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Anisotropic diffusion filtering is highly dependent on some crucial parameters, such as the conductance

function, the gradient threshold parameter and the stopping time of the iterative process. The various

alternative options at each stage of the algorithm are examined and evaluated and the best choice is

selected. An automatic stopping criterion is proposed, that takes into consideration the quality of the

preserved edges as opposed to just the level of smoothing achieved. The proposed scheme is evaluated

with the help of real and simulated images, and compared with other state of the art schemes using

objective criteria.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Based on the importance of the scale-space representation of
images, which was introduced by Witkin [1], Perona and Malik
suggested a new definition of scale-space through Anisotropic
Diffusion (AD), a non-linear partial differential equation-based
diffusion process [2]. Overcoming the undesirable effects of linear
smoothing filtering, such as blurring or dislocating the semanti-
cally meaningful edges of the image, AD has become a very useful
tool in image smoothing, edge detection, image segmentation and
image enhancement. AD filtering can successfully smooth noise
while respecting the region boundaries and small structures
within the image, as long as some of its crucial parameters are
determined or estimated correctly. The conductance function, the
gradient threshold parameter and the stopping parameter form a
set of parameters which define the behavior and the extent of the
diffusion. Overestimating one of the parameters may lead to an
oversmoothed blurry result, while underestimating it may leave
the noise in the image unfiltered. Therefore, it is crucial that all
parameters are determined in an optimal and automatic way in
every step of the iterative process, by evaluating both the
denoising needs and the quality of the edges of a given image.

Over the last years, a great amount of work has been done with
respect to both the continuous and discrete form of AD filtering as
stated by Perona and Malik [2]. As for the behavior of the
continuous form of AD, there has been a considerable amount of
ll rights reserved.
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research proving the ill-posedness of the diffusion equation and
developing new well-posed equations or regularizing methods
[3–11]. In [12,13] a semi-implicit scheme was presented, while in
[14] a different discrete implementation was proposed in order to
obtain better isotropy. A multigrid approach leading to a well-
posed, steady-state solution was proposed in [11]. In [15] a time-
dependent numerical scheme was proposed. In [16] a modified
method that considers also the variance of the brightness levels in
a local neighborhood around each pixel was presented. However,
the problem of the automatic estimation of the crucial parameters
was not addressed. A modified diffusion scheme, suitable for
images with low-contrast and uneven illumination, was described
in [17]. In [18,19] the attention was drawn mostly to the discrete
implementation of the scheme and the experimental results of
the new conductance functions that were proposed. The auto-
matic estimation of the method’s parameters was also studied in
these works. Since several conductance functions can be used,
differentiating considerably the filtering results as shown in [18],
it is necessary to define the appropriate one and scale it in a way
that the edges remain the sharpest possible. The importance of
the scaling of the conductance function is emphasized in the
current work, leading to a comparison and selection of the most
edge-preserving function.

In [20] the necessity of the gradient threshold parameter to be
a decreasing function of time was first shown. In this way, the
parameter adapts itself to the denoising needs of the filtered
image after every iteration, preserving all the edges above a
decreasing threshold. Various methods estimating this parameter
were proposed using statistical characteristics of the image
[2,18,19] and morphological operators [21]. These methods are
compared in the current work, along with a proposed statistical
parameters for anisotropic diffusion in image processing, Pattern
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method which estimates two gradient threshold parameters and
yields robust filtering results.

Since AD is an iterative process, the problem of choosing the
optimal time to stop the iterations and prevent an oversmoothed
result is crucial. Adding a fidelity term that keeps the resultant
image close to the original image has been proposed in [8,22,23]
but the noise in that case had not been sufficiently removed.
In [24], a stabilized, insensitive to the number of iterations process
was introduced. A multigrid algorithm was presented and evaluated
in [11], introducing a Brent-NCP (Normalized Cumulative Period-
ogram) automatic stopping parameter method. A frequency
approach of the problem was presented in [25]. Some criteria
estimating a stopping parameter have been introduced in [26–29]
based solely on the extend of the noise smoothing of the filter in
every iteration. Spatially varying stopping methods that increase
significantly the computational cost were presented in [30,31].
The quality of the preserved edges was not considered in any of
the above methods. As it is shown in the present work, the
evaluation of the image’s edges is strongly related to the stopping
time estimation problem. A novel automatic stopping criterion
based on this approach is described and evaluated.

Anisotropic diffusion has been widely used in biomedical
imaging [14,32–35]. Plenty of applications where nonlinear diffu-
sion filtering has also been used can be found in [9].

The goal of the current work is to investigate fully the role of
the parameters on the quality of the results of the AD discrete
scheme and propose novel methodology for their automatic
adaptation, as well as a novel termination criterion for the whole
iterative process, so that the final denoised result is optimal.

This paper is organized as follows: in Section 2 we present the
critical steps of the method and perform a comparative evaluation
of the various proposed options. The right choice and scaling of
the conductance function and the methods for estimating the
gradient threshold parameter are considered in order to come up
with the optimal automatic discrete scheme. In Section 3 we
present a novel stopping criterion based on the quality of the
image’s edges and in Section 4 we evaluate the scheme using a set
of natural images. The discussion and concluding remarks are
presented in Section 5.
2. Anisotropic diffusion

2.1. Overview of the process

The basic equation of anisotropic diffusion equation as pre-
sented in [2] is

@Iðx,y,tÞ

@t
¼ div½gðJrIðx,y,tÞJÞrIðx,y,tÞ� ð1Þ

where t is the time parameter, Iðx,y,0Þ is the original image,
rIðx,y,tÞ is the gradient of the version of the image at time t and
gð�Þ is the so-called conductance function. This function is chosen
to satisfy limx-0 gðxÞ ¼ 1, so that the diffusion is maximal within
uniform regions, and limx-1 gðxÞ ¼ 0, so that the diffusion is
stopped across edges. Two such functions proposed by Perona
and Malik were

g1ðxÞ ¼ exp �
x

K

� �2
� �

ð2Þ

and

g2ðxÞ ¼
1

1þ
x

K

� �2
ð3Þ

where K is the gradient magnitude threshold parameter that
controls the rate of the diffusion and serves as a soft threshold
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between the image gradients that are attributed to noise and
those attributed to edges. Black et al. in [18], through an inter-
pretation of AD in terms of robust statistics, defined a different
conductance function, called Tukey’s biweight function

g3ðxÞ ¼
1

2
1�

x

S

� �2
� �2

, xrS

0 otherwise

8><
>: ð4Þ

where S¼ K
ffiffiffi
2
p

.
The flow function f defined as

fðxÞ � gðxÞx ð5Þ

represents the sum of the brightness flow that is generated. The
maximum flow is generated at locations where 9rI9¼ K .

Perona and Malik discretized their anisotropic diffusion equa-
tion to

Itþ1ðsÞ ¼ ItðsÞþ
l

9Zs9

X
pAZs

g
K
ð9rIs,p9ÞrIs,p ð6Þ

where I is a discretely sampled image, s denotes the pixel position
in the discrete 2-D grid, t denotes the iteration step, g is the
conductance function and K is the gradient threshold parameter.
Constant lAð0,1� determines the rate of diffusion and Zs repre-
sents the spatial 4-pixel neighborhood of pixel s: Zs ¼ fN, S, E, Wg,
where N, S, E and W are the North, South, East and West
neighbors of pixel s, respectively. Consequently, 9Zs9 is equal to
4 (except for the image borders). The symbol r which in the
continuous form is used for the gradient operator, now represents
a scalar defined as the difference between neighbouring pixels in
each direction:

rIs,p ¼ ItðpÞ�ItðsÞ, pAZs ¼ fN,S,E,Wg: ð7Þ

As mentioned by Perona and Malik, this scheme is not the
exact discretization of the continuous equation, with more
numerically consistent methods having been proposed in the
literature. However, it is favoured due to its low computational
complexity, preserving most of the properties of the continuous
form [2].
2.2. Choosing the conductance function

According to Perona and Malik [2], the g1 conductance
function favours high-contrast edges over low-contrast ones,
while the g2 function favours wide regions over smaller ones.
The g3 function, according to Black et al. [18], yields sharper
edges improving considerably the experimental results of the
filtering, since the diffusion process converges faster. We will
focus on the scaling and comparison done by Black et al. in
order to examine the different experimental behavior of the
conductance functions.

In order to be able to compare their efficiency, Black et al.
scaled the conductance functions g1, g2 and g3, so that their
respective flow functions, given by (5), reach the same maximum
value (producing the same amount of brightness flow) at the
same point x¼K (Fig. 1a). This leads us to the following scaled
conductance functions:

g1ðxÞ ¼ exp �
x

K
ffiffiffi
2
p

� �2
" #

ð8Þ

g2ðxÞ ¼
1

1þ
x

K

� �2
ð9Þ
parameters for anisotropic diffusion in image processing, Pattern

dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012


0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
φ1

φ2

φ3
S
K

0 0.2 0.4 0.6 0.8 1
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

φ1

φ3
S

Fig. 1. The flow functions (a) f1, f2 and f3 aligned and scaled so that the flow is maximum at the same point K. (b) f1 and f3 aligned and scaled so that the flow reaches

zero near the same point S.

Fig. 2. (a) A zoomed part of the original Lena image. (b) The AD filtering result after 20 iterations using g1. (c) The AD filtering result after 20 iterations using g3.

C. Tsiotsios, M. Petrou / Pattern Recognition ] (]]]]) ]]]–]]] 3
g3ðxÞ ¼
0:67 1�

x

K
ffiffiffi
5
p

� �2
" #2

, xrK
ffiffiffi
5
p

0 otherwise

8>><
>>: ð10Þ

As it can be easily noticed in Fig. 1a, using the Perona and
Malik functions g1 and g2, the flow continues to take place and
smooth the image, while using Tukey’s biweight g3 function, the
flow descends more rapidly and stops the diffusion, protecting
this way the edges from becoming oversmoothed and blurred.
Assuming, in this case, that an image is characterized only by
strong edges above a certain threshold (the point x¼S where g3

reaches zero), g3 function will leave the edges untouched while
the other functions will not.

This function scaling and comparison favours g3 function
which descends faster, preventing an amount of edges above a
certain threshold S from becoming smoothed away. S treated as
the boundary between noise and edges in practice means that the
local gradients below S will be smoothed and those above S,
treated as outliers in [18], will be preserved since the diffusion is
stopped. Consequently, in order to compare the behavior of the
different conductance functions, it is suggested that they are
scaled so that the respective conductance and flow functions tend
to zero at the same point S. Since the g2 function descends very
slowly to zero, it is regarded to be more noise smoothing-efficient
than edge-preserving. This leads us to a comparison between the
two other functions. The g1 function does not reach zero until 1
either, hence it is scaled so that it reaches a very small value at
point S, where the g3 function reaches zero, while both functions
are aligned so that their flow functions generate the same
maximum diffusion value (Fig. 1b). The small but finite value g1

has to reach at S is important for the shape of the function. As we
are working in the digital domain, where brightness is quantised
into 256 levels, we may say that the implied digital 0 is equal to
0:5=256� 0:002. However, image enhancement is the subjective
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
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improvement of an image, and so one has to take into considera-
tion also the way humans perceive grey tone differences. It is
known that humans on average cannot distinguish grey levels
that differ for less than � 2�3 levels. So, we may consider that,
for practical purposes, g1ðSÞ is 0 when it takes the value
� 0:006� expð�5Þ. This corresponds to g1ðSÞo0:01 max fg1g.
The conductance functions are now set to be

g1ðxÞ ¼ exp �
x
ffiffiffi
5
p

S

 !2
2
4

3
5 ð11Þ

g3ðxÞ ¼
0:67 1�

x

S

� �2
� �2

, xrS

0 otherwise

8><
>: ð12Þ

As it can be seen from Fig. 1b, f1 now descends faster and is
expected to result in sharper discontinuities. The experimental
results of diffusing the Lena image using the two functions can be
seen in Fig. 2. The value of S was kept fixed to S¼0.1 and T¼20
iterations were conducted. It can be seen that the g1 function
produces sharper boundaries in some parts of the image.

Using the synthetic image of Fig. 3a and adding Gaussian noise
of zero mean and different standard deviations Nð0,s2Þ, we were
able to measure the PSNR value of the resultant denoised image
after diffusing with g1 and g3. The PSNR is defined as

PSNR¼ 10 log10
maxðI0Þ

2

MSE
ð13Þ

where MSE¼ ð1=rcÞ
Pr

i ¼ 1

Pc
j ¼ 1ðIt�I0Þ

2. It is the filtered image in
iteration t, I0 is the original noise-free synthetic image and r,c
indicate the number of rows and columns of the image, respectively.
The results show the advantage of g1 over Tukey’s biweight g3.
parameters for anisotropic diffusion in image processing, Pattern
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Fig. 3. (a) An original synthetic image. (b) Noise with different values of s was added to the synthetic image and the PSNR of the diffused resultant images was measured

in every iteration, using g1 and g3. s¼ 0:025,0:05,0:075,0:1,0:5, from top to bottom, respectively.

Fig. 4. (a) A zoomed part of the original Cameraman image. (b) A noisy version of it (Gaussian noise with s¼ 0:1). (c) The basic AD filtering result after 15 iterations.

(d) The AD filtering result after 15 iterations, by estimating the local gradients from a smoothed version of the image.
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2.3. Calculating the gradient

The basic AD scheme has a good edge-preserving behavior
after choosing the right conductance function, but is incapable of
denoising efficiently images with high levels of noise. This
problem lies in the fact that the image gradient is not a reliable
measure since it is susceptible to noise [4,20,36]. A response to
this problem is to replace term gðJrIðx,y,tÞJÞ in (1) with
gðJrðGsnIðx,y,tÞÞJÞ, where Gs is a Gaussian filter of scale s. This
means that the local gradients that are the argument of the
conductance function are now computed using a smoothed
version of the image in every iteration.

In order to estimate automatically scale s of the Gaussian filter
according to the level of the Gaussian noise within an image, a
sliding window of size between 25�25 and 64�64 pixels is used
(in order to have enough pixels for reliable statistical calculation),
so that the most uniform block of pixels within the image is
detected. The uniformity measure used is the standard deviation
of the pixels within each block. Finally, the standard deviation of
the most uniform block is considered to be the scale s of the
Gaussian filter. From the value of s the size of the smoothing
Gaussian filter is then determined as described in [37]. As it can
be seen from Fig. 4, computing the local gradients on a smoothed
version of the noisy image can eliminate successfully the artifacts
that are preserved in the resultant image when using the basic AD
scheme.

2.4. Estimating the gradient threshold parameter

The estimation of the gradient threshold parameter plays a
major role in the diffusion process, since it defines the threshold
between the image gradients that are attributed to noise and
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
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those attributed to true edges. Although in the literature the
gradient threshold parameter is mentioned as parameter K, in the
current work it will be mentioned as parameter S. As it was
described in Section 2.2, S is the point where the conductance
function reaches zero and the diffusion is stopped, preserving true
edges. Some methods that have been proposed in order to
estimate the gradient threshold parameter are the following:
1.
par
Perona and Malik in [2] suggested the use of the ‘‘noise
estimator’’ described by Canny [38], where a histogram of
the absolute values of the gradient throughout the image is
computed and S is set equal to the 90% value of its integral
(cumulative sum) in every iteration.ffiffiffip
2.
 Black et al. in [18] defined S¼ se 5¼ 1:4826MADðrIÞ, where
MAD denotes the median absolute variation and is defined as
MAD¼medianðJrI�medianðJrIJÞJÞ.
3.
 Voci et al. in [21] used the p-norm of the image and defined
S¼ sJIJp=rc. Here s is a constant, proportional to the image
average intensity, r and c are the number of rows and columns
of the image respectively, and JIJp is the p-norm of the image
defined as JIJp ¼

P
i,jA I9I9

p
� �1=p

.

4.
 Voci et al. in the same work, used a morphological approach to

estimate S as follows: S¼
P

i,jA IIJst=rc�
P

i,jA II�st=rc, where st

is a structuring element (usually 3�3 or 5�5) and the
symbols ‘‘J’’ and ‘‘�’’ represent the opening and closing
operators, respectively.

The first two of the above methods are based on the use of the
absolute value of the image gradient in order to estimate the
gradient threshold parameter. We notice in (14) that in the
discrete AD scheme, for every pixel s in the image there are four
ameters for anisotropic diffusion in image processing, Pattern

dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012


2 4 6 8 10
0.1

0.12

0.14

0.16

0.18

0.2

S

t

SNS

SEW

S
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iteration, using the knee algorithm. (c) A zoomed version of the seismic image (d) The filtered version after 10 iterations, estimating one gradient threshold parameter S.

(e) The filtered version after 10 iterations, estimating two gradient threshold parameters SNS and SEW.
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difference values, instead of one, which are defined in (7) as the
difference between the brightness value of the pixel s and the
brightness values of each one of its four neighbors in the 4-pixel
neighborhood Zs. This happens because the r operator indicates a
scalar defined as the difference between the neighboring pixels in
the discrete implementation, rather than a single gradient vector
as in the continuous form (Section 2.1). This leads us to the idea
that four difference threshold parameters should be used, each
one estimated using the respective difference along the four
directions. However, given the region of the entire image, i.e. in
the statistical sense, the absolute values of the North and South
differences are almost equal, while the same happens with the
East and West ones. Thus, we propose the estimation of two
gradient threshold parameters. These will be an SNS parameter,
which refers to the vertical (North–South) direction, and an SEW

parameter, which refers to the horizontal (East–West) direction.
This changes the discrete anisotropic diffusion equation (14) to:

Itþ1ðsÞ ¼ ItðsÞþ
l

9Zs9

X
pAN,S

gðrIs,pÞ
zfflfflfflffl}|fflfflfflffl{SNS

rIs,pþ
X

pAE,W

gðrIs,pÞ
zfflfflfflffl}|fflfflfflffl{SEW

rIs,p

#"

ð14Þ
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Estimating two gradient threshold parameters forms the dis-
crete AD equation in a more precise way, given that there is not
only one single gradient vector as in the continuous form.
Furthermore, it is expected to lead to better experimental results,
since the extent of the smoothing that takes place (defined by
parameter S) is not the same for both directions. It differs
according to the strength of the differences in each direction.
Especially in images where the edges are orientated more
towards one of the two directions, the two gradient threshold
parameters may differ considerably, since the stronger differences
in one direction would lead to an estimation of a higher S

parameter in that direction.
In order to estimate the two gradient threshold parameters SNS

and SEW, we use the corresponding histograms of the absolute values
of the gradient (difference) component in each direction and we
employ the so-called knee algorithm. The knee algorithm, which is
used to estimate the threshold between two populations in histo-
grams with one peak and a long tail, fits with straight lines, in the
least square error sense, each population leading to the estimation of
the threshold after an iterative process. A detailed description of the
algorithm can be found in [37]. In our case, the population that has a
roughly flat distribution and creates the long tail is that of the
parameters for anisotropic diffusion in image processing, Pattern
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Fig. 6. (a) A zoomed part of the original Lena image. (b) A noisy version of it (Gaussian noise with s¼ 0:07). The AD filtering result after 15 iterations, using (c) the

proposed method, (d) Perona–Malik method, (e) Black et al. method, (f) Voci et al., 2-norm method and (g) Voci et al., morphological method.
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Fig. 7. Noise with different values of s was added to the synthetic image of Fig. 3a

and the PSNR of the diffused resultant images was measured after 10 iterations,

using the described gradient threshold estimating methods.
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differences attributed to true edges, while the population with the
steeper distribution is that of the differences attributed to noise. The S

parameter is the estimated threshold between the two populations.
As it can be noticed in Fig. 5, the SNS estimated in every

iteration for the seismic image is higher than the SEW, since most
of the edges in the image are orientated more towards the
horizontal direction. Fig. 5c-5e show the resultant diffused
images after 10 iterations, estimating only one gradient threshold
parameter and two gradient threshold parameters, respectively.
The edges are preserved better in the second case. It can be seen
that estimating one value for S seems to overestimate the thresh-
old between noise and true edges. The threshold value was not
overestimated only in images with structured content. The over-
estimation was evident in all natural images that were evaluated,
leading to a quicker degradation of the image’s edges.

Fig. 6 shows the resultant images, after applying AD filtering to a
noisy version of the Lena image. The gradient threshold parameters
were estimated in every iteration, using one of the above described
methods in each case. The methods of Black et al. and the
morphological approach of Voci et al. seem to underestimate the
gradient threshold parameter since the noise in the resultant images
is not smoothed properly. The Voci et al. p-norm and the Perona–
Malik methods, on the contrary, oversmooth the image since some
of the edges are smoothed away. The proposed method leads to the
sharpest discontinuities, while the noise is sufficiently smoothed.

Using the synthetic image of Fig. 3a and adding Gaussian noise of
zero mean and different standard deviations, we measured the PSNR
value of the resultant image using (13), after using the above
described methods. The PSNR was measured after 10 iterations, in
every case. The result is shown in Fig. 7. The proposed method
outperforms the other methods and turns out to be the most robust
scheme, since it yields a better PSNR for all the different levels of
noise added. The results were similar after 20 and 30 iterations.
3. Stopping criterion

Since AD filtering is an iterative process, it is highly sensitive
to the number of iterations. The choice of the stopping time T is
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.11.012
crucial, since overestimating it may result in blurring the true
edges, while underestimating it may leave unfiltered noise
artifacts. Fig. 8 shows the measured PSNR in every iteration for
an airplane image, using the scheme that was proposed in the
previous sections. Choosing the optimal conductance function
and gradient thresholding parameters leads to higher PSNR values
as was previously proven and in a way ensures that due to the
adaptability of the method, the slope of the decrease of PSNR will
be low, keeping the diffused image close to the original one.
However, PSNR is always maximized in a specific iteration, which
is the time when the process should ideally be terminated (T¼26
for the airplane image in Fig. 8). Obviously, in typical image
processing problems the original noise-free version of the image
is not known a priori. Therefore, the optimal stopping time T

should be estimated using only the statistics of each filtered
version of the noisy image.

A comprehensive study of the stopping time problem was done in
[26,27], where two global stopping criteria were proposed and tested
parameters for anisotropic diffusion in image processing, Pattern
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Fig. 8. (a) The measured PSNR value in every iteration, between the original and the filtered versions of a noisy airplane image using the proposed AD scheme. (b) The
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version after T¼60 iterations when the result is oversmoothed.
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through various denoising schemes. First, we give the definition of
these two criteria and then we present our proposed method.

The input noisy image I0 is considered to be the sum of the
ideal noise-free image I and additive uncorrelated noise N of
variance s2

n0:

I0 ¼ IþN ð15Þ

Mrázek and Navara in [27] proposed a decorrelation criterion,
selecting as time T the time that minimizes the correlation
between I0�It and It

T � arg min
t

covðI0�It ,ItÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðI0�ItÞvarðItÞ

p ð16Þ

considering I0�IT as an artificial substitute of noise N and IT as an
artificial substitute of noise-free image I .

Gilboa et al. in [26] stated a condition in order to achieve
maximal SNR of the filtered image It:

SNR� 10 log
varðIÞ

varðIt�IÞ
¼ 10 log

varðIÞ

varðN�ðI0�ItÞÞ

Given the condition @SNR=@ varðI0�ItÞ ¼ 0 for the maximum and
rewriting varðN�ðI0�ItÞÞ as varðNÞþvarðI0�ItÞ�2 covðN ,ðI0�ItÞÞ

yields the condition for selecting the value of parameter T:

T ¼ arg min
t

@t covðN ,ðI0�ItÞÞ

@tvarðI0�ItÞ
ð17Þ

The variance of noise N of the original image is considered a priori
known, while term @t covðN ,ðI0�ItÞÞ is calculated in every iteration
using an image Nt instead of It, which contains only pure noise
with varðN0Þ ¼ varðNÞ.

Both the above methods place the emphasis on reducing noise
and they do not take into consideration at all the quality of the
preserved edges. In [36] was shown that the edges using AD
undergo a slow decay after a certain time, leading to the
degradation of the image. It is reasonable to expect that the
decay of the edges would be associated with the decrease in the
PSNR of the resultant image (as in Fig. 8). In this paper, we
propose a method that leads to the stopping time T examining
directly the quality of the edges of the final image.
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.11.012
3.1. Proposed method

We deal with the stopping time problem, by evaluating the
quality of the true edges in every iteration. Under the assumption
that the optimal discrete AD scheme controls successfully the rate
of the diffusion by discriminating true edges from noise, the
initial contrast of an edge should be preserved while the bright-
ness variations around it should be gradually smoothed away. As
the effect of the noise increases in an image, the discrimination
between edges and noise becomes a more difficult task, resulting
in an unavoidable decrease of the strength of the edges that takes
place along with the denoising effect of the filter. The proposed
method evaluates, in every iteration, the quality of a percentage
of the true edges of the image, taking into consideration the
contrast and the noise brightness fluctuations around them, and
leads to a judicious choice of the stopping time T that corresponds
to the maximum overall quality of the edges. An estimate of the
standard deviation sn0 of the Gaussian noise of the original image
is also required, which is considered to be a priori known. The
steps of the proposed method are the following:
1.
para
The original image I0 is convolved with the kernels of the
Sobel operator [37] and N edgels with the highest gradient
magnitudes are chosen. In order to choose edgels that belong
to different edges within the image, a minimum Euclidean
distance D between any pair of edgels considered is required.
2.
 For each one of the N edgels, a local area that characterizes
the edge is defined: given the coordinates ðxk, ykÞ of an edgel k

and the direction Y (calculated from the Sobel operator) of
the gradient for the specific edgel, the coordinates of 12
interpixel locations around k are defined:

xm,n ¼ xkþm cos Y�n sin Y for m¼ f�2,�1,1,2g, n¼ f�1,0,1g

ym,n ¼ yk�m sin Y�n cos Y for m¼ f�2,�1,1,2g, n¼ f�1,0,1g
3.
 Since the brightness value at interpixel positions is not known,
bilinear interpolation is used in order to calculate it [37].
meters for anisotropic diffusion in image processing, Pattern

dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012
dx.doi.org/10.1016/j.patcog.2012.11.012


C. Tsiotsios, M. Petrou / Pattern Recognition ] (]]]]) ]]]–]]]8

Ple
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Each edgel is now characterized by the brightness values of two
sets of interpixel positions around it, O1 and O2:

O1 ¼ ff ðxm,n,ym,nÞ 9mAf�2,�1g, nAf�1,0,1gg

O2 ¼ ff ðxm,n,ym,nÞ 9mAf1,2g, nAf�1,0,1gg

Here f ðxm,n,ym,nÞ is the estimated brightness value of interpixel
location ðxm,n,ym,nÞ, using bilinear interpolation.
4.
 A quantity Q is assigned to each edgel in every iteration, in
order to evaluate the quality of the edge it belongs to. We
define it as

Q � 9m1�m29�aðs1þs2Þ ð18Þ

where m1 and m2 are the mean values of O1 and O2,

respectively, and s1 and s2 are the standard deviations of

O1 and O2, respectively. The quantity 9m1�m29 is an estimate

of the strength of the edge, while the quantity s1þs2 is an
estimate of the noise fluctuations around an edge. a is a

constant defined as a¼ 10sn0=m0 , where m0 ¼ ð1=NÞ
PN

i ¼ 1

9m1ðiÞ�m2ðiÞ9 is the mean contrast of the N edgels calculated

in the original image I0, and sn0 is an estimate of the standard
deviation of the noise in the original image I0.P
5.
 The average Q ðtÞ ¼ ð1=NÞ N
i ¼ 1 QiðtÞ quantity of all N edgels

reflects the quality of the edges within the image, in every
iteration. With this understanding, we select the stopping
time T, so that it maximizes Q ðtÞ:

T ¼ arg max
t

1

N

XN

i ¼ 1

QiðtÞ ð19Þ
The image of the two sets of interpixel positions around an
edgel can be seen in Fig. 9. In order to ensure that the N edgels
correspond to true edges, the selection (step 1 of the algorithm) is
performed on a smoothed version of the original image, as in
Section 2.3. Furthermore, constant N should be high enough to
provide a representative enough subset of the true edges within
the image. Typical values of N between 50 and 300 caused no
significant difference in the experimental results for the images
tested (sized between 256�256 and 880�600 pixels), with the
lower limit being preferable for finely textured images, as we
explain in the next section. The Euclidean distance D between the
edgels differs according to the size of the input image, since it
should be larger for bigger images so that the edgels belong to
different edges across the image. It could be equal to a fraction of
the image size, ð1=xÞminfr,cg, where r and c are the width and
height of the image in pixels, respectively.
Fig. 9. The 12 interpixel locations around an edgel.
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Constant a in (18) serves as an estimate of the effect of the
noise to the edges of the original image and has to satisfy the
following reasonable conditions. Given the case of very low noise,
limsn0=m0-0 a¼ 0, so that the quality of the edges is expressed
only by their contrast 9m1�m29 in (18). Given the case of high
noise level, limsn0=m0-1 a¼ 10, so that the product between a and
the estimate of the noise s1þs2 in (18) is one order of magnitude
higher than the estimate of the contrast 9m1�m29 of the edge, and
priority is given to the denoising of the edge. As the noise
increases, limsn0=m0-1

a¼1, the quality of the edges is expressed
only by the estimate of the noise around them, since
9m1�m295aðs1þs2Þ.
4. Experimental results

In the previous sections we used partial evaluations of the
various alternatives in order to come up with an edge-preserving
scenario of AD, which terminates automatically evaluating the
quality of its edges. Fig. 10 summarizes the final algorithm. In this
section we evaluate the proposed stopping criterion and compare
its results with those of the results obtained with the criteria
proposed by Mrázek and Navara (MN method) and Gilboa et al.
(GSZ method), described earlier, using in all cases the same
algorithm. To do that, we used the set of images shown in
Fig. 11 and we added to them Gaussian noise of zero mean and
different standard deviations sn0. The MN method requires no
prior estimation of the noise statistics, while GSZ and our method
require an estimate of the standard deviation of the noise sn0 of
the input noisy image I0, which is considered to be a priori known
for the presented experiments. The simple case of noise estimator
described in Section 2.3 can be used instead, providing an
estimate of the standard deviation of the noise in the initial
image. None of the three methods requires an a priori knowledge
of the characteristics or the structure of the original, noise-free
image. For all experiments, using the proposed method, N¼200
edgels were selected for all the image sizes used (ranging
between 256�256 and 880�600 pixels).

In order to evaluate the denoised results, we used three
different quality measures between the filtered image IT and the
reference noise-free image I . The Peak Signal-to-Noise Ratio
(PSNR) is simple to calculate and has a clear physical meaning,
but is not always in accord with the human judgement of quality,
so the Visual Information Fidelity (VIF) [39] and Structural
Similarity (SSIM) [40] criteria, that are closer to the human vision
system, were used as well. A general brief description of the two
criteria will be given since their analytical expressions are beyond
the scope of this work. A detailed study of various quality
measures can be found in [41].

Using the VIF criterion the signal fidelity is related to the total
information that two signals share. This shared information is
quantified in terms of mutual information, a term widely used in
information theory. The signal fidelity measurement is based on
the modeling of the original image by a wavelet-domain Gaussian
scale mixture (GSM) which is associated with the non-Gaussian
distributions of the wavelet coefficients of natural images. All
distortions between the reference and distorted image are mod-
eled by a simple image distortion model as the sum of a uniform
wavelet-domain energy attenuation and an independent additive
noise. The mutual information can be calculated in every spatial
location in each wavelet subband of the image, with the VIF index
being defined as the ratio of the summed mutual information of
all local coefficient patches, of all subbands included between the
original and the distorted image.

The SSIM criterion is based on the fact that natural images have a
strong structural information which is extracted by the HVS.
parameters for anisotropic diffusion in image processing, Pattern
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Fig. 11. Natural images used in the experiments.

Table 1
Comparison between different stopping criteria.

Image PSNR VIF SSIM

MN GSZ Prop MN GSZ Prop MN GSZ Prop

Lena 33.557 33.758 33.760 7.642 7.672 7.684 8.303 8.394 8.407
Cameraman 33.367 33.585 33.679 6.954 7.188 7.196 8.032 8.154 8.205
Boats 34.792 35.132 35.227 7.031 7.290 7.354 8.467 8.581 8.660
Peppers 35.324 35.253 35.272 7.720 7.696 7.697 8.769 8.723 8.737

Houses 30.598 31.929 31.719 6.692 7.648 7.679 7.116 8.347 8.174

Flower 35.370 35.452 35.467 7.542 7.623 7.621 8.696 8.734 8.757
Parrots 36.104 35.965 36.027 7.289 7.276 7.267 8.698 8.623 8.666

Rafting 32.167 33.178 33.121 6.541 7.170 7.176 8.255 8.908 8.888

Airplane 34.047 34.872 34.964 6.783 7.281 7.294 8.104 8.630 8.707
Hats 36.092 36.070 36.107 7.209 7.280 7.288 8.592 8.546 8.566
Average 34.142 34.519 34.534 7.140 7.412 7.425 8.303 8.564 8.577

Fig. 10. Block diagram of the denoising algorithm.
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Distortions such as the additive noise or blur in an image cause a
significant alteration of the structures of the objects within the
image. The SSIM index is a multiplication of three terms indicating
different characteristics of patches within the original and the
distorted image: the luminance of the patch, the similarity of the
local patch contrasts and the similarity of the local patch structures.

In our experiments, the PSNR was calculated as in (13). The VIF
and SSIM implementations used can be found in [42]. For all three
quality criteria, a higher measure suggests that the filtered image
IT is closer to the reference noise-free image I .
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.11.012
To each image of Fig. 11, Gaussian noise with zero mean and five
different standard deviations was added (sn0 ¼ 0:025,0:05,0:075,
0:1,0:125) and the different stopping times T, using the three
compared stopping criteria, were estimated. The filtered image IT, in
every case, was evaluated using the PSNR, VIF and SSIM quality
criteria. For each image, the results for all five levels of noise were
averaged, calculating the average for each quality criterion separately.
The results of the measurements are shown in Table 1. The proposed
method, achieved better results for most of the images, in terms of all
three quality measures. The performance degraded notably in more
parameters for anisotropic diffusion in image processing, Pattern
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detailed images (Houses, Rafting), where the estimated time T was
slightly overestimated. The degradation of the performance was
mainly depicted through the PSNR and SSIM criteria, while the
average VIF score was still higher using the proposed method. The
overestimation of T, in more detailed images, is due to the presence of
fine-scale details near the edges, which were erroneously considered
as fluctuations due to noise, in the local interpixel area near each
edgel. In this case, a smaller number of edgels could be selected, in
the initial step of the proposed method, so that only the strongest
edgels are taken into consideration.

In Fig. 12, the average quality Q of the N¼200 edgels selected
is shown for different images corrupted by Gaussian noise. In
general, the estimation of the stopping time T in the proposed
method lies on the assumption that the calculated Q ðtÞ is unim-
odal with a unique maximum. Although the uniqueness of the
maximum is not ensured mathematically, in practice we have not
encountered cases that yielded more than a single maximum for
the average quality Q ðtÞ. As it was mentioned earlier, it is
reasonable to assume that the quality of the edges is directly
associated to the image quality measures. The similarity between
the form of the estimated Q ðtÞ in Fig. 12b and the form of the
PSNR in Fig. 8a for the airplane image is apparent.

In the case of Fig. 12a, where Gaussian noise with sn0 ¼ 0:075
was added to Lena image, the proposed stopping time T coincided
with the maximum PSNR and SSIM measurements and was closer
to the VIF measurement than the other two compared methods.
Therefore, according to all three criteria, the proposed method
was closer to the optimal stopping time, while GSZ method
yielded an underestimated and MN method yielded an over-
estimated stopping time. The optical results for each method can
be seen in Fig. 13.

Similarly, in Fig. 12b, where Gaussian noise with sn0 ¼ 0:1
was added to the airplane image, the proposed T was optimal
according to VIF measurement and was closer to optimal PSNR

and SSIM measurements than the other two methods. The
optical results can be seen in Fig. 14. A case where the
proposed method failed is shown in Fig. 12c, where Gaussian
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Fig. 12. The average quality Q ðtÞ for N¼200 edgels, the iterations that correspond to th

stopping time T using the described stopping criteria. (a) Lena image with Gaussian no

image with Gaussian noise of s¼ 0:05.
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noise with sn0 ¼ 0:05 was added to the Houses image. The
proposed time T was overestimated in comparison with the
maximum quality measurements. The overestimation of the
proposed method is attributed to the presence of many
texture edges and fine-scale details, as described earlier. The
optical results can be seen in Fig. 15.
5. Discussion and conclusions

In this paper we studied carefully all steps of the Anisotropic
Diffusion algorithm and came up with the best choice among the
various options at each step, describing a complete image-
adapted denoising tool. We also proposed a stopping criterion
which does not only take into consideration the level of the
removed noise, but also the quality of the preserved edges. The
scheme was evaluated using several images with different levels
of noise. The most difficult images to improve with AD are those
with many details and texture. This is not surprising, as highly
textured images have significant levels of energy in the high
frequencies too, where noise is supposed to dominate. It is
expected, therefore, that any noise suppression scheme will have
difficulty with such images.

The estimation of two gradient threshold parameters using the
knee algorithm improves the adaptability of the filter, yielding
stronger edges as the estimation of one parameter tends to
oversmooth the image as it was shown in Section 2.4. This
property also introduces a sense of directionality which could
lead to a comparison with a filter class that smoothes differently
along distinct directions. Such anisotropic filters are usually
modeled by diffusion tensors instead of scalar-valued diffusions
[12,43] and are widely used in images with strong oriented
structures, such as seismic [44,45] or medical [46–48] images.
However, such a comparison would be beyond the scope of
the current work which aims at coming up with the most
edge-preserving generic AD scheme, making it available for
denoising all types of natural images.
Q
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Fig. 13. (a) A zoomed part of the original Lena image. (b) A noisy version of it (Gaussian noise with s¼ 0:075). The AD filtering result after estimating T with (c) MN

method, (d) GSZ method and (e) the proposed method.

Fig. 14. (a) A zoomed part of the original Airplane image. (b) A noisy version of it (Gaussian noise with s¼ 0:1). The AD filtering result after estimating T with (c) MN

method, (d) GSZ method and (e) the proposed method.
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The stopping criterion is based on a statistical representation
of an image by its true edges. The numerical evaluation of Section
4 showed that this approach can provide a robust solution for the
stopping time problem. The number N of the averaged examined
edgels does not change with image size. It simply has to be high
enough to allow the calculation of reliable statistics. A local
approach of the proposed method could be considered in the
future, where the diffusion would stop separately for different
edges according to their quality measurement. However, such a
method would increase significantly the computational cost of
Please cite this article as: C. Tsiotsios, M. PetrouOn the choice of the
Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.11.012
the algorithm. It should also be mentioned that the proposed
method fails at corners since there are not two half-planes
separating one edge side from the other.

In the testing cases of the stopping criteria the estimate of
variance of the noise was considered a priori known, so that a fair
comparison with the Gilboa et al. criterion (GSZ), which uses an
estimate of the variance as well, was done. However, the simple
case of noise estimator that is used for the calculation of
the gradients may be employed, as described in Section 2.3.
This estimator yielded reliable estimates for the noise variance
parameters for anisotropic diffusion in image processing, Pattern
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Fig. 15. (a) A zoomed part of the original Houses image. (b) A noisy version of it (Gaussian noise with s¼ 0:05). The AD filtering result after estimating T with (c) MN

method, (d) GSZ method and (e) the proposed method.
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(estimates within 10% deviation from the real value). Using such a
noise estimator, the whole presented scheme comprises a com-
pletely automatic tool for image denoising, adapted to the
denoising needs of the image and the condition of its edges.
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