Speech Quality in Noise

"Method for the evaluation of a speech enhancement system in terms of the perceived improvement in the quality of a noisy speech signal"

Dushyant Sharma Imperial College

Speech Quality

Speech Quality Measurement

- Subjective
- Objective
 - Intrusive
 - Non- Intrusive

Listening Tests : Baseline Vs Commercial

- Methodology
- Results & Conclusions

Low Complexity Quality Assessment Algorithm

- Overview
- Performance

Speech Quality :: Subjective Measurement

- Assessment of speech quality harder than intelligibility, as quality is a less formal measure.
- Broadly two types of subjective speech quality tests:
 - Quality Rating Tests (ITUT, 1998a)
 - Listeners assign absolute ratings to individual speech stimuli
 - Mean Opinion Score scale from 1 (bad) to 5 (excellent)
 - Preference Tests
 - Listeners exhibit preference for one speech stimulus over one or more others

Speech Quality :: Objective Measurement

- Intrusive :
 - PESQ (ITU-T P.862) complex sequence of processing steps to generate distortion scores as a function of frequency and time
- Non-Intrusive :
 - ITU-T P.563 standard for non-intrusive quality assessment
 - LCQA low complexity algorithm for non-intrusive quality assessment

Pair-wise Listening Tests

- Pair-wise tests performed to get a subjective view for the effect of different algorithms
- Experiment Design
 - 30 Listeners
 - Two categories:
 - Preference of enhanced over noisy signal
 - Conducted for baseline algorithms : SS, MMSE
 - 3 Noise Types: Car, Hum, Babble
 - 3 SII levels: 0.1, 0.3 and 0.5
 - Preference of enhancement algorithm
 - Conducted for Com1, Com2, SS and MMSE
 - 3 Noise Types : Car, Hum, Babble
 - 1 SII : 0.3

Soundjudge Interface

Sound Judge	- Play			
Play 1	Play 2			Step 1/9
Which of the two recordings do you prefer?				
	F	Prefer First 🔘	Prefer Second	
				ок

Results

- Comparing Enhancement over Original Noisy:
 - Results yielded a total score, representing the number of times the enhancement was chosen over the noisy original
 - reference metric used for comparison

 Results for Spectral Subtraction (SS) and Minimum Mean Square Estimator Algorithms (MMSE)

Preference of Enhanced Signal

SII Comparison : MMSE/SS

Results

- Comparing Different Enhancement Algorithms:
 - The results from the tests yielded a total score, representing the number of times one enhancement technique was chosen over another
 - This is the reference metric used for comparison
 - Results for SS, MMSE, Com1, Com2
 - ANC tested for Hum noise only

Comparing Algorithms :Hum Noise

Comparing Algorithms : Car and Babble

Conclusions

- Com1 has best overall performance for all SII and Noise Types
 - Uses a 'clever' combination of enhancement algorithms
 - Applies Post-Processing to sound more natural
- SS/MMSE work best on Hum
 - SS, MMSE, Com2, ANC : Similar Performance
- Car and Babble
 - MMSE and Com2: Similar Performance
 - SS: Poor Performance due to corruption by musical noise
- Need for a nonintrusive objective quality classifier for fine tuning of baseline algorithms

Low Complexity, Nonintrusive Speech Quality Assessment [Grancharov et al]

- Designed as a tool for QoS monitoring of Communication Networks
- Extracts a set of features and GMM mapping to obtain a measure of quality
- Lower Complexity than the ITUT P.563 standard algorithm
 - Generates quality assessment ratings without explicit distortion modeling
 - No perceptual transformation of the signal
 - Features can be computed from commonly used speech-coding parameters

LCQA : Algorithm Overview

LCQA : Per Frame Features

- Feature Set aims to capture the structural information from the speech signal
 - Spectral Flatness : related to the strength of the resonant structure in the power spectrum. High spectral flatness indicates that the spectrum has a similar amount of power in all frequency bands (white noise).
 - Spectral Dynamics : rate of change of the power spectrum
 - Spectral Centroid : frequency area around which most of the signal energy is concentrated
 - Var. of excitation of a 10th order AR model
 - Speech Signal Var.
 - Pitch Period : Speaker Dependant feature (quality is speaker dependant)

LCQA : Global Features

LCQA : GMM Mapping

- A Gaussian Mixture Model of 12 mixtures is trained on MOS score labeled data
 - Gives a trained GMM
 - Uses the stored GMM to predict subjective MOS score from global features of the test data
 - LCQA needs lots of training data to model the system effectively
 - Claims correlation up to 0.95 with subjective score