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Abstract—Energy efficiency is a fundamental requirement of
modern data communication systems, and its importance is
reflected in much recent work on performance analysis of system
energy consumption. However, most works have only focused on
communication and computation costs, but do not account for
caching costs. Given the increasing interest in cache networks,
this is a serious deficiency. In this paper, we consider the energy
consumption trade-off between communication, computation,
and caching (C3) under a Quality of Information (QoI) guarantee
in a communication network. To attain this goal, we formulate
an optimization problem to capture the C3 costs, which turns
out to be a non-convex Mixed Integer Non-Linear Programming
(MINLP) Problem. We then propose a variant of spatial branch
and bound algorithm (V-SBB), that can achieve ε-global 1 optimal
solution to the original MINLP. We show numerically that V-SBB
is more stable and robust than other candidate MINLP solvers
under different network scenarios. More importantly, we observe
that the energy efficiency under our C3 optimization framework
improves by as much as 88% compared to any C2 optimization
between communication and computation or caching.

I. INTRODUCTION

The rapid growth of smart environments, and advent of
Internet of Things (IoT) have led to the generation of large
amounts of data. However, it is a daunting task to transmit
enormous data through traditional networks due to limited
bandwidth and energy limitations [1]. These data need to be
efficiently compressed, transmitted, and cached to satisfy the
Quality of Information (QoI) required by end users. In fact,
many wireless components operate on limited battery power
supply and are usually deployed in remote or inaccessible
areas, which necessitates the need for designs that can enhance
the energy efficiency of the system with a QoI guarantee.

A particular example of modern systems that require high
energy efficiency is the wireless sensor network (WSN). Con-
sider a WSN with various types of sensors, which can generate
enormous amount of data to serve end users. On one hand,

This research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

1ε-global optimality means that the obtained solution is within ε tolerance
of the global optimal solution.

Fig. 1. A general wireless sensor network.

data compression has been adopted to reduce transmission
(communication) cost at the expense of computation cost. On
the other hand, caches can be used as a mean of reducing
transmission costs and access latency, thus enhancing QoI but
with the expense of the added caching cost. Hence, there exists
a tradeoff in energy consumption due to data communication,
computation and caching. This raises the question: what is
the right balance between compression and caching so as to
minimize the total energy consumption of the network?

In this paper, we formulate an optimization problem that
characterizes the tradeoff among communication, computation,
and caching energy cost with QoI guarantee, and then develop
an efficient algorithm to solve the optimization problem. Each
node has the ability to compress and cache the data with some
finite storage capacity. We focus on wireless sensor networks
as our motivating example. In particular, as shown in Figure 1,
we assume that only edge sensors generate data, and there
exists a single sink node that collects and serves the requests
for the data generated in this network.
Computation: Data aggregation [2], [3] is the process of
gathering data from multiple generators (e.g., sensors), com-
pressing them to eliminate redundant information and then
providing the summarized information to end users. Since only
part of the original data is transmitted, data aggregation can
conserve a large amount of energy. A common assumption
in previous works is that energy required to compress data
is smaller than that needed to transmit data. Therefore, data
compression was considered a viable technique for reducing



energy consumption. However, it has been shown [4] that
computational energy cost can be significant and may cause
a net-energy increase if data are compressed beyond a certain
threshold. Hence, it is necessary to consider both transmission
and computation costs, and it is important to characterize the
trade-off between them [1].
Caching: Caches have been widely used in networks and
distributed systems to improve performance by storing in-
formation locally, which jointly reduces access latency and
bandwidth requirements, and hence improves user experience.
Content Distribution Networks (CDNs), Software Defined Net-
works (SDNs), Named Data Networks (NDNs) and Content
Centric Networks (CCNs) are important examples of such
systems. The fundamental idea behind caching is to make
information available at a location closer to the end-user.
Again, most previous work focused on designing caching al-
gorithms to enhance system performance without considering
the energy cost of caching. However, caching itself can incur
significant energy costs [5]. Therefore, capturing caching cost
and characterizing the tradeoff between communication and
caching energy cost are also critical for system design.
Quality of Information (QoI): The notion of QoI required by
end users is affected by many factors. In particular, the degree
of the data aggregation in a system is crucial for QoI. It has
been shown that data aggregation can deteriorate QoI in some
situations [6]. Thus an energy efficient design for appropriate
data aggregation with a guaranteed QoI is desirable.

We focus on a tree-structured sensor network where each
leaf node generates data, and compresses and transmits the
data to the sink node in the network, which serves the requests
for these data from devices outside this network. Examples of
such a setting are military sites, wireless sensors or societal
networks, where a large number of devices gather data, and
desire to transmit the local information to any device outside
this network that requires this information. The objective of
our work is to develop an efficient algorithm to minimize
the total energy cost by incorporating data communication,
computation and caching energy costs with a desired QoI
constraint into our model, so that an optimal data compression
rate at each node, and an optimal caching location in the
network can be determined. Such an algorithm should be
lightweight and achieve a (sub-)optimal solution efficiently.

A. Related Work

While optimizing energy costs in wireless sensor networks
has been extensively studied [7], [8], existing work primarily is
concerned with routing [9], MAC protocols [7], and clustering
[10]. With the growing deployment of smart sensors in modern
systems [1], in-network data processing, such as data aggre-
gation, has been widely used as a mean of reducing system
energy cost by lowering the data volume for transmission.
Communication and Computation Energy Costs: Energy ef-
ficient inference in a random fusion network without QoI
guarantee was considered in [11]. Network Utility Maximiza-
tion (NUM) framework was applied in [12] to obtain optimal
compression rate for data aggregation as well as optimal

locations for performing data compression. The optimal energy
allocation between communication and sensing to maximize
the total information received at the sink node was studied in
[13], but they did not consider data computation. An efficient
algorithm for data compression in a data gathering tree was
proposed in [14]. [1] presented a distributed algorithm to
minimize overall energy costs in a tree structured network by
optimizing the compression factor at each node.

None of these works considered caching costs. Since caches
are already integral components of many modern systems,
including wireless sensor networks, they can be used to
improve performance by making data available at locations
closer to end users to reduce the communication cost [5].

To the best of our knowledge, there is no prior work that
jointly considers communication, computation and caching
costs in data communication networks. One of the important
contributions of this paper is to develop an optimization
algorithm that minimizes the total system energy costs by char-
acterizing the tradeoff between communication, computation
and caching costs with a QoI guarantee for end users.

B. Organization and Main Results

In Section II, we describe our system model in which
nodes are logically arranged as a tree. Each node receives and
compresses data from its children node(s). The compressed
data are transmitted and further compressed towards the sink
node. Each node can also cache the compressed data locally.
In Section III, we formulate the problem of energy-efficient
data compression, communication and caching with QoI con-
straint as a non-convex mixed integer non-linear programming
(MINLP) problem, which is hard to solve in general. We then
show that there exists an equivalent problem obtained through
symbolic reformation [15] in Section IV, and propose a variant
of the Spatial Branch-and-Bound (V-SBB) algorithm to solve
it. We show that our proposed algorithm can achieve ε-global
optimality of the original MINLP efficiently. Since we have
a discrete space, and a non-convex problem, showing that
there exists an ε-optimal solution and developing an efficient
algorithm to achieving it are quite intricate. This is another
contribution in this paper.

In Section V, we evaluate the performance of our optimiza-
tion framework and the proposed V-SBB algorithm through
extensive numerical studies. In particular, we make a thorough
comparison with other MINLP solvers Bonmin [16], NOMAD
[17], and Matlab’s genetic algorithm (GA) under different
network scenarios. The results show that our algorithm can
achieve ε-global optimality, and is either comparable to or
outperforms Bonmin. Furthermore, our algorithm is more
robust and stable in the context of varying network situations.
In other words, Bonmin in certain cases is not able to provide
a solution, even though the original problem is feasible.
Furthermore, our algorithm easily outperforms NOMAD and
Matlab’s GA [18] in most of the scenarios that we have
tested. More importantly, we observe that with the joint
optimization of data communication, computation and caching
(C3), energy efficiency can be improved by as much as 88%



Fig. 2. Tree-Structured Network Model.

compared to only optimizing communication and computation,
or communication and caching (C2). This further strengthens
the contributions of our optimization framework. We provide
concluding remarks in Section VI.

II. ANALYTICAL MODEL

We represent the network as a directed graph G = (V,E).
For simplicity, we consider a tree, with N = |V | nodes, as
shown in Figure 2. Node v ∈ V is capable of storing Sv

amount of data. Let K ⊆ V with K = |K| be the set of leaf
nodes, i.e., K = {1, 2, · · · ,K}. Time is partitioned in periods
of equal length T > 0 and data generated in each period are
independent. Without loss of generality (W.l.o.g.), we consider
one particular period in the remainder of the paper. We assume
that only leaf nodes k ∈ K can generate data, and all other
nodes in the tree receive and compress data from their children
nodes, and either cache or transmit the compressed data to
their parent nodes during time T.

Let yk be the amount of data generated by leaf node k ∈ K.
The data generated at the leaf nodes are transmitted up the
tree to the sink node s, which serves the requests for the data
generated in the network. Let h(k) be the depth of node k
in the tree. W.l.o.g., we assume that the sink node is located
at level h(s) = 0. We represent a path from node k to the
sink node as the unique path Hk of length h(k) as a sequence
{hk0 , hk1 , · · · , hkh(k)} of nodes hkj ∈ V such that (hkj , h

k
j+1) ∈

E, where hk0 , s (i.e., the sink node) and hkh(k) , k (i.e., the
node itself).

We denote the per-bit reception, transmission and compres-
sion cost of node v ∈ V as εvR, εvT , and εvC , respectively.
Each node hki along the path Hk can compress the data
generated by leaf node k with a data reduction rate δk,i, where
0 < δk,i ≤ 1, ∀i, k. The reduction rate characterizes the degree
to which a node can compress the received data, which plays
an important role for determining the QoI.

The higher the value of δk,i, the lower the compression will
be, and vice versa. The higher the degree of data compression,
the larger will be the amount of energy consumed by compres-
sion. Similarly, caching the data closer to the sink node may
reduce the transmission cost for serving the request, however,

TABLE I
SUMMARY OF NOTATIONS

Notation Description
yk number of data (bits) generated at node k
δk,v reduction rate at node v, is the ratio of amount of output data

to input data
γ the QoI threshold
εvR per-bit reception cost of node v
εvT per-bit transmission cost of node v
εvC per-bit compression cost of node v
bk,v 1 if node v caches the data from leaf node k; otherwise 0
Sv storage capacity of node v
wca caching power efficiency
Rk request rate for data from node k
N total number of nodes in the network
Cv set of leaf nodes that are descendants of node v
T time length that data are cached
φu upper bound of the objective function
L list of regions
R any sub-region in L
φR,u upper bound on the objective function in subregion R
φR,l lower bound on the objective function in subregion R
ε difference between the upper and lower bound

each node only has finite storage capacity. We study the trade-
off among the energy consumed at each node for transmitting,
compression and caching the data.

Denote the total energy consumption at node v as Ev , which
consists of the reception cost EvR, transmission cost EvT ,
computation cost EvC and storage (caching) cost EvS ; it takes
the form

Ev = EvR + EvT + EvC + EvS , (1)

where
EvR = yvεvR, EvT = yvεvT δv,

EvC = yvεvC lv(δv), EvS = wcayvT. (2)

Here, lv(δv) captures the computation energy. As computation
energy increases with the degree of compression, we assume
that lv(δv) is a continuous, decreasing and differentiable
function of the reduction rate. One candidate function is
lv(δv) = 1/δv−1 [1], [12]. Moreover, we consider an energy-
proportional model [5] for caching, i.e., EvS = wcayvT if the
received data yv is cached for a duration of T where wca

represents the power efficiency of caching, which strongly
depends on the storage hardware technology. W.l.o.g., wca

is assumed to be identical for all the nodes. For simplicity,
denote f(δv)= εvR+εvT +εvC as the sum of per-bit reception,
transmission and compression cost at node v per unit time.

During time period T , we assume that there are Rk requests
at the sink node s for data yk generated by leaf node k. For
simplicity, we assume that the number of requests for the data
of a node k is constant. The boolean variable bk,i equals 1 if
the data from node k is stored along the path Hk at node hki ,
otherwise it equals 0. For ease of notation, we define bk,h(k)
by bk. Let Cv denote the set of leaf nodes k ∈ K that are
descendants of node v.

We also assume that the energy cost for searching for data
at different nodes in the network is negligible [1], [19]. For
convenience, let fk,h(k) , fk and δk,h(k) , δk. For ease



of exposition, the parameters used throughout this paper are
summarized in Table I.

III. ENERGY EFFICIENCY OPTIMIZATION

In this section, we first define the cost function in our
model and then formulate the optimization problem. Data
produced by every leaf node is received, transmitted, and
possibly compressed by all nodes in the path from the leaf
node to the root node, consuming energy

EC
k =

h(k)∑
i=0

ykf(δk,i)

h(k)∏
m=i+1

δk,m, (3)

where
∏j

m=i δk,m := 1 if i ≥ j. Let ER be the total energy
consumed in responding to the subsequent (Rk − 1) requests.
We have

ER
k =

h(k)∑
i=0

yk(Rk − 1)

{
f(δk,i)

h(k)∏
m=i+1

δk,m

(
1−

i−1∑
j=0

bk,j

)

+

( h(k)∏
m=i

δk,m

)
bk,i(wcaT + εkT )

}
. (4)

The first term captures the energy cost for reception, trans-
mission and compression up the tree from node vk,i−1 to vk,0
and the second term captures the energy cost for storage and
transmission by node vk,i The total energy consumed in the
network is Etotal,

Etotal(δ, b) ,
∑
k∈K

(
EC

k + ER
k

)
, (5)

where δ = {δk,i,∀k ∈ K, i = 0, · · · , h(k)} and b =
{bk,i,∀k ∈ K, i = 0, · · · , h(k)}. Our objective is to minimize
the total energy consumption of the network with a QoI
constraint for end users by choosing the compression ratio
vector δ and caching decision vector b in the network G.
Therefore, the optimization problem is,

min
δ,b

Etotal(δ, b)

s.t.
∑
k∈K

yk

h(k)∏
i=0

δk,i ≥ γ,

bk,i ∈ {0, 1},∀k ∈ K, i = 0, · · · , h(k),∑
k∈Cv

bk,h(v)yk

h(v)∏
j=h(k)

δk,j ≤ Sv,∀ v ∈ V,

h(k)∑
i=0

bk,i ≤ 1,∀k ∈ K, (6)

where h(v) is the depth of node v in the tree. The first
constraint is the QoI constraint i.e. the total data available
at the sink node [1]. The second constraint indicates that our
decision/caching variable bk,i is binary. The third constraint
is on what can be cached at each node. The fourth constraint
is that at most one copy of the generated data should be
cached on the path between the leaf node and the sink node.

The optimization problem in (6) is a non-convex MINLP
problem with M continuous variables, the δk,i’s and M binary
variables, the bk,i’s where, M =

∑
k∈K h(k).

A. Properties

Theorem 1. The optimization problem defined in (6) is NP-
hard.

Proof. The optimization problem (6) can be reduced to a
general non-convex MINLP problem. Due to space limitations,
the general form of a non-convex MINLP and the reduction
steps are presented in [20]. Since non-convex MINLP is NP-
hard [21], the optimization problem described in (6) is NP-
hard.

Remark 1. The objective function Etotal defined in (6) is
monotonically increasing in the number of requests Rk for
all k ∈ K provided that δ and b are fixed.

Notice that (3) is independent of Rk and (4) is linear in Rk,
and its multipliers are positive. Hence, for any fixed b and δ,
(5) increases monotonically with Rk.

Remark 2. Given a fixed network scenario, if we increase the
number of requests Rk for the data generated by leaf node k,
then these data will be cached closer to the sink node or at
the sink node, if there exists enough cache capacity, to reduce
the overall energy consumption.

For fixed δ, observe from (4) that energy consumption
decreases if the cache is moved closer to the root as the nodes
deep in the tree do not need to retransmit.

B. Relaxation of Assumptions

In our model, we make several assumptions for the sake of
simplicity. In the following, we discuss the relaxation of these
assumptions.

While we assume that the network is structured as a tree,
this assumption can be easily relaxed as long as there exists
a simple fixed path from each leaf node to the sink node.
The tree structure represents a simple topology that captures
the key parameters in the optimization formulation without
the complexity introduced by a general network topology.
Furthermore, for simplicity, we assume that all parameters
across the nodes are identical, which is not necessary as
seen from the cost function. We also assume that only leaf
nodes generate data. However, our model can be extended to
allow intermediate nodes to generate data at the cost of added
complexity. Finally, rather than having a constant Rk, we can
generalize our approach to the case where Rk are drawn from
a distribution such as the Zipf distribution [5].

IV. VARIANT OF SPATIAL BRANCH AND BOUND
ALGORITHM

In this section, we present a variant of the Spatial Brand-
and-Bound algorithm (V-SBB). Instead of solving the MINLP
problem (6) directly, we use V-SBB to solve a standard
form of the original MINLP. We first introduce the Symbolic



Reformulation [15] method that reformulates the MINLP (6)
into a standard form needed by V-SBB.

Definition 1. A MINLP problem is said to be in a standard
form if it can be written as

min
w

wobj

s.t. Aw = b,

wl ≤ w ≤ wU ,

wk ≡ wiwj , ∀(i, j, k) ∈ Tbt,

wk ≡ wi/wj , ∀(i, j, k) ∈ Tlft, (7)

where the vector of variables w consists of continuous and
discrete variables in the original MINLP. The sets τbt and
τlft contain all relationships that arise in the reformulation.
A and b are a matrix and a vector of real coefficients,
respectively. The index obj denotes the position of a single
variable corresponding to the objective function value within
the vector w.

Theorem 2. The non-convex MINLP problem (6) can be
transformed into a standard form.

Due to space constraints, we relegate detailed reformula-
tions and standard form of (6) to [20].

Here, we give an example to illustrate the above reformu-
lation process.

Example 1. We consider k = 1 and h(k) = 1 in (6), i.e., one
leaf node and one sink node. Then (3) and (4) reduce to

EC
1 = y1f(δ1,0)δ1,1 + y1f(δ1,1),

ER
1 = y1(R1 − 1) [f(δ1,0δ1,1 + δ1,0δ1,1b1,0(wcaT + δ1T )]

+ y1(R1 − 1) [f(δ1,1(1− b1,0) + δ1,0δ1,1b1,1(wcaT + δ1T )] ,
(8)

and non-convex MINLP problem is

min
δ,b

Etotal(δ, b) = EC
1 + ER

1

s.t. y1δ1,0δ1,1 ≥ γ,
b1,0, b1,1 ∈ {0, 1},
b1,0y1δ1,0δ1,1 ≤ S0,

b1,1y1δ1,1 ≤ S1,

b1,0 + b1,1 ≤ 1. (9)

δ1,0δ1,1 is a bilinear term. Based on symbolic reformulation
rules (see [20] for details), a new bilinear auxiliary variable
wbt

1,0 needs to be added. The first constraint in (9) is then
transformed into y1w

bt
1,0 ≥ γ, which is linear in auxiliary

variable wbt
1,0. Similarly, we add wlft

1,0 for linear-fractional
term δ1,1/δ1,0 that appears in f(·). b1,0δ1,0δ1,1 in the third
constraint of (9) is a tri-linear term. Since δ1,0δ1,1 is replaced
by wbt

1,0, we obtain a bilinear term b1,0w
bt
1,0. Again, based

on symbolic reformulation rules, b1,0wbt
1,0 is replaced by a

new auxiliary variable wbt
1,0. Similarly we add new auxiliary

variables w̃b
1,1, w̃

bt
1,0, and w̃lft

1,0. The objective function in (9)

can be then expressed as a function of these new auxiliary
variables. Therefore, the standard form of (9) is

min
δ,b

wobj

s.t. y1w
bt
1,0 ≥ γ,

b1,0, b1,1 ∈ {0, 1},
y1w

bt
1,0 ≤ S0,

y1w̃
bt
1,1 ≤ S1,

b1,0 + b1,1 ≤ 1,

wbt
1,0 = δ1,1 × δ1,0,

wlft
1,0 = δ1,1/δ1,0,

wbt
1,0 = b1,0 × wb

1,0,

w̃bt
1,1 = b1,1 × δ1,1,

w̃bt
1,0 = δ1,1 × b1,0,

w̃lft
1,0 = b1,0/δ1,1,

wobj = y1ε1Rδ1,1 + ε1T y1w
bt
1,0 + y1ε1Cw

lft
1,0 − y1ε1Cδ1,1

+ y1ε1R + ε1T y1δ1,1 + y1ε1C/δ1,1 − y1ε1C + y1R1ε1Rδ1,0

+ y1R1ε1Tw
bt
1,0 + y1R1ε1Cw

lft
1,0 − y1R1ε1Cδ1,1 − y1R1δ1,1

− y1ε1Twbt
1,0 − y1ε1Cwlft

1,0 + y1ε1Cδ1,1 + y1R1wcaTw
bt
1,0

+ y1R1ε1Tw
bt
1,0 − y1wcaTw

bt
1,0 − y1ε1Twbt

1,0 + y1R1ε1R

+ y1R1ε1T δ1,1 + y1R1ε1C/δ1,1 − y1R1ε1C − y1ε1C
− y1ε1T δ1 − y1ε1C/δ1,1 + y1ε1C − y1R1ε1Rb1,0

− y1R1ε1T w̃
bt
1,0 − y1R1ε1Cw̃

lft
1,0 + y1R1ε1Cb1,0 + y1ε1Rb1,0

+ y1ε1T w̃
bt
1,0 + y1ε1Cw̃

lft
1,0 − y1ε1Cb1,0 + y1R1wcaTw̃

bt
1,1

+ y1R1ε1T w̃
bt
1,1 − y1wcaTw̃

bt
1,1 − y1ε1T b1,1. (10)

Through this reformulation, the non-convex and non-linear
terms in the original problem are transformed into bilinear
and linear fractional terms, which can be easily used to
compute the lower bound of each region in V-SBB, which are
discussed in details later. This is the reason V-SBB requires
reformulating the original problem into a standard form.

Theorem 3. Reformulated problem and the original MINLP
are equivalent.

Proof is available in [20].
Due to the reformulation, the number of variables in the

reformulated problem is larger than in the original MINLP. In
the following, we show that the number of auxiliary variables
that arise from symbolic reformulation is bounded.

Remark 3. The number of auxiliary variables in the symbolic
reformulation is O(n2), where n = 2M is the number of
variables in the original formulation.

From [22], a way to transform a general form optimization
problem into a standard form (7) is through basic arithmetic
operations on original variables. To be more specific, any
algebraic expression results from the basic operators including
the five basic binary operators, i.e., addition, subtraction,
multiplication, division and exponentiation, and the unary
operators, i.e., logarithms etc. Therefore, in order to construct
a standard problem consisting of simple terms corresponding
to these binary or unary operations, new variables need to be



added corresponding to these operations. From the symbolic
reformulation process [22]–[24], any added variable results
from the basic operations between two (including possibly the
same) original variables or added variables. Hence, based on
the basic operations, there are at most n2 combinations of
these variables, given that there are n variables in the original
problem (6). Therefore, the number of added variables in the
symbolic reformulation is bounded as O(n2). In the remainder
of this section, we present the V-SBB to solve the equivalent
problem.

A. Variant of Spatial Branch-and-Bound Algorithm

In contrast with conventional SBB, our newly proposed
V-SBB eliminates the bound-tightening steps. This has two
advantages: (i) bound tightening step does not always guaran-
tee faster convergence; (ii) removal significantly reduces the
computational complexity of the algorithm. Algorithm 1 gives
an overview of V-SBB. We briefly describe the key steps due
to space limitations. A detailed explanation of each step is
given in [20].
Step 2: We use the least lower bound rule2 to choose a
subregion R from L among all feasible subregions. This
lower bound is obtained by solving a convex relaxation of the
reformulated problem such as (10). McCormick linear over-
estimators and underestimators [25] are used to obtain the
convex relaxation for bilinear terms (bt) and linear fractional
terms (lft). This leads to a Mixed Integer Linear Program
(MILP), that can be solved by the SCIP solver [26]. Denote
the optimal solution of this subregion as φR,l. Note that if the
convex relaxation is infeasible or the obtained lower bound is
greater than the current upper bound φu, we move to Step 5,
otherwise we move to Step 3.
Step 3: We compute the upper bound φR,u for the subregionR
through local MINLP solver such as Bonmin [16]. If this upper
bound cannot be obtained or is greater than φu, we move to
Step 4. Otherwise, we set it as the current best solution φu, and
delete all other subregions that have higher lower bounds than
this region’s upper bound. If the difference between the upper
and lower bounds for this subregion is within ε-tolerance, we
delete this subregion by moving to Step 5, otherwise move to
Step 4.
Step 4: known as the branching step, is used to select a
variable and its corresponding value at which the region is
further divided. Here, we use the variable and value selection
rule specified in [23], under which the variable that causes the
maximal reduction in the feasibility gap between the solution
of Step 2 and the exact problem, is branched on. Then we
partition R into Rright and Rleft, and add them into L as well
as delete R.

B. Convergence of V-SBB

Definition 2. A solution to an optimization problem is said to
be ε-global optimal if the difference between this solution and
the optimal one is within ε.

2Select a subregion R ∈ L , whose convex relaxation provides the lowest
objective function value.

Fig. 3. Candidate network topologies used in the experiments: (a) one sink
node and one leaf node; (b) one sink node and two leaf nodes; (c) one sink
node, one intermediate node and two leaf nodes; and (d) one sink node, two
intermediate nodes and four leaf nodes.

Theorem 4. Our V-SBB described in Algorithm 1 converges
to an ε-global optimal solution of its standard problem given
in [20].

Though we made critical modifications to obtain our V-
SBB algorithm, the proof of convergence follows an argument
similar to that of Branch-and-select given in [27]. We present
the poof in [20] for completeness.

Algorithm 1 Variant of Spatial Branch-and-Bound (V-SBB)
Step 1: Initialize φu :=∞ and L to a single domain
Step 2: Choose a subregion R ∈ L using least lower
bound rule
if L = ∅ then Go to Step 6
if for chosen region R, φR,l is infeasible or φR,l ≥ φu−ε
then Go to Step 5
Step 3: Obtain the upper bound φR,u

if upper bound cannot be obtained or if φR,u > φu then
Go to Step 4
else φu :=φR,u and, from the list L, delete all subregions
S ∈ L such that φS,l ≥ φu − ε
if φR,u − φR,l ≤ ε then Go to Step 5
Step 4: Partition R into new subregions Rright and Rleft
Step 5: Delete R from L and go to Step 2
Step 6: Terminate Search
if φu =∞ then Problem is infeasible
else φu is ε-global optimal

V. EVALUATION

We evaluate the performance of our V-SBB algorithm as
well as the energy efficiency of our communication, compres-
sion and caching (C3) joint optimization framework through a
series of experiments on several network topologies as shown
in Figure 3. Our key objective is to gain preliminary insights
into our algorithm when compared with a few other well-
known techniques. The highlights of the evaluation results are:



• Our V-SBB algorithm can obtain an ε-global optimal
solution in most situations within a reasonable time. Also
it is robust and stable to various parameters in different
network scenarios.

• When Bonmin [16] can achieve a solution, it is faster.
However, the solution obtained through Bonmin is not al-
ways comparable to that of V-SBB. We observe that when
higher compression is done (i.e., smaller value of γ), V-
SBB always outperforms Bonmin. More importantly, we
find that Bonmin has poor performance in stability and
robustness, i.e., it cannot even produce feasible solutions
in some cases although they exist. NOMAD [17] and GA
[18] often produce objective-function values much larger
than V-SBB.

• Our C3 joint optimization framework improves energy
efficiency by as much as 88% compared to the C2
optimization over communication and computation, or
communication and caching.

A. Methodology
Performance metrics: Our primary metrics for comparisons
are:
(1) The best solution to the objective function: Since obtaining
the global optimum for the NP-hard problem is daunting, we
are primarily interested in ε-global optimum;
(2) Convergence Time, which is the time an algorithm needs
to obtain the best solution;
(3) Stability and Robustness, which is characterized by the
frequency or ability of the algorithm to provide feasible
solutions, provided that they are known to exist;
(4) Energy efficiency in joint optimization. We compare the
energy cost of our joint optimization framework for com-
munication, computation and caching (C3) with that of the
optimization of any of the two types of resources (denoted by
C2) under the same situation. The energy efficiency E defined
as:

E =
Etotal∗(C2)− Etotal∗(C3)

Etotal∗(C2)
× 100%, (11)

where Etotal∗(C3) and Etotal∗(C2) are the optimal energy costs
under the C3 optimization framework in (6) and the C2
optimization, respectively. E reflects the reduction of energy
efficiency for the C3 over the C2 optimization.

TABLE II
CHARACTERISTICS OF THE SOLVERS USED IN THIS PAPER

Solver Characteristics
Bonmin [16] A deterministic approach based on Branch-and-Cut

method that solves relaxation problem with Interior
Point Optimization tool (IPOPT), as well as mixed
integer problem with Coin or Branch and Cut (CBC).

NOMAD [17] A stochastic approach based on Mesh Adaptive
Direct Search Algorithm (MADS) that guarantees
local optimality. It can be used to solve non-convex
MINLP and has a relatively good performance.

GA [18] A meta-heuristic stochastic approach that can be
tuned to solve global optimization problems. We use
Matlab Optimization Toolbox’s implementation.

Setup: We implement V-SBB in Matlab on a Core i7 3.40 GHz
CPU with 16 GB RAM. The candidate MINLP solvers in this

work include Bonmin, NOMAD and GA, which are imple-
mented with Opti-Toolbox [28]. We summarize the character-
istics of these solvers in Table II. Note that these solvers can
be applied directly to solve the original optimization problem
in (6), while our V-SBB solves the equivalent problem. The
reformulations needed are executed by a Java based module
and we derive the bounds on the auxiliary variables. We
also relax the integer constraint in (6) to obtain a non-linear
programming problem, which is solved by IPOPT [29] and use
it as a benchmark for comparison. V-SBB terminates when ε-
optimality is obtained or a computation timer of 200 seconds
expires. We take ε = 0.001 in our study. If the timer expires,
the last feasible solution is taken as the best solution. Our
simulation parameters are provided in Table III, which are the
typical values used in the literature [1], [7], [8].

TABLE III
PARAMETERS USED IN SIMULATIONS

Parameter Value Parameter Value (Joules)
yk 1000 εvR 50 × 10−9

Rk 100 εvT 200 × 10−9

wca 1.88 × 10−6 εcR 80 × 10−9

T 10s γ [1,
∑

k∈K yk]

B. The Best Solution to the Objective Function
We compare the performance of V-SBB with three other

candidate solvers for the networks in Figure 3. The results for
two nodes and seven nodes are presented in Tables IV and V.
We observe that V-SBB achieves the lowest value comparable
to Bonmin for larger values of γ, and significantly outperforms
Bonmin for smaller values of γ, which we discuss in detail
later. However, Bonmin cannot generate a feasible solution
even if it exists for some cases. This is because Bonmin is built
on the Branch-and-Cut method, which sometimes cuts regions
where a lower value exists. NOMAD and GA in general yield
a higher objective-function value than V-SBB does. This is
because both NOMAD and GA are based on a stochastic
approach which cannot guarantee convergence to the ε-global
optimum. Similar trends are observed for three and four node
networks, details can be found in [20] due to space limitations.

Figure 4 verifies that the optimal energy cost is monotoni-
cally increasing with the number of requests, as stated in Re-
mark 1 for a two node and seven node network. The results are
obtained using our C3 framework for γ = 0.25

∑
k∈K yk and

γ = 0.75
∑

k∈K yk, respectively. For the network parameters
under consideration, we note that there is a turning point on
the curves, and the total energy cost increases much faster with
the number of requests before the turning point than that after
it. This is because the data has already been cached at the root
node at this point and there is no need to retrieve data from
other nodes in the network, which reduces transmission costs.
This is the benefit that caching brings, and we will further
discuss the advantage of C3 optimization over the C2 later in
Section V-E.

C. Convergence Time
The time taken to obtain the best solution is important

in practice. The amount of time that an algorithm requires



TABLE IV
THE BEST SOLUTION TO THE OBJECTIVE FUNCTION (OBJ.) AND CONVERGENCE TIME FOR TWO NODES NETWORK

Solver γ = 1 γ = 250 γ = 500 γ = 750 γ = 1000
Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

Bonmin 0.010 0.076 0.018 0.07 0.026 0.071 0.032 0.077 0.039 0.102
NOMAD 0.012 1.036 0.038 0.739 0.033 0.640 0.038 0.203 0.039 0.263
GA 0.010 0.286 0.018 2.817 0.026 7.670 0.042 11.020 0.064 3.330
V-SBB 0.010 18.231 0.018 17.389 0.026 12.278 0.032 7.327 0.039 19.437
Relaxed 0.010 0.075 0.018 0.048 0.026 0.046 0.032 0.050 0.039 0.059

TABLE V
THE BEST SOLUTION TO THE OBJECTIVE FUNCTION (OBJ.) AND CONVERGENCE TIME FOR SEVEN NODES NETWORK

Solver γ = 1 γ = 1000 γ = 2000 γ = 3000 γ = 4000
Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

Bonmin 0.0002 0.214 0.039 0.164 0.078 0.593 0.117 0.167 0.156 0.212
NOMAD 0.004 433.988 0.121 381.293 0.108 203.696 0.158 61.093 0.181 26.031
GA 0.043 44.538 0.096 30.605 0.164 44.970 0.226 17.307 0.303 28.820
V-SBB 0.0001 1871.403 0.039 25.101 0.078 30.425 0.117 23.706 0.156 19.125
Relaxed 0.0002 0.201 0.039 0.111 0.078 0.095 0.117 0.102 0.156 0.105
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Fig. 4. Total Energy Costs vs. Number of Requests.

TABLE VI
INFEASIBILITY OF BONMIN FOR NETWORKS IN FIGURE 3

Networks (a) (b) (c) (d)
# of test values 1000 2000 2000 4000

# of infeasible solutions 0 0 1 216
Infeasibility (%) 0 0 0.05 5.4

to obtain its best solution as discussed in Section V-B are
shown in Tables IV and V for the two node and seven
node networks, respectively. It can be see that Bonmin is the
fastest method since it uses the branch-and-cut approach which
cuts certain domains to accelerate the branching process. As
discussed earlier, the Bonmin algorithm is fast at the expense
of algorithm stability, i.e., sometimes it cannot find a solution
although it exists. This will be further discussed in the follow-
ing section. V-SBB takes longer to obtain a better solution,
because our reformulation introduces auxiliary variables and
additional linear constraints. Different applications can tolerate
various degrees of algorithm speed. For the sample networks
and applications under consideration, the speed of V-SBB is
considered to be acceptable [21].

D. Stability and Robustness

From the analysis in Sections V-B and V-C, we know
that Bonmin is faster but unstable in some situations. We
further characterize the stability of Bonmin with respect to
the threshold value of QoI γ as follows. Specifically, we fix
all other parameters in Table III, and vary only the maximal
possible value of γ in different networks. The results are
shown in Table VI. For each maximal value, we test all the
possible integer values of γ between 1 and itself. Hence,
the number of tests equals the maximal value. We see that
the number of instances where the Bonmin method fails to
produce a feasible solution increases as the network size
increases. This is mainly due to the cutting phase in the
Bonmin method, which cuts the feasible regions that need to
be branched.

Although Bonmin can provide a feasible solution for smaller
values of γ at a faster time, we observe that the value of
the solution is larger than that of V-SBB. We compare the
performance of V-SBB and Bonmin for smaller values of γ
in Table VII. We see that V-SBB outperforms Bonmin by as
much as 52.45% when searching for an ε-global optimum,
though it requires more time. The timer is set to 7200s for
results shown in Table VII.

E. Energy Efficiency

We compare the total energy costs under joint C3 opti-
mization with those under C2 optimization. We consider two
cases for the C2 optimization: (i) C2o (Communication and
Computation), where we set Sv = 0 for each node to avoid any
data caching; (ii) C2a (Communication and Caching), where
we set γ =

∑
k∈K yk, which is equivalent to δv = 1, ∀v ∈ V ,

i.e., no computation. Comparison between C3, C2o and C2a
is shown in Figure 5.

First, we observe that as the number of requests increases,
the total energy cost increases, as reflected in Remark 1.
Second, the energy cost for the C3 joint optimization is lower
than that for C2o optimization for the same parameter setting.
This captures the tradeoff between caching, communication
and computation. In other words, although C3 incurs caching
costs, it may significantly reduce the communication and



TABLE VII
COMPARISON BETWEEN V-SBB AND BONMIN FOR SMALLER VALUES OF γ IN SEVEN NODE NETWORK

Solver γ =1 γ=3 γ =5 γ =8 γ =50
Obj. Time (s) Obj. Time Obj. Time Obj. Time Obj. Time

Bonmin 0.0002 0.214 0.0003 0.211 0.0003 0.224 0.0005 0.23 0.0021 0.364
V-SBB 0.00011 1871.403 0.00015 2330 0.00019 1243.77 0.00047 1350.016 0.0020 3325.302
Improvement (%) 52.45 49.43 50.30 7.59 4.62
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Fig. 5. Comparison of C3 and C2 optimization for the seven node network
in Figure 3.

computation, which in turn brings down total energy cost. Sim-
ilarly, C3 optimization outperforms C2a although C3 incurs
caching cost. Using Equation (11), energy efficiency improves
by as much as 88% for the C3 framework when compared
with the C2 formulation. These trends are observed in other
candidate network topologies and readers are referred to [20]
for details due to space limitations.

Remark 4. Note that the above results are based on parameter
values typically used in the literature, as shown in Table III.
From our analysis, it is clear that the larger the ratio between
εvT and εvR, εvC , the larger will be the improvement provided
by our C3 formulation.

VI. CONCLUSION

We have investigated energy efficiency tradeoffs among
communication, computation and caching with QoI guar-
antee in communication networks. We first formulated an
optimization problem that characterizes the energy costs for
communication, computation and caching. This optimization
problem belongs to the non-convex class of MINLP, which
is hard to solve in general. We then proposed a variant of
the spatial branch-and-bound (V-SBB) algorithm, which can
solve the MINLP with ε-optimality guarantee. Finally, we
show numerically that the newly proposed V-SBB algorithm
outperforms the existing MINLP solvers, Bonmin, NOMAD
and GA. We also observed that C3 optimization framework,
which to the best of our knowledge has not been investigated
in the literature, leads to an energy saving of as much as 88%
compared with either of the C2 optimizations which have been
widely studied.

Going further, we aim to extend our results in two ways.
The first is to refine and improve the symbolic reformulation
to reduce the number of needed auxiliary variables in order to
shorten the algorithm execution time. Second, since many net-
working problems involve the optimization of both continuous
and discrete variables as in this work, we plan to apply and
extend the newly proposed V-SBB to solve those problems.
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