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Abstract A computationally efficient and accurate forecasting model for highly

dynamic electric load patterns of UK electric power grid is proposed and imple-

mented using recurrent neuro-evolutionary algorithms. Cartesian genetic program-

ming is used to find the optimum recurrent structure and network parameters to

accurately forecast highly fluctuating load patterns. Fifty different models are

trained and tested in diverse set of scenarios to predict single as well as more future

instances in advance. The testing results demonstrated that the models are highly

accurate as they attained an accuracy of as high as 98.95 %. The models trained to

predict single future instances are tested to predict more future instances in advance,

obtaining an accuracy of 94 %, thus proving their robustness to predict any time

series.
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1 Introduction

Due to inefficient utilization of Power plants and other resources of energy, the cost

per unit of electrical energy has increased over the years [1]. The efficient utilization

of the electrical power generation plant, which can be achieved by maintaining a

balance between the demand and generation of electricity [2], can assist in reducing

or eliminating the electricity cost problems. To maintain the balance, there is a need

for a forecasting system that can predict the demand of electricity at a specific time

in future. The advent of smart grids/meters allows to obtain the load data in a

specific area that can be used to forecast the electrical load for the future. Once the

load is forecasted, the electrical power generation plant can then be used

accordingly to generate the specific amount of electrical power. This facilitates

the efficient and optimum utilization of the resources through proper fuel scheduling

and maintenance of the power generation system [1]. In the absence of a forecasting

system, the electrical power plant usually produces more than demand. However,

the storage of excessive power is not efficient thus causing the system to be over-

utilized and the cost per unit generation to increase. On the other hand, if lesser

power is generated than the demand, the voltage goes down and the losses on the

distribution lines increases. Also tripping at various distribution points damage

various home appliances and cuts off the electric power supply to them. Hence load

forecasting is really an integral part of modern electrical power distribution.

Research has continued for an optimum load forecasting methods.

Numerous electrical load forecasting techniques have been used over the years

such as fuzzy logic, auto-regression and vector regression models [3]. Artificial

neural networks (ANNs) tend to perform better compared to other models because

of its ability to learn and adapt to the scenario. The comparison of fuzzy logic,

neural networks and autoregression model shows that ANNs and fuzzy logic are

superior compared to autoregression model. Numerous ANN models have been

proposed; each having its own advantages. Some of the models include feed-

forward neural network, cascaded neural networks, self-supervised neural network

and recurrent neural networks. Obtaining a neural network with optimum

performance for handling the load forecasting is a tedious task. However,

evolutionary techniques can play a significant role in automatic generation of a

neural network that tends to perform better in terms of accuracy, in load forecasting.

Load forecasting was initially classified into three broad categories:

• Long term load forecasting, which is for the duration of over a year

• Medium term load forecasting, which is for a week duration

• Short term load forecasting, which is for a duration of 1 h to 1 week [1].

However, the increase in the demand for energy and the need for a secure, flexible

and efficient electricity infrastructure, requires forecasting at very small intervals

such as half hour, or even a few minutes. The data obtained through smart grids and

smart meters has now made it possible for researches to produce forecasting models

that can predict the load for very short term of half an hour. This facilitates the
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forecasting of future load in a specific area for very short duration, hence the power

producing plant is able to adjust itself to the requirements of the locality.

Because very short term load forecasting is of significant importance, and is

expected to play an integral role in load forecasting, various researches have

proposed models for very short term load forecasting (VSTLF). Models based on

VSTLF are much more robust compared to other traditional approaches.

The ANN based model discussed in this paper is known as Cartesian genetic

programming evolved recurrent neural networks (CGPRNN) [1] and the current

work is an extension of [4]. The number of feedback paths are varied for a range of

networks to obtain a network with the best possible prediction performance. The

models are initially trained using the historical load data obtained from UK National

Grid. These models are trained to forecast the next half an hour in advance. After

the training phase, the models are tested to forecast the load for next half an hour, 12

and 24 h for a period of a month; based on the load data of past 24 h using sliding

windows mechanism. The testing results show that these models are highly efficient

in load forecasting having an accuracy as high as 98.95 %. A thorough review of the

work done related to load forecasting, and neuro-evolution is presented in the next

sections.

2 Load forecasting

Various statistical models have been proposed in order to predict the future load

requirements including support vector regression, local prediction framework for

load forecasting, autoregressive model, auto-regressive moving average model

(ARMA) and autoregressive moving average with exogenous variable (ARMAX)

and Kalman filtering [5]. Kalman filtering based load forecasting are one of the

oldest predictive techniques utilized for power load forecasting. One of the most

common form of Kalman filtering based predictive technique is the phase locked

loop filter [6]. It utilizes pattern recognition techniques along with weather patterns

to predict hourly electric load. A hybrid technique involving a combination of the

Kalman Filter along with Elman Neural Network was proposed in [6]. It used

Kalman filter to predict the linear parameters and Elman Neural Network to predict

the the non-linear parameters. Al-Hamadi and Soliman [7] utilized a technique

based on the hybridization of the Kalman filter and fuzzy logic to predict the short

term peak load based on the current weather patterns as well as the recent past

history. Lim [8] developed an improved short-term load forecasting algorithm for

an arbitrary education institute for fluctuations in the daily, weekly, and yearly load

patterns. He analyzed and correlated it with temperature trends during the respective

periods. An optimal exponential smoothing coefficient according to the selected

period was used for the building load forecasts. The estimated optimal exponential

smoothing coefficient derived for each selected period was then compared with past

load patterns. The proposed algorithm was verified by simulation of the electric

demands showing that the forecasting accuracy of the proposed algorithm is

improved comparing with traditional exponential smoothing analysis having a mean

absolute percentage error (MAPE) value of 3.61 %. Equation 1 shows the
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mathematical equation for MAPE. LFi is the ith forecasted value while LAi is the ith

actual value. N is the number of instances.

MAPE ¼ 1

N

Xi¼N

i¼1

LFi � LAi

LAi

����

����

 !
� 100 ð1Þ

Ramos et al. [9] developed a load forecasting method for short-term load

forecasting (STLF), based on Holt–Winters exponential smoothing and an artificial

neural network (ANN). His main contributions was the application of Holt–Winters

exponential smoothing approach to the forecasting problem and, as an evaluation of

the past work, data mining techniques were also applied to short-term Load

forecasting. Both ANN and Holt–Winters exponential smoothing approaches were

compared and evaluated obtaining a MAPE of 7.6 % being the best performance.

Support vector machine (SVM) based supervised learning methods have also been

employed for Daily Load Forecasting. Chen et al. [10] developed an SVM based

model for daily peak load estimation based on a lead time of 31 days. The error

recorded for the proposed model was within 2–3 %. Pai and Hong [11] introduced a

load forecasting model that was a combination of the genetic algorithm (GA) and

recurrent SVMs (RSVMG). The GA in the model predicted the free parameters of

the SVM. The proposed model produced better results than SVMs, artificial neural

networks (ANNs) and regression models.

Hong et al. [12] proposed three key elements of long term load forecasting:

predictive modeling, scenario analysis, and weather normalization. The predictive

models attained high accuracy from hourly data, in comparison to classical methods

of forecasting using monthly or annual peak data. Further development of

probabilistic forecasts through cross scenario analysis has enhanced the results.

They have achieved an accuracy of 4.2 % on average. Chen et al. [13] proposed a

two-stage identification and restoration method to detect the typical patterns of

inaccurate measurement and abnormal disturbance based on statistical criteria

independent with normal distribution in first stage and historical trend in second

stage using frequency domain decomposition. The deviations of the data measure-

ments from the typical daily curve obey normal distribution and were used as

criteria in the second stage. The effectiveness of the proposed methodology has

been confirmed by examples in real bus load forecasting systems obtaining a MAPE

of 1.8 %. Hooshmand et al. [14] proposed a novel 2-step algorithm for STLF.

During the first step, ANN was used in combination with wavelet transform to

forecast the load for the next 24 h. The inputs applied are weather parameters, and

the load data of the previous day. During the second step, a combination of wavelet

transform, adaptive neural fuzzy inference system and similar hour method were

used to improve the accuracy of the results obtained in step 1. The experimental

results showed that the model has a MAPE value of as low as 1.603 %.

Mandal et al. [15] used the similar days approach along with ANN for short term

load forecasting. Since learning the entire similar days data is a cumbersome job,

the model uses Euclidean norm along with weighted factors for evaluating the

similarity between the previously searched days and the forecasted day. The
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model’s accuracy is further increased by adding temperature as a climate factor.

Panday et al. [16] proposed procuring power through energy exchange based on

forecasting of day-ahead load demand. They discussed the role of ANN in day-

ahead hourly forecast of the power system load in Uttar Pradesh Power Corporation

India Limited (UPPL) so as to minimize the error in demand forecasting. A new

artificial neural network (ANN) has been designed to compute the forecasted load of

UPPL. The data used in the modeling of ANN are hourly historical electricity load

data. The ANN model is trained on hourly data from UPPCL from April, 2014 to

June, 2014 and tested on out-of-sample data of 2 weeks. Simulation results obtained

showed that a day-ahead hourly forecast of load using proposed ANN was very

accurate having an average MAPE of 3.05 %. Sahay et al. [17] designed a new

artificial neural network (ANN) to compute the forecasted load. The data used in the

modeling of ANN were hourly historical data of the temperature and electricity

load. The ANN model was trained on hourly data from Ontario Electricity Market

from 2007 to 2011 and tested on out-of-sample data from 2012. Simulation results

obtained showed that day-ahead hourly forecasts of load using proposed ANN

generated an average MAPE of 2.05 % with temperature and 2.23 % without

temperature. In short, ANN models tend to forecast the load requirements accurately

compared to other models, that makes it an attractive area of research.

3 Neuro-evolution

The evolution of various attributes of a neural network is called neuro-evolution

(NE). The attributes, which might be evolved are node activation functions,

connection weights, network topology and connection type. The genotype represents

these parameters and is evolved until the desired fitness is achieved that is called the

phenotypic behavior. The NE design is affected by the encoding choice as the

solutions search space is dependent on it. In NE, a single or a combination of network

parameters may be evolved. The evolution of only connection weights results in a

fixed topology that restricts the solution space of the network and evolution

necessarily does not result in the optimum solution for a specific problem.

Topology and weight evolved artificial neural network (TWEANN) increased

network efficiency by evolving both connection weights and topology [18]. The

experimental results shown in [18] highlight the fact that evolving both topology

and weights provide a better network when compared to evolving only weights or

topology alone. The symbiotic adaptive neural network evolution (SANE)

simultaneously evolves neuron population and network topology. An extension of

SANE known as enforced sub-population (ESP) evolves the sub-population of

neurons that are present in the hidden layer instead of evolving a single neuron

population [19]. The three major problems in neuro-evolution are

• Tracking the genes that contain historical markings and allow an easy crossover

among various topologies.

• Starting a simple structure and then increasing its complexity through

generations.
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• Using speciation for innovation protection.

These problems were solved by NE of augmenting topologies (NEAT) which was

developed by Stanley and Miikkulainen [20]. NE has been influential in providing

ANNs that can be used to perform various tasks. Section 4 presents an insight into

CGPRNN, which is actually a model obtained by evolving a recurrent ANN using

Cartesian genetic programming (CGP).

4 Cartesian genetic programming evolved recurrent neural network
(CGPRNN)

Recurrent networks are of great significance when dealing with a wide domain of

nonlinear and dynamic system. Khan et al. [5] proposed Cartesian genetic

programming evolved recurrent artificial neural network (CGPRNN) for solving

non-linear control problems. CGPRNN utilizes Cartesian genetic programming

(CGP) for evolution of RNNs. Cartesian genetic programming is a genetic

programming technique devised by Vašı́ček and Sekanina [21] and Rothermich and

Miller [21, 22]. In CGP, a two dimensional graphic representation is used to

generate a digital circuit or computer program. CGP is a highly flexible and efficient

genetic programming technique. CGP utilizes arrays and Cartesian framework for

representation of its architecture [5]. CGPRNN is a neuro-evolutionary algorithm

used for evolving recurrent neural networks. It utilizes the superior capability of

CGP for generating a recurrent ANN. The difference between CGPRNN and other

classes of CGPANN is that it utilizes a feedback mechanism i.e. one or many

outputs are fed back into the system as input(s). The difference between the

architecture of CGPRNN and traditional RNN is that the neurons derived by

CGPRNN network are not connected entirely. Also, all the input layer neurons are

not supplied with program inputs. This feature allows CGPRNN to produce

topologies, which is efficient in terms of computational cost and hardware

implementation.

CGPRNNs genotype consists of nodes which represent the neurons of the RNN.

As shown in Fig. 1, there are certain inputs, connections functions and weights

affiliated with the nodes. The inputs supplied are of 3 types: the program inputs, the

inputs coming from previous nodes and the input coming from the feedback. In the

first layer of the genotype in CGPRNN, the inputs are either recurrent or the system

inputs. For the following layers, the existence of a feedback path depends upon the

fact whether the selection of a feedback input which is to be utilized as a node input,

is selected through mutation or not. A node is said to be connected if its connection

Fig. 1 CGPRNN node with 3
inputs
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value is one while it is said to be disconnected if the connection value is zero. The

connections weights are generated randomly between �1 and ?1. However, the

feedback input weight is always ?1. All the inputs along with the weights of the

connected inputs are multiplied and then added. It is then forwarded to an activation

function, which is either linear or non-linear such as log-sigmoid, linear, tangent

hyperbolic or step function. The production of output at every node depends upon

the activation function. The node output is then utilized as the system output or as

an input to the next node. The output(s) of the genotype is either any node

output(s) or the program input(s). The output of the genotype can also be used as the

feedback into the nodes if the recurrent input is already connected. The CGPRNN

genotype is then evolved continuously through mutation until a desired fitness is

achieved. The state unit weights along with the connections are frozen and the

resultant genotype is then transformed to the ultimate RNN [5].

Equation 2 shows which system input is connected with the z input of the y

neuron in the x genotype. The pseudo random generator (PRG) is used to choose

whether to connect the system input, the output of previous node or a recurrent

output as an input with a specific input of a node. SOR is the recurrent system output

which is fed back into the system as an input. The number of recurrent paths is given

by Eq. 3, in which Nr is the maximum feedback paths.

genoðx; y; zÞ ¼ PRG½I : genoðx; y � 1Þ. . .genoðx; 1Þ. . .SOR� ð2Þ

R ¼ ½1; 2; 3; 4. . .Nr� ð3Þ

Let j be the system output given in Eq. 4.

j ¼ ½1; 2; 3. . .N� ð4Þ

where N is the total number of outputs. The weights to a specific recurrent output is

assigned using Eq. 5

WðSORðR; jÞÞ ¼ PRG½�1. . .þ 1� ð5Þ

R is a specific feedback while j is already defined in Eq. 4. So the weight to a

specific recurrent output is assigned using a pseudo random generator, which

generates weights for a specific recurrent output.

Fig. 2 Internal structure of a CGPRNN node
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Figure 1 shows a CGPRNN node with 3 inputs. Figure 2. shows the internal view

of a CGPRNN node. There are three unconnected inputs, I1, I2, and R which are

multiplied with the corresponding weights W13, W23, WR3. After multiplying the

inputs with their corresponding weights, they are all added and supplied into an

activation function. The activation function produces the output for the specific

node. Figure 3a shows the genotype for a 2� 2 CGPRNN network. Figure 3b

shows the block diagram representation of the genotype shown in Fig. 3a, while

Fig. 3c shows the graphical representation of the genotype in Fig. 3a. Figure 4

shows the phenotype for the CGPRNN genotype shown in Fig. 3. Equations 6 and 7

show the mathematical expression for the CGPRNN phenotype in Fig. 4.

O3 ¼ logsigmoidðw13I1 þ w23I2 þ w63I3RÞ ð6Þ

where IR is the recurrent input i.e. the feedback from output 6

O6 ¼ tanhðw36O3 þ w26I2 þ w66I6RÞ ð7Þ

The next section will present the application of the proposed algorithm for VSTLF,

providing the experimental setup, and the detailed results and analysis.

5 Application of CGPRNN to very short term load forecasting (VSTLF)

In this section, the exploration of CGPRNN for its capabilities to produce an

efficient prediction model is presented and its performance is evaluated to predict

the highly varying load data. This section comprises of a range of subsections

describing the experimental setup, results and analysis for various scenarios.

Fig. 3 a The genotype for a 2� 2 CGPRNN network. b Block representation of genotype in (a).
c Graphical representation of the genotype in (a)
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5.1 Experimental setup

The half hourly historical data of electrical loads obtained from the UK power grid

was used to train CGPRNN networks. The load of January, 1997 was used to train

the system, while testing was done for the the entire year 1998. Initially a random

population of CGPRNN is generated. The number of inputs into the network are 48

(24 h) for CGPRNN network, plus the number of feedback inputs. The mutation rate

ðlrÞ was 10 % as it provides better results and fast learning [2]. Single row is used

for CGPRNN (Number of Nodes¼Number of Columns), as it results in infinite

graphs and better evolutionary results. An evolutionary strategy of 1þ k is used

where k is set at 9 in this case [5]. Mean absolute percentage error (MAPE) is used

Fig. 4 Phenotype for the
CGPRNN genotype shown in
Fig. 1

Fig. 5 CGPRNN network with N feedback paths
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as the evaluation parameter for determining the fitness of the individual network.

The network with the best MAPE value is promoted to the next generation. The

selected network acts as parent for the next generation, which is mutated to produce

offspring. The process continues until the desired fitness is attained or the maximum

number of generation is reached. Each experiment is performed for one million

generation.

Initially the CGPRNN model is evaluated for its performance. Various network

architectures with different numbers of nodes ranging from 50 to 500 with an

increment of 50 nodes are explored. The model was trained for half hourly load

forecasting. However, the model was tested to predict the load for next half an hour,

12 and 24 h for an entire month using the historical data of past 24 h. Network with

both 24 and 48 feedback paths were used. Figure 5 shows a CGPRNN network with

N feedback paths. Figure 6 shows how the sliding window mechanism works for the

network when the next half hour load is predicted based on the historical data of

past 24 h. The next half an hour is predicted, then the window slides and then

utilizes the forecasted half an hour along with the previous data for predicting the

next half an hour. The next subsection will provide detailed results and analysis for

all these scenarios of the proposed model.

5.2 Results and analysis

In this subsection, we will discuss the performance of CGPRNN under various

experimental conditions. Table 1 highlights the testing results for a CGPRNN

network with 24 feedback paths and number of nodes ranging between 50 and 500

with an increment of 50 nodes; which is used to predict the next half hour load for a

month based on the load data of past 24 h. A MAPE value as low as 1.128 % is

obtained. Table 1 also shows the average MAPE across months and nodes

demonstrating the best performance of CGPRNN on average. Standard deviation

(SD) across various nodes and months is also calculated. The SD across the number

of nodes is almost the same apart from the 200 node network. Across the months, it

is evident that it is highest in the months of June, July and August. This is due to

high fluctuation in load statistics that makes it difficult to predict.

Table 2 shows the MAPE values for CGPRNN network with 24 feedback paths

and different number of nodes. The model predicts next 24 h of load based on the

past 24 h of load data, for a month. The month of March and July (with 250 nodes)

Fig. 6 Sliding windows
mechanism based on 24 h
historical data
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provide the optimum results while the best result is obtained for the month of March

with 200 nodes i.e. the MAPE value is 7.220. The MAPE values in Table 2 are

higher as compared to Table 1 because the model was trained to predict the next

half hour only, while the results in Table 2 are for predicting 24 h of load.

We have also tested the capability of 24 feedback network to predict the next

12 h data based on the 24 h data history for a period of one month. Table 3 provides

the MAPE values for the networks with number of nodes varying between 50 and

500 with a step of 50 nodes. Most of the optimum results are for the month of March

Table 2 The testing results for CGPRNN network with 24 feedback path scenario and 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 nodes; which uses load data Of past 24 h to forecast the load for next

24 h for a month

Nodes 50 100 150 200 250 300 350 400 450 500

Jan 8.962 9.713 8.952 9.061 8.884 9.634 8.612 8.712 8.78 8.747

Feb 7.987 8.467 7.928 7.901 7.907 8.323 7.607 7.814 7.80 7.781

Mar 7.355 7.570 7.309 7.220 7.401 7.430 7.282 7.18 7.903 7.245

Apr 7.939 9.645 7.969 12.576 7.373 10.282 7.441 7.152 9.40 7.801

May 8.623 10.918 8.443 16.167 7.890 12.364 7.722 7.256 10.64 8.350

Jun 8.719 11.515 8.357 19.050 7.638 13.737 7.270 6.723 11.42 8.301

Jul 8.162 10.806 7.849 18.923 7.347 13.297 7.087 6.570 10.73 7.799

Aug 8.367 11.510 7.899 20.364 7.290 14.390 6.831 6.371 11.50 7.881

Sep 8.729 10.924 8.443 16.235 8.018 12.430 7.765 7.262 10.50 8.350

Oct 9.309 9.959 9.143 10.735 9.260 10.071 9.123 9.367 9.44 9.072

Nov 8.583 9.315 8.438 8.591 8.520 9.341 8.208 8.506 8.23 8.280

Dec 8.867 10.402 9.018 9.267 8.470 10.102 7.940 7.117 8.79 8.549

Bold values show the best performance for the given number of nodes

Table 3 The testing results for CGPRNN network with 24 feedback path scenario and 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 nodes; which uses load data of past 24 h to forecast the load for next

12 h for a month

Nodes 50 100 150 200 250 300 350 400 450 500

Jan 7.277 7.904 7.380 7.926 7.243 7.243 8.442 7.357 7.192 7.245

Feb 7.119 7.352 7.115 7.255 7.054 7.054 7.454 6.926 6.930 7.021

Mar 6.427 6.490 6.452 6.527 6.446 6.446 6.570 6.481 6.766 6.413

Apr 7.127 8.525 7.014 10.966 6.621 6.621 8.718 6.573 6.380 6.879

May 8.075 10.123 7.746 14.467 7.218 7.218 10.610 6.943 6.641 7.624

Jun 8.619 11.032 8.161 17.124 7.418 7.418 11.803 6.867 6.400 8.050

Jul 8.421 10.669 8.000 17.212 7.314 7.314 11.604 6.788 6.305 7.875

Aug 8.612 11.172 8.067 18.487 7.339 7.339 12.452 6.632 6.185 7.971

Sep 8.439 10.322 8.018 14.499 7.618 7.618 10.750 7.169 6.760 7.900

Oct 8.235 9.117 8.048 9.755 8.031 8.031 9.044 7.970 8.003 7.959

Nov 7.188 7.799 7.166 7.683 7.189 7.189 8.486 7.174 7.321 7.067

Dec 7.310 8.337 7.541 8.203 7.125 7.125 8.701 6.970 6.387 7.196

Bold values show the best performance for the given number of nodes
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and August (single result for a network with 450 nodes). A comparison of Tables 2

and 3 highlight the fact that the overall MAPE values are better for the model when

predicting the next 12 h for a month compared to predicting the next 24 h for a

month. This is because 12 h is a shorter time period compared to 24 h and lesser

error accumulates in 12 h compared to 24 h.

Table 4 highlights the testing results for a CGPRNN network with 48 feedback

paths while the number of nodes ranges between 50 and 500 nodes with a step of 50

nodes. The network was used to forecast the next half an hour based on the load data

of past 24 h. Most of the accurate results are for the month of March and July, while

the best result is for the month of July with a network of 450 nodes that has a MAPE

value of 1.046 %. A comparison of Tables 1 and 4 highlights the fact that the

network with 48 and 24 feedback path perform almost identical.

The 48 feedback network is also tested to predict more instances of future load in

advance. Table 5 presents the MAPE values for CGPRNN network with 48

feedback paths, while the number of nodes increases from 50 to 500 nodes with an

increment of 50 nodes which use the data of past 24 h to predict the load for next

24 h, although the network was trained with load data of half hour. This is why the

MAPE values are comparatively higher than Table 4.

Table 6 presents the MAPE values for CGPRNN network with 48 feedback paths

with varying number of nodes using the data of past 24 h to predict the load for next

12 h, although the networkwas trained to predict the load data of half hour. TheMAPE

values are comparatively lower than Table 5 due to the aforementioned reasons.

Table 7 provides a general comparison amongst CGPRNN and various other

prediction models which have been used for half hourly load forecasting. The

models are used for very short term forecasting. The models in [14, 23] forecast the

half hourly electricity load for next 24 h while our CGPRNN model forecasts it for

an entire month. The model in [24] predicts the half hourly for an entire month with

Table 4 The testing results for CGPRNN network with 48 feedback path scenario and 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 nodes; which uses load data of past 24 h to forecast the load for next

half an hour for a month

Nodes 50 100 150 200 250 300 350 400 450 500

Jan 2.251 1.377 2.280 2.210 1.415 1.376 1.417 1.249 1.477 1.173

Feb 1.964 1.413 1.986 2.034 1.404 1.416 1.418 1.255 1.480 1.182

Mar 1.699 1.326 1.752 1.767 1.331 1.276 1.328 1.137 1.438 1.081

Apr 3.124 2.078 3.202 5.849 2.188 2.483 2.381 1.972 2.288 1.897

May 5.320 3.031 5.359 9.726 3.156 3.769 3.431 2.852 3.225 2.877

Jun 8.008 4.134 8.068 13.929 4.287 5.255 4.667 3.932 4.291 4.060

Jul 7.967 3.978 7.982 13.897 4.094 5.050 4.501 3.776 4.103 3.901

Aug 9.831 4.768 9.871 16.539 5.021 6.184 5.420 4.634 4.892 4.858

Sep 5.856 3.020 5.787 10.212 3.097 3.965 3.643 2.917 3.206 2.977

Oct 3.206 1.788 3.280 4.322 1.842 2.128 2.205 1.738 2.009 1.652

Nov 2.325 1.258 2.331 2.119 1.276 1.231 1.294 1.127 1.345 1.046

Dec 2.309 1.322 2.305 2.465 1.405 1.392 1.377 1.272 1.376 1.177

Bold values show the best performance for the given number of nodes
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a MAPE value as low as 1.55 %. The results show that CGPRNN is superior to all

the other models, having a MAPE value as low as 1.046 %.

5.3 Further analysis

The CGPRNN systems with both 24 and 48 feedback paths perform almost

identically. CGPRNN model with 24 and 48 feedback paths are also evaluated in

Table 5 The testing results for CGPRNN network with 48 feedback path scenario 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 nodes; which uses load data of past 24 h to forecast the load for next

24 h for a month

Nodes 50 100 150 200 250 300 350 400 450 500

Jan 9.639 8.657 9.338 10.118 8.735 9.229 8.859 8.882 8.518 9.024

Feb 8.204 7.637 8.053 8.876 7.701 8.250 7.870 7.868 7.551 7.992

Mar 7.466 7.400 7.521 7.561 7.396 7.464 7.289 7.282 7.325 7.396

Apr 8.671 7.291 8.963 14.199 8.229 8.241 7.918 7.986 7.316 7.644

May 9.761 7.602 9.877 18.358 8.571 9.094 8.459 8.475 7.579 8.242

Jun 10.212 7.129 10.254 21.520 8.328 9.342 8.405 8.398 7.062 8.208

Jul 9.711 6.992 9.843 21.399 7.911 8.699 7.888 7.897 6.915 7.728

Aug 10.278 6.726 10.369 22.721 7.811 9.028 8.003 7.936 6.657 7.811

Sep 9.787 7.648 9.968 18.355 8.537 9.128 8.635 8.486 7.597 8.321

Oct 9.779 9.296 9.930 11.273 9.601 9.320 9.411 9.302 9.080 9.290

Nov 9.435 8.382 9.010 9.331 8.377 8.763 8.541 8.472 8.146 8.686

Dec 9.913 7.573 9.134 11.758 7.894 9.579 8.653 8.723 7.503 8.785

Bold values show the best performance for the given number of nodes

Table 6 The testing results for CGPRNN network with 48 feedback path scenario and 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500 nodes; which uses load data of past 24 h to forecast the load for next

12 h for a month

Nodes 50 100 150 200 250 300 350 400 450 500

Jan 8.777 7.222 8.570 8.959 7.602 7.454 7.310 7.380 7.175 7.331

Feb 7.506 6.847 7.689 8.176 7.075 7.322 6.981 7.063 6.816 7.100

Mar 6.640 6.433 6.955 6.891 6.660 6.486 6.364 6.399 6.483 6.424

Apr 7.294 6.445 7.596 12.369 7.102 7.3937 7.016 6.946 6.493 6.814

May 8.314 6.825 8.411 16.176 7.744 8.568 7.784 7.705 6.845 7.608

Jun 8.747 6.694 8.612 18.957 7.966 9.275 8.201 8.116 6.715 8.061

Jul 8.518 6.625 8.432 19.094 7.829 9.043 7.961 7.952 6.645 7.897

Aug 8.840 6.469 8.878 20.199 7.773 9.303 8.127 8.018 6.491 8.012

Sep 8.506 7.063 8.899 16.090 7.954 8.865 8.220 8.013 7.021 7.949

Oct 8.742 7.965 9.147 10.349 8.475 8.351 8.172 8.129 7.845 8.087

Nov 8.891 7.205 8.535 8.423 7.447 7.297 7.226 7.240 7.086 7.268

Dec 8.968 6.606 8.616 10.306 6.985 7.825 7.290 7.357 6.572 7.261

Bold values show the best performance for the given number of nodes
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forecasting the load for next 12 and 24 h for a month on the basis of the past 24 h

load data. Since the model was trained only for predicting the next half hour load, so

forecasting the next 12 and 24 h results in more erroneous outcomes compared to

forecasting the next half hour. To highlight the cost efficiency of the model, Fig. 7

shows a CGPRNN network with 50 nodes and 24 feedback paths that predicts the

next half an hour load based on the load data of past 24 h (48 inputs). Despite the

presence of 24 feedback paths, only a single feedback path is utilized. This is due to

the fact that our utilized model evolves to obtain an accurate and cost efficient

system. Figure 7 is a testament to the fact that we necessarily do not need highly

complex systems to obtain accurate performance, but it is the combination of nodes,

weights and connections that must be optimally connected to form a network that

results in high accuracy. CGPRNN is superior is due to the fact that recurrent

connectivity, inter node connectivity, and selection amongst many input is flexible

in comparison to any other known algorithm. The final phenotype of the system in

Fig. 7 can be modeled using mathematical expression as provided by Eqs. 8–13.

Y50 ¼
8I47 þ 2O100

10
ð8Þ

O100 ¼ w1I1 þ w47AI47 þ w47BI47 þ 3f100ðI47 þ I1

þ 3f87ðI14; I32; I38ÞÞ þ 2f83ðI20; I41; I42;

2f80ð2I1; 2I50; I21ÞÞ
ð9Þ

f100 ¼ logsigmoidðw47AI47 þ w47BI47 þ w1I1þ
2f87ðI14; I32; I38; 2f83ðI20; I41; I42;

2f80ð2I1; 2I50; I21ÞÞÞ
ð10Þ

f87 ¼ logsigmoidðw14I14 þ w32I32 þ w38I38

þ 2f83ðI20; I41; I45; 2f80ð2I1; 2I50; I21ÞÞÞ
ð11Þ

f83 ¼ logsigmoidðw20I20 þ w41I41

þ w45I45 þ 2f80ð2I1 þ 2I50I21ÞÞ
ð12Þ

f80 ¼ logsigmoidðw1AI1 þ w1BI1

þ w50AI50 þ w50BI50 þ w21I21Þ
ð13Þ

The input I50 is the feedback input which is given by Eq. 14

Table 7 Comparison of various

networks used for electric load

forecasting

Bold value shows the best

performance for the given

number of nodes

S.no. Model MAPE (%)

1 CGPRNN (proposed model) 1.046

2 ANN method [23] 1.01

3 Hooshmand et al. [14] Model 1.603

4 ANN based model in [24] 1.55
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I50 ¼
X10

i¼1

wOiOi ð14Þ

6 Conclusion

We have presented the newly introduce neuro-evolutionary algorithms: Cartesian

genetic programming evolved recurrent neural networks (CGPRNN) and explored

its capabilities to produce an accurate prediction model for highly dynamic load

patterns of Electric load over very short period of time (half an hour). The network

is trained on half hourly electrical load data to produce the prediction models that

can forecast the load of next half hour for an entire month using historical data of

Fig. 7 A CGPRNN Network with 50 nodes and 24 feedback paths which predicts the next half an hour
for a month based on past 24 h
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past 24 h. The experimental results demonstrated pre-eminence of the algorithms

over the machine learning algorithms introduced to date, especially in the case of

forecasting the electric load on very short term bases obtaining an accuracy of as

high as 98.95 %. These prediction models are also tested for their robustness in

scenarios other than the one they are trained on, to predict more future instances of

load patterns in advance, obtaining up to 94 % accurate results. Thus proving the

models to be not only accurate but also robust and can be used to predict the patterns

in time series data in general. The algorithm seems to have great potential in the

field of forecasting and can be used to forecast the wind speed, population growth,

foreign currency exchange rates, and weather forecasting.
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