality
degradation due to compression along the path.

B. Costs

We consider cost, for example delay, of routing the data
along the path, which includes the cost to forward data to
routers that caches it, the cost to search for the data along the
path, and the cost to fetch cached data to analysts that sent the
requests. Again, we assume that the per hop cost to transfer
(search) data along the path is a function cf (·) (cs(·)) of hit
probabilities and compression ratios.

1) Forwarding Costs: Suppose a hit for data i occurs on
TTL-router j ∈ {1, · · · , |p|}, then the total cost to forward
data i along p is

|p|∑
j=1

λi · j · cf

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)
. (3)

2) Search Costs: Given a hit for data i on TTL-router j ∈
{1, · · · , |p|}, the total cost to search for data i along p is

|p|∑
j=1

λi · (|p| − j + 1) · cs(h(p)ij). (4)

3) Fetching Costs: Upon a hit for data i on TTL-router
j ∈ {1, · · · , |p|}, the total cost to fetch data i along p is

|p|∑
j=1

λi · (|p| − j + 1) · cf

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)
. (5)

C. Hit Probability and Timer-based Policies

The mapping between hit probabilities and timers for differ-
ent cache replication strategies was established in [5]. Using
results from [5], we obtain the following expressions for
corresponding data timers at a sensor j along path p.

T
(p)
i1 =

1

λi
log

(
1 +

h
(p)
i1

1−
∑
j∈{1,··· ,|p|} h

(p)
ij

)
, (6a)

T
(p)
ij =

1

λi
log

(
1 +

h
(p)
ij

h
(p)
i(j−1)

)
, j = 2, · · · , |p|. (6b)

Note that ∑
j∈{1,··· ,|p|}

h
(p)
ij ≤ 1, (7)

must hold during the mapping.

D. Optimization Formulation

Our objective is to determine a feasible TTL policy and
compression ratio for data management in a WSN to maximize
the difference between utilities and costs, i.e.,

F (h, δ) =
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)

−
|p|∑
j=1

λi · j · cf

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)
−
|p|∑
j=1

λi · (|p| − j + 1) · cs(h(p)ij)

−
|p|∑
j=1

λi · (|p| − j + 1) · cf

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)}

=
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)

−

[|p|∑
j=1

λi(|p|+ 1)cf

(
h
(p)
ij

j∏
l=1

δ
(p)
il

)

+

|p|∑
j=1

λi(|p| − j + 1)cs(h
(p)
ij)

]}
. (8)

Hence, the optimal TTL policy and compression ratio for
MCDP should solve the following optimization problem:

max F (h, δ) (9a)

s.t.
∑
p:l∈p

∑
i∈D(p)

h
(p)
il

I(l,p)∏
j=1

δ
(p)
ij ≤ Bl, ∀l ∈ V, (9b)

cc

(∑
i∈D(p)

|p|∑
l=1

l∏
j=1

δ
(p)
ij

)
≤ O(p), ∀p ∈ K, (9c)∑

j∈{1,··· ,|p|}

h
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, (9d)

0 ≤ h(p)ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},
(9e)

0 < δ
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},

(9f)

where I(l, p) is the index of router j on path p and con-
straint (9c) is the energy available on path p to transmit the
compressed data, and cc(·) is the per unit energy consumption
function for data transmission. Constraint (9d) is included in
the formulation due to the mapping between hit probabilities
and timers as discussed in Section III-C.

It is easy to check that (9) is a non-convex problem. In the
following, we transform (9) into a convex one through Boyd’s
method (Section 4.5 [6]).

1) Convex Transformation: First, we define two new sets of
variables for i ∈ D(p), l ∈ {1, · · · , |p|} and p ∈ K as follows:

log h
(p)
ij , σ

(p)
ij , i.e., h

(p)
ij = eσ

(p)
ij ,

log δ
(p)
ij , τ

(p)
ij , i.e., δ

(p)
ij = eτ

(p)
ij , (10)

and denote σ(p)
i = (σ

(p)
i1 , · · · , σ

(p)
ip), τ (p)

i = (τ
(p)
i1 , · · · , τ (p)ip)

and σ = (σ
(p)
i), τ = (τ

(p)
i) for i ∈ D(p) and p ∈ K.

Then the objective function (8) can be transformed into

F (σ, τ) =
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
eσ

(p)
ij +

∑j
l=1 τ

(p)
il

)

−

[|p|∑
j=1

λi(|p|+ 1)cf

(
eσ

(p)
ij +

∑j
l=1 τ

(p)
il

)

+

|p|∑
j=1

λi(|p| − j + 1)cs

(
eσ

(p)
ij

)]}
. (11)

We transform the constraints in a similar manner. Then we
obtain the following transformed optimization problem

max F (σ, τ) (12a)

s.t.
∑
p:l∈p

∑
i∈D(p)

eσ
(p)
il +

∑I(l,p)
j=1 τ

(p)
ij ≤ Bl, ∀l ∈ V, (12b)

cc

(∑
i∈D(p)

|p|∑
l=1

e
∑l
j=1 τ

(p)
ij

)
≤ O(p), ∀p ∈ K, (12c)

∑
j∈{1,··· ,|p|}

eσ
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, (12d)

σ
(p)
ij ≤ 0, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},

(12e)

τ
(p)
ij ≤ 0, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},

(12f)

where I(l, p) is the index of router l on path p.

Lemma 1. Ui
(
e
∑n
k=1 xk

)
is a concave function for β ≥ 1

where Ui(·) is defined in (1).

Proof. We consider the following two cases, i.e., when β = 1
and β 6= 1.
Case 1(β = 1β = 1β = 1): The utility function is Ui(h) = wi log(h).
Thus we have

Ui

(
e

n∑
k=1

xk
)

= wi log

(
e

n∑
k=1

xk
)

= wi

n∑
k=1

xk,

which is an affine function and thus concave as well.

Case 2(β 6= 1β 6= 1β 6= 1): The utility function is Ui(h) = wih
1−β/(1−

β). Thus we have

Ui

(
e

n∑
k=1

xk

)
= wi

e
(1−β)

n∑
k=1

xk

1− β
,

and the corresponding Hessian matrix is

Hi = (1− β)wie
(1−β)

n∑
k=1

xk

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 . (13)

Note that, the unit matrix with all ones has eigenvalues
n with multiplicity 1, and 0 with multiplicity n − 1. The
terms e(1−β)

∑n
k=1 xk and wi are always positive. Hence Hi is

negative semi-definite, i.e., has non-positive eigenvalues, only
when 1 − β < 0. Combining both cases, Ui

(
e
∑n
k=1 xk

)
is a

concave function for β ≥ 1.

Theorem 1. The transformed problem in (12) is convex σ
and τ , when we consider the β-utility function with β ≥ 1
and increasing convex cost functions cf (·), cs(·) and cc(·).

Proof. It is easy to check that the objective function in (12)
is subject to convex inequality constraints. In particular, con-
straints (12e) and (12f) are affine convex functions. Inequality
in constraint (12d) is convex due to convex composition
under an affine mapping. Since the function cc(x) is convex
and non-decreasing, by composition property (Section 3.2.4
[6]), constraint (12c) is also convex. Thus the feasible region
in (12) is convex. A direct application of Lemma 1 yields the
concavity condition for the objective F (σ, τ).

Theorem 2. The optimization problems in (12) and (9) are
equivalent.

Proof. This is clear from the way we convexified the problem.

IV. DISTRIBUTED ALGORITHMS

In Section III-D, we formulated a convex optimization
problem with a fixed cache size. However, system parameters
(e.g. cache size and request processes) can change over time,
so it is not feasible to solve the optimization offline and
implement the optimal strategy. Thus, we need to design
distributed algorithms to implement the optimal strategy and
adapt to the changes in the presence of limited information.
In the following, we develop such an algorithm for MCDP.

A. Primal Algorithm

We aim to design an algorithm based on the optimization
problem in (12), which is the primal formulation. We assume
linear cost function with coefficient 1 for cc(·). We first define
the following objective function.

Z(σ, τ) = F (σ, τ)−
∑
l∈V

CB

(∑
p:l∈p

∑
i∈D(p)

eσ
(p)
il +

∑I(l,p)
j=1 τ

(p)
ij

−Bl

)
−
∑
p∈K

CO

(∑
i∈D(p)

|p|∑
l=1

e
∑l
j=1 τ

(p)
ij −O(p)

)

−
∑
p∈K

∑
i∈D(p)

CP

∑
j∈p

eσ
(p)
ij − 1

−∑
p∈K

∑
i∈D(p)

∑
j∈p

Cτ

(
τ
(p)
ij

)
,

(14)

0 10 20 30

Content Index

0

0.2

0.4

0.6

0.8

1
H

it
 p

ro
b
ab

il
it

y

node 4(Simulation)

node 4(Numerical)

node 6(Simulation)

node 6(Numerical)

node 7(Simulation)

node 7(Numerical)

Fig. 2. Hit probability of MCDP under seven-node
tree WSN.

0 10 20 30

Cache Size

0

0.1

0.2

0.3

0.4

P
ro

b
ab

il
it

y
 D

en
si

ty

node 4

node 6

node 7

Fig. 3. Cache size of MCDP under seven-node tree
WSN.

0 10 20 30

Content Index

0

0.5

1

1.5

D
e
lt

a

node 4(Numerical)

node 6(Numerical)

node 7(Numerical)

Fig. 4. Compression ratio of MCDP under a seven-
node tree WSN.

where CB(·), CO(·), CP (·) and Cτ (·) are strictly convex and
non-decreasing penalty functions denoting the cost for vio-
lating corresponding constraints (12b), (12c), (12d) and (12f)
respectively. Using timer based caching techniques for con-
trolling the hit probabilities with 0 ≤ T

(p)
il ≤ ∞ ensures that

constraint (12e) is always satisfied. So we ignore it in the
formulation. It is clear that Z(·) is strictly concave. Hence, a
natural way to obtain the maximum value of (14) is to use the
standard gradient ascent algorithm to move the variable σ(p)

il

and τ (p)il in the direction of the gradient, given as

∂Z(σ, τ)

∂σ
(p)
il

= F ′(σ, τ)− C ′B(Bcurr,l −Bl)

− eσ
(p)
il C ′P

∑
j∈p

eσ
(p)
ij − 1

− e

∑l
j=1 τ

(p)
ij C ′O

(∑
i∈D(p)

|p|∑
l=1

e
∑l
j=1 τ

(p)
ij −O(p)

)
.

(15)

Note that,
∑
p:l∈p

∑
i∈D(p) e

σ
(p)
il +

∑I(l,p)
j=1 τ

(p)
ij basically repre-

sents the current size of cache l, also denoted as Bcurr,l.
Also, F ′(σ, τ) = ∂F (σ, τ)/∂σ

(p)
il . Similarly, we can evaluate

∂Z(σ, τ)/∂τ
(p)
il . Furthermore, under TTL caching, the hit

probabilities are controlled by the timers as discussed in
Section III-C. Consequently we can update corresponding
transformed variables through timers. Therefore, the primal
algorithm for MCDP is given by

T
(p)
il [k]←

1
λi

log

(
1 + eσ

(p)
il

[k]

1−
(
eσ

(p)
i1

[k]+eσ
(p)
i2

[k]+···+e
σ
(p)
i|p|[k]

)),
l = 1;

1
λi

log

(
1 + eσ

(p)
il

[k]

e
σ
(p)
i(l−1)

[k]

)
, l = 2, · · · , |p|,

(16a)

σ
(p)
il [k + 1]← max

{
0, σ

(p)
il [k] + ζ

(p)
il,σ

∂Z(σ, τ)

∂σ
(p)
il

}
, (16b)

τ
(p)
il [k + 1]← max

{
0, τ

(p)
il [k] + ζ

(p)
il,τ

∂Z(σ, τ)

∂τ
(p)
il

}
, (16c)

Fig. 5. A seven-node binary tree WSN.

where ζ(p)il,σ, ζ
(p)
il,τ > 0 are the step-size parameters, and k is the

iteration number incremented upon each request arrival.

Remark 1. Note that, the primal formulation in (16) can be
implemented distributively with respect to (w.r.t.) different data
and paths by some amount of book-keeping and piggybacking.
For example in (15),

∑
j∈p e

σ
(p)
ij at router l can be computed

by evaluating
∑l
j=1 e

σ
(p)
ij and

∑|p|
j=l+1 e

σ
(p)
ij during data for-

warding and request propagation to router l, respectively.

V. EVALUATION

First, we consider a binary tree network with seven nodes
as shown in Figure 5, where K = {1, 2, 3, 4}. There are 4 leaf
nodes, each is connected to 30 sensors. We assume that each
sensor continuously generates content that are active for one
time unit. Hence the paths are p1 = {1, 5, 7}, p2 = {2, 5, 7},
p3 = {3, 6, 7} and p4 = {4, 6, 7}. Also let Bv = 6 for all leaf
nodes v ∈ {1, · · · , 4}, and Bv = 10 for nodes v = 5, 6, 7.
Furthermore, for each leaf node, the content gathered from its
sensors follows a Zipf distribution with parameters α1 = 0.2,
α2 = 0.4, α3 = 0.6 and α4 = 0.8, respectively. For simplicity,
we consider linear cost functions with coefficients 0.003 for
cf (·) and cs(·), and 1 for cc(·). The total energy constraint is
set O = 40 for all paths. We consider the log utility function
U

(k)
i (x) = λ

(k)
i log x, where λ(k)i is the request arrival rate for

content i from sensor k. W.l.o.g., we assume the total arrival

0 5 10 15 20

Cache Size

-15

-14

-13

-12

-11

-10

-9

-8

-7

F
(

,
)

Overall Objective

Fig. 6. Storage vs. overall objective under a seven-node tree WSN.

rate at each leaf node is 1, hence λ(k)i equals to the content
popularity.

Results for path p4 are shown in Figures 2, 3 and 4. Again,
we observe that our algorithm yields the exact optimal and
empirical hit probabilities under MCDP for seven-node WSN.
The density of number of content in the network concentrates
around their corresponding cache sizes. Furthermore, we no-
tice that the compression ratio δ at node 4 is much smaller than
the ratios at nodes 6 and 7. Thus data compression happens
at routers near to sensors so as to transmit less data long
distances. This captures the trade-off between the costs of
compression, communication and caching in our optimization
framework. Similar observations can be made for the other
three request paths and hence are omitted here.

We now focus on how cache capacity affects the overall
objective F (σ, τ) as shown in Figure 6. With an increase in
Bl,∀l ∈ V, F (σ, τ) increases. Note that F (σ, τ) gradually
converge to a value with increase in cache capacity. As Bl →
|D|, F (σ, τ) becomes insensitive to Bl.

VI. RELATED WORK

Data Compression. Compression is an important operation in
analytics and has been studied in the past in various contexts
[7]. In particular, for WSNs [8], [9], the goal is either to
improve communication energy efficiency or energy tradeoff
between communication, computation and caching. The goal
of our work is different and is to achieve a desired difference
between utility and cost.
TTL Caches. TTL caches have been employed in the Domain
Name System (DNS) since the early days of Internet [10].
More recently, it has gained attention due to fact that a
simple and tractable analysis can be modeled to mimic the
behaviors of caching algorithms. [11], [12] first introduced the
notion of characteristic time for LRU under IRM to show that
TTL caches can be used to provide accurate estimates of the
performance of large caches. It has been further generalized
to other settings [5], [13], [14]. However, none of these works
consider a joint optimization between data compression and
caching in a WSN.

VII. CONCLUSION

We characterized the tradeoff among caching, compression
and communication through our optimization framework by
incorporating utilities of hit probability and costs of com-
pression and communication. We identified the non-convexity
issue and proposed a transformation technique to convert
it into a convex problem. We also proposed a distributed
algorithm which converges to the globally optimal solution.
We showed the efficiency of our framework through numerical
studies.

ACKNOWLEDGMENTS

This work was supported by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copy-right notation hereon.

REFERENCES

[1] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “Wanalytics: Geo-distributed Analytics for
a Data Intensive World,” in Proceedings of the 2015 ACM SIGMOD
international conference on management of data. ACM, 2015, pp.
1087–1092.

[2] F. Marcelloni and M. Vecchio, “An Efficient Lossless Compression
Algorithm for Tiny Nodes of Monitoring Wireless Sensor Networks,”
Comput. J., vol. 52, no. 8, pp. 969–987, 2009.

[3] I. Rodrı́guez, A. Ferragut, and F. Paganini, “Improving Performance of
Multiple-level Cache Systems,” in SIGCOMM, 2016.

[4] R. Srikant and L. Ying, Communication Networks: an Optimization,
Control, and Stochastic Networks Perspective. Cambridge University
Press, 2013.

[5] N. K. Panigrahy, J. Li, F. Zafari, D. Towsley, and P. Yu, “Optimizing
Timer-based Policies for General Cache Networks,” Arxiv preprint
arXiv:1711.03941, 2018.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[7] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A
Framework for Integrating Batch and Online Mapreduce Computations,”
Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1441–1451,
2014.

[8] R. Rajagopalan and P. K. Varshney, “Data Aggregation Techniques in
Sensor Networks: A Survey,” IEEE Commun. Surveys Tuts., vol. 8, no. 4,
pp. 48–63, 2006.

[9] F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “Opti-
mal energy tradeoff among communication, computation and caching
with qoi-guarantee,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–7.

[10] J. Jung, A. Berger, and H. Balakrishnan, “Analysis of TTL-based Cache
Networks,” in IEEE INFOCOM, 2003.

[11] R. Fagin, “Asymptotic Miss Ratios over Independent References,” Jour-
nal of Computer and System Sciences, vol. 14, no. 2, pp. 222–250, 1977.

[12] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web Caching Systems:
Modeling, Design and Experimental Results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[13] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact Analysis of TTL
Cache Networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[14] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of TTL-
based Cache Networks,” in VALUETOOLS, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/333915446

