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Abstract—This paper introduces the novel research area of
the multi-task-oriented, quality-of-information (QoI)- aware op-
erations and management of wireless sensor networks (WSNs).
Primarily, this includes an investigation of new task admission
and resource utilization mechanisms for controlling the individual
QoI provided to new and existing tasks using real-time feedback-
based monitoring mechanisms. The paper describes the following
key design elements in support of the above: (a) theQoI
satisfaction index of a task, which quantifies the degree to which
the required QoI is satisfied by the WSN; (b) theQoI network
capacity, which expresses the ability of the WSN to host a new
task with specific QoI requirements without sacrificing the QoI of
other existing tasks, and (c) an adaptive and negotiation-based
admission control mechanism that reconfigures and optimizes
the usage of network resources in order to best accommodate all
tasks’ QoI requirements. Finally, extensive results are presented
for assessing the performance of the proposed solution for the
case of an intruder detection application scenario.

I. I NTRODUCTION

Continuing advances in sensor-related technologies, includ-
ing those in pervasive computing and communication domains,
are opening opportunities for the deployment and operationof
smart autonomouswireless sensor networks (WSNs) [1]. A
significant portion of research in this area of WSNoperation
and management(O&M), focuses primarily on the “internal”
aspects of WSNs such as energy-efficiency, coverage, routing
topologies for efficient data dissemination, and so on [1]. The
complementary area that considers the “external” relationships
that WSNs have with the information needs of the sensing
tasks (or simplytasks) they support have experienced signifi-
cantly less exposure. The novel study of WSN O&M for the
efficient and effective support of thequality of information
(QoI) needs of tasks are central of our broader research goals
and this paper in particular.

Broadly speaking, QoI relates to the ability to judge if
available information isfit-for-use for a particular purpose
[2], [3]. QoI has been sparsely studied in sensor networks;
however, for the purposes of this paper, we will assume that
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QoI is characterized by a number of quality attributes, such
as accuracy, latency, and spatiotemporal relevancy [4].

An increasing body of research in the O&M area uses
network utility analysis techniques that aim to achieve de-
sirable network operation by fine tuning both statically and
dynamically configurable WSN parameters (e.g., traffic, rout-
ing paths, transmission power, etc.), to maximize a network’s
utility [5], [6]. Such approaches are anchored on ana priori
knowledge (in the form of a analytically tractable, closed form
expressions) of the benefits provided by the WSN as a function
of the managed resources. This, however, is not an adequate
approach for establishing desirable QoI for WSN tasks. De-
scribing information-related, as opposed to network-related,
tasks in a closed form is extremely challenging, especially
when multiple dynamic tasks with different QoI requirements
are serviced by the WSN simultaneously at runtime.

We address the aforementioned challenges by proposing
a QoI-aware O&M framework for WSNs, a novel research
path in its own right. Our general approach is to separate
the process of calculating the QoI performance of the net-
work at large from that of calculating utility resulting from
allocating network resources to individual tasks. First, we
conductruntime learning of the QoI benefit provided by the
WSN to the tasks it supports by monitoring the level of QoI
satisfaction (or, theQoI satisfaction indexof a task) they attain
in relation to the QoI they request. This relaxes the requirement
for the a priori knowledge of utility functions and facilitates
the dynamic accommodation of tasks with heterogenous re-
quirements. Second, by proposing the concept ofQoI network
capacity, the ability of a WSN to host a new task (with specific
QoI requirements) is expressed without sacrificing the QoI of
existing tasks. Third, an adaptive, negotiation-based admission
control mechanism is proposed to dynamically configures the
usage of network resources to best accommodate all tasks’
QoI requirements. Finally, an evaluation of the WSN QoI
performance at runtime in a dynamic multi-task environment
is presented.

The rest of the paper is organized as follows. In Sec-
tion II, we highlight related research activities. SectionIII
and Section IV establish a formal model and the flow of
our system. Section V describes the framework’s key design
elements. Experimental results and discussions are presented
in Section VI. Finally, Section VII concludes the paper by
describing plans for future research.



II. RELATED WORK

To the best of our knowledge, the proposed QoI-aware
O&M framework represents the first such WSN application
management solution of its kind. However, there is related
work that has motivated our current research path. Despite of
endeavors for defining QoI [2], [3], it was not until recently
that work in [7] proposed a conceptual framework to enable
the dynamic binding of sensor information producers and
consumers in a QoI-aware manner. The framework expresses
information requirements and capabilities according to the
5WH principle and enables information producers to catego-
rize the quality attributes of their information in an application-
agnostic manner while permitting information consumers to
calculate QoI in application-specific way. Such principles
largely enable the development of a framework such as ours.

The network utility maximization (NUM) framework has
been recently extended to consider a unique aspect of WSNs:
shared consumption of a single sensor data source by multiple
tasks with different utility functions [5]. This is furtherad-
dressed in [6], where NUM is used for jointly adapting source
data rates and node transmission powers in a multicast, multi-
hop wireless environment. Our proposed framework harbors
a more flexible negotiation process bridging between tasks’
QoI requirements and network status and we also propose the
novel concept ofQoI network capacity.

Other work has focused on modeling the state of the net-
work with respect to supporting quality-related administrative
decisions. This includes characterizing information lossdue to
network delays and buffer overflows to make task admission
decisions [8] and monitoring resource allocations and the
status of sensed phenomena to determine available QoI [9]
and sustain required QoS [10]. Sensor network management
issues were studied in [11], [12], where in [11] information
quality (completeness and accuracy) is supported by a dy-
namic Bayesian network model based constraint optimization
problem which takes into account all the levels of information
processing, including measurement and data aggregation and
delivery with predefined network utility. Similarly, [12] further
compared the solution with Bayesian network model.

In closing we also mention here work on WSN middleware
designs [13], [14], [15] to support some notion of information
quality; the latter work has particularly inspired aspects. We
also note that early thoughts behind the research presented
in this paper were reported in [16], but without the technical
depth and numerical results included here.

III. SYSTEM MODEL

This section presents a formal model for describing our
system. We consider a WSN comprising a set of sensor nodes,
S = {si; i = 1, 2, . . . , N} and a sink node (of sufficient
processing and energy capabilities). Tasks arrive at the WSN
and request service (i.e., retrieve sensed information) tolast
some period of timelj , whereJ represents the set of tasks
currently serviced by the WSN and sensors inSj ⊂ S be
servicing taskj; sensors may potentially serve multiple tasks
simultaneously. The arrival and service duration processes are

in general stochastic in nature and their details will be specified
as needed later on.

Task j ∈ J requires the monitoring of specific feature(s)
of interest such as temperature, event occurrence or location,
density of a hazardous chemical, and so on. Each feature is
associated with one or more QoI attributes, such as accuracy
and latency of the received information, whose desired values
are declared by the tasks upon their arrival for service. We use
the superscriptr to denote a QoI attribute valuerequired(and
declared) by a task anda for that valueattainedby the WSN,
e.g.,αr

j andαa
j will denote the probability of detection of an

event. Finally, tasks belong to one ofU priority classes with
higher priority ones experiencing more preferential treatment
and higher guarantees for receiving satisfactory QoI levels.
The setJu ⊂ J represents all the tasks of priorityu, u =
1, 2, . . . , U . Tasks, upon arrival, inform the sink node of their
information needs in terms of (multiple) QoI requirements,and
they participate in an admission control process with the sink
in order to be serviced by the WSN. The admission control
may involve a negotiation phase and a resource reallocation
phase if necessary to accommodate the QoI needs of existing
and newly arriving tasks (and these will be detailed later in
Section IV).

IV. FLOW OF THE PROPOSEDAPPROACH

This section describes the overall flow of the proposed
O&M framework, and details of the key concepts of the frame-
work are presented in next Section. The QoI levels attained are
the result of multiple operations spanning several layers (i.e.,
physical, MAC, network, information processing) where there
is no “one” way to form an optimal interrelation. Hence, we
opt to adopt a “black box” view for the WSN encompassing
the sensors and associated network resources, reflecting a
universal framework for solving the problem. These sensors
include data sources, relays, and sinks, which are involvedin
collecting and reporting sensor measurements. Finite resources
are shared by multiple tasks within the black box that include,
but are not limited to, time, buffers, bandwidth, energy, etc.

The I/O behavior of the black box is not known ex-
actly but estimated at runtime. Without loss of generality,
let this I/O behavior be represented by the mappingf(·),
where f : R

M → R
(
x(t) → y(t)

)
1. We consider

two types of input variables:x(t) =
(
x1(t), x2(t)

)
, where

x1(t) =
(
x1
1(t), x

1
2(t), . . . , x

1
M1

(t)
)

denotesM1 system-
level parameters, like the number of running tasks, and
x2(t) = (x2

1(t), x
2
2(t), . . . , x

2
M2

(t)) denotesM2 task QoI
requirements, like accuracy and latency;M = M1 + M2.
The outputy(t) reflects the overall system utilization, de-
noted as QoI satisfaction index, see Section V-A for more
detail. We characterize the potential admission of a new
task as an input change∆x(t) =

(
∆x1(t),∆x2(t)

)
=(

∆x1
1(t), ...,∆x1

M1
(t),∆x2

1(t), ...,∆x2
M2

(t)
)

into the black
box, which will result in change of output to:

ỹ(t) = f
(
x(t) + ∆x(t)

)
. (1)

1The underlined notation signifies a vector quantity.



Let R(t) =
(
R1(t), R2(t), . . . , RP (t)

)T
∈ R

P denote
a P -dimensional column vector describing the instantaneous
remaining network resources (e.g., energy, bandwidth, buffer
size, etc.), andξ∗

j
(t) =

(
ξ1,∗j (t), ξ2,∗j (t), . . . , ξP,∗

j (t)
)T

∈ R
P

denote the corresponding optimal resource occupancy of each
task j, ∀j ∈ J , after the resource allocation. Then, column
vectorη(t) =

(
η1(t), η2(t), . . . , ηP (t)

)T
∈ R

P represents the
total resource occupancy for all running tasks at timet, i.e.,
η(t) =

∑
∀j∈J ξ∗

j
(t).

The mappingf(·) is obtained by monitoring the QoI deliv-
ered to tasks serviced by the WSN at runtime so that whenever
there is a task admission or completion, the current network
statusx(t) (M input variables) is updated along with the
corresponding single outputy(t). When the new task arrives
for network admission, it expresses its QoI requirements tothe
WSN, which will result in an input change∆x(t), if admitted.
Then, the mappingf(·) is derived by smoothly interpolating
across the attained, completed tasks’ QoI satisfaction level
delivered thus far by the network. The mappingf(·) is used
to estimate theQoI network capacity(see Section V-B),
which is used to decide whether to admit the new task by
comparing with the QoI network capacity element-by-element.
If there is enough network resources to support, optimal
resource allocation then runs to seek for optimal resource
occupancy among all tasks, andξ∗

j
(t), ∀j ∈ J , is obtained.

Otherwise, a negotiation process is called such that existing
tasks’ QoI requirements are adapted to release some resources
for the new task, see Section V-C. When task completes,
the resource allocation function is called again to re-optimize
the distribution of limited network resources so that existing
running tasks’ QoI will be improved.

V. K EY DESIGN ELEMENTS

In this section, we will elaborate on the three key design
elements of our proposal: (a) QoI satisfaction index, (b)
QoI network capacity, and (c) a negotiation-based admission
control process.

A. QoI Satisfaction Index

As its name implies, this index is used to describe the level
of QoI satisfaction the tasks received from the WSN. It is
applicable to each taskj and QoI attributez and is defined
as:

Izj , tanh
(
k ln

zaj
zrj

)
, ∀j ∈ J , (2)

wherez, which represents elements of thex2(t) vector, could
be the probability of detection of an event, andk denotes a
scaling factor. The selection of the functionsln(·) andtanh(·)
is rather arbitrary but result in the intuitively appealingand
desirable behavior for satisfaction as shown in Fig. 1(a). Aper
task QoI satisfaction indexIj can be defined by combining the
per QoI attribute indexes above. In this paper, we opt to use
the minimum of these indexes, i.e.,

Ij = min
(
Izj
)
∈ (−1, 1), ∀j ∈ J . (3)

It follows immediately from the definition of satisfaction index
that:

Lemma 5.1:For any taskj ∈ J , its (multiple) QoI require-
ments are simultaneously satisfied if and only ifIj ∈ [0, 1).

Likewise, we can define the instantaneous QoI satisfaction
index I(t) as the minimum of indexesmin∀j∈J Ij of tasks
in service at timet. Note that the QoI satisfaction index not
only represents the sensing quality at a selected group of data
sourcesSj , but also reflects the communications quality of
multi-hop WSNs for the reporting route, when the data is
measured at the sink side. In other words, information sensing
of multiple data sources and information reporting through
multi-hop WSNs both contribute to the satisfactory attained
QoI level.

B. QoI Network Capacity

Before admitting a new task for service, we would like
to identify the potentially limiting resources and estimate the
maximum “capacity”C(t) =

(
C1(t), C2(t), . . . , CP (t)

)T
∈ R

P

a WSN can support at any given timet. Thus, we define:
QoI network capacity indicates the time-varying capa-

bility a WSN can provide to any task with satisfactory
QoI requirements, such thatIj ∈ [0, 1), ∀j ∈ J . QoI
network capacityC(t) is a multi-dimensional column vector
with network defined dimensionP such that each element
Cp(t) ∈ C(t), ∀p = 1, 2, . . . , P , can represent any one of the
following parameters (not exclusively though): the network-
wide maximum cardinality of the task setJ , maximum queue
length for each node, maximum probability of detection,
smallest information gathering delay, etc.

With reference to our black box view of WSN, we set its
output y(t) , I(t) = f(x(t)). Assumingf(·) is (at least)
doubly differentiable, we write:

ỹ = f
(
x+∆x

)
≈ f(x) +

M∑

i=1

f ′
xi
∆xi

+
1

2

( M∑

i=1

f ′′
xi
∆x2

i +
M∑

i=1

∑

j 6=i

f ′′
xjxi

∆xi∆xj

)
, (4)

where the time indext is implied andf ′
xi

= ∂f/∂xi, f ′′
xi

=
∂f2/∂x2

i , f
′′
xjxi

= ∂f2/∂xj∂xi.
Given more stringent QoI requirements for the input vari-

ables, a lower QoI satisfaction index is expected. At the same
time, Lemma 5.1 indicates that the shape of curve will reach a
lowest satisfaction level when QoI satisfaction indexI(t) = 0,
at which level the QoI network capacity is also defined. This
lowest point is estimated based on the curve forf(·) derived
along each dimension of the mapping, see Fig. 1(b) and (c).
The procedure is toproject a “large” task with stringent
enough QoI requirement into the network, so that it pushes
the system to the capacity bound: the minimum supportable
QoI satisfaction indexI(t) = 0.

To illustrate this, consider a use case where event detection
tasks ask service from the WSN declaring a required detection
probabilityαr

j , ∀j ∈ J . In this case, the QoI network capacity
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reduces to a scalar representing the maximum probability of
detection the WSN can provide to its tasks,C(t) , αmax(t).
We assume that a new task arrives att = 0 when the WSN’s
state was:x(0) =

(
x1(0), x2(0)

)
=
(
n(0), α(0)

)
∈ R

2,
where n(0) denotes the number of existing tasks as the
system parameter, andα(0) denotes the worst-case guaranteed
detection probability as the QoI parameter. Then our black box
is represented by mapping,

y(0) , I(0) = f
(
n(0), α(0)

)
, (5)

as shown in Fig 1(b). The admission of a very “demanding”
(with regard to requested QoI levels) new task at timet = 0
forces the network to reach its capacity, where an input change
∆x(0) =

(
∆n(0),∆α(0)

)
=
(
1, αmax(0) − α(0)

)
results a

change of output to,

ỹ(0) = f
(
nmax(0), αmax(0)

)
= 0. (6)

For brevity we show the time index only when necessary; and
therefore, we rewrite (4) as,

I+∆nf ′
n+∆αf ′

α+
∆n2

2
f ′′
n+

∆α2

2
f ′′
α+∆n∆αf ′′

nα = 0, (7)

or,

f ′
n + (αmax − α) (f ′

α + f ′′
nα) +

1

2
f ′′
n +

(αmax − α)
2

2
f ′′
α = −I,

(8)
where all partial derivatives are computed at current system
statex = (n, α) at time t = 0. It is not difficult to observe
that (8) is a quadratic function with only decision variable
αmax. Therefore, we derive its closed-form expression as:

αmax = α−
f ′′
nα + f ′

α −

√
(f ′′

nα + f ′
α)

2
− 2f ′′

α (2f ′
n + f ′′

n − 2I)

f ′′
α

.

(9)
Furthermore, if the shape of curvef is smooth enough around
current system operating pointx = (n, α) so that the second
order derivatives are negligible, we simplify (9) as:

αmax = α−
I + f ′

n

f ′
α

. (10)

Fig. 1(b) illustrates how this methodology is used, and Fig.
1(c) depicts real-time measurement (from a system simula-
tion) of QoI satisfaction indexes collected and interpolated to
estimate the current shape of thef(·) curve.

C. Negotiation-based Admission Control for Sensing Tasks

Following the estimation of the QoI network capacity,
suppose a new taskj′ with priority uj′ and QoI requirements
{zrj′}, arrives at the sink for the admission decision at timet;
the z’s scan the elements of vectorx2(t) in Fig. 1(b). Before
assigning the task to any sensor(s), an admission control
decision is made according to the following conditions,

C(t) � {zrj′}

{
Admit, if true,
Negotiate, otherwise,

where the notation� denotes the element-by-element compar-
ison. Typically, an admission control scheme will outrightban
the new task if some threshold condition was violated. How-
ever, we assume that negotiation is possible between all tasks,
new and old, and the admission control functionality, in search
of an acceptable (to the tasks) and attainable (by the network)
compromise regarding the QoI satisfaction index delivered.
Resource management in this case includes scheduling, rate
and power control allocation, sensor selection, integration of
data compression, etc. Note that the implementation of the
negotiation operation is a choice left to the designer that design
a particular sensor-enabled system.

Under the guidance of the resource optimization, ongo-
ing tasks may internally reconfigure and reallocate network
resource usages among themselves, so that the optimized
network status will give the best achievable QoI for the
new task. Nevertheless, sometimes the network might be
overloaded operating near the capacity bound, i.e., however the
network resources are optimized and reconfigured, the required
QoI will not be satisfied. Hence, the negotiation process is
employed, i.e., the new task may gradually adapt its QoI
level in order to meet network capabilities, or existing tasks
with lower priority levels may tune their QoI requirements
and release resources for the new higher priority one. The



negotiation may iterate if necessary until a satisfactory levels
of QoI delivered to all the tasks is reached or the new task is
blocked from admission.

Mathematically, during the negotiation phase, the following
optimization is pursued:
{
ξ∗
j
(t)
}

∀j∈J
= argmaxF

({
zrj
}z∈x2(t)

∀uj<uj′
, ξ

j
(t)
∣∣
∀j∈J

)
(11)

subject to:

{
zaj ≥ zrj , ∀j ∈ J , z ∈ x2(t)

η(t) ,
∑

∀j∈J ξ
j
(t) � R(t),

recall that uj′ denotes the priority of the new task. The
objective functionFairnessF is chosen as the optimization
target since service degradation and adaptation for lower
priority tasks may violate the QoI requirements of ongoing
tasks. The arguments to this optimization problem are adapt-

able multiple QoI requirements
{
zrj
}z∈x2(t)

∀uj<uj′
of those tasks

with lower priority classes, and resource occupancy vector
ξ
j
(t)
∣∣
∀j∈J

. Note that the optimization is further constrained
by the need to respect the QoI satisfaction for the tasks of
different priority groups and resource constraints under current
network status. A specific example of the objective functions
F for the negotiation will be used in the numerical example
later on.

VI. N UMERICAL RESULTS

A. The Scenario

We access the proposed scheme under an intruder detec-
tion user scenario [17], where multiple detection tasks arrive
dynamically into a WSN with different QoI constraints (see
Fig. 2). Detection probabilityαr

j for task j is the only
parameter that is considered in the multi-dimensional QoI
requirements, and 30 sensors are deployed randomly in a
2-D square200 × 200 meters. Suppose that a total energy
amountE is equally distributed among all sensors. Tasks arrive
according to Poisson process with rateλ and last for a random
exponential time intervallj with average duration1/µ. All
tasks are categorized randomly into a high priority task set
J1 and a low priority task setJ2, or J = J1 ∪ J2. While
high priority tasks have guaranteed QoI requirements that are
not negotiable, the QoI requirements of low priority tasks are
adaptable between least-satisfactory and most-satisfactory QoI
levels,αr,l

j andαr,h
j , respectively. Sensors are equipped with

smart antenna arrays such that at any given time one sensor
could form multiple beams to service concurrent tasks and the
strength of the beam is controlled by power allocated to each
sensor (as sensor 8 shown in Fig. 2).

1) Detection Model: We employ a simple detection
model [18] using physical properties of the sensors, where the
detection probabilitypdij for task j from sensori is achieved
assuming using normalized full power levelγ∗

j (t) = 1, i.e.,

pdij =





1, if rij < d1t ,

e−β1(rij−d1

t )
β2

, if d1t < rij < d2t ,
0, elseif rij > d2t > d1t ,

(12)
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Fig. 2. Simulation scenario for intruder detection application. Two existing
intruder detection tasks are running in the network (markedas the blue and
green regions), while a new task (marked as red region) arrives for admission.
Several sensors are selected per task as data sources (sensor 8 executes two
tasks simultaneously by adjusting antenna beams).

∀i ∈ Sj , whereβ1 = 0.12, β2 = 0.8 are scaling parameters,
d1t = 28m, d2t = 58m, andrij denotes the sensor-to-target
distance. Note in this use case the optimal resource occupancy
vectorξ∗

j
(t) is reduced to a scalar. The QoI satisfaction index

Ij is given by:

Ij = tanh

(
k ln

γ∗
j (t)×min∀i∈Sj

pdij
αr
j

)
, ∀j ∈ J , (13)

where attained probability of detection is computed asαa
j =

γ∗
j (t)min∀i∈Sj

pdij , where we assume that the probability
of detection it experiences is given by the smallest of all
probabilities of detection attained by any of the the sensors
that service the task (min∀i∈Sj

pdij ). Furthermore, we assume
that the QoI level received by taskj, αa

j , increases linearly
with the corresponding powerγ∗

j (t).
2) Lower Bound QoI Parameter:Interestingly, under the

considered intruder detection use case, the maximum achieved
detection probability is bounded to 1, while the required detec-
tion probability is pre-specified by different tasks. Therefore,
the selection ofk parameter should enforce the highest QoI
satisfaction index is achieved, i.e.,Imax

j ≈ 1. In other words,

Imax
j = tanh

(
k ln 1

αr
j

)
≈ 1, ∀j ∈ J1

⋃
J2, from which we

could derive the lower bounds ofk parameters for high and
low priority tasks as:

{
kh ≥ tanh−1(≈ 1) lnαr,h

j , ∀j ∈ J1,

kl ≥ tanh−1(≈ 1) lnαr,l
j , ∀j ∈ J2.

(14)

For tasks with different QoI requirementsαr
j , the lower bounds

kh, kl will change accordingly, e.g., ifαr,h
j = 0.8 andαr,l

j =
0.5, we are able to compute QoI parameterkh ≥ 17, kl ≥
5.5, which enforce that when optimal detection is achieved,
maximum QoI satisfaction indexImax

j ≈ 1 is received.
3) Optimal Power Allocation:It is performed among all

existing and new tasks such that all tasks’ QoI requirements



are successfully guaranteed and certain network objective(e.g.,
fairness) is achieved. We have:

{
γ∗
j (t)

}
∀j∈J

, argmax min
∀j∈J

Ij (15)

subject to:

{
αa
j ≥ αr

j , ∀j ∈ J ,∑
∀j on i γj(t)lj ≤ ζi(t), ∀i ∈ Sj ,

where the design objective is chosen to balance the QoI
satisfaction indexes achieved by all tasks.Ij is defined in (13)
as a function of resource occupancyγj(t). The first constraint
represents the QoI satisfaction condition among all tasks,
while the second constraint represents the energy reserve,and
ζi(t) denotes the remaining energy constraint for each sensor.
Assuming equal power is allocated for every sensor source of
a particular task, the decision variable for this optimization
problem is a set of power levels{γ∗

j (t)}∀j∈J .
4) Negotiation Process:When the network does not have

enough network resources (energy in this user scenario) sup-
porting the new task, existing lower priority tasks have to
adapt/degrade their QoI levels to release resources for thenew
task. The optimization objective for this process is to minimize
the maximum percentage of QoI loss among all existing tasks
negotiated, as:
{
γ∗
j (t)

}
∀j∈J

= argmaxF
(
αr
j |∀j∈J2

, γj(t)|∀j∈J

)

, argmin max
∀j∈J2

Ĩj − Ij

Ĩj
(16)

subject to:





αa
j ≥ αr,h

j , ∀j ∈ J1,

αa
j ≥ αr,l

j , ∀j ∈ J2,∑
∀j on i γj(t)lj ≤ ζi, ∀i ∈ Sj ,

whereĨj denotes the attained QoI levelbeforenegotiation by
using power levels̃γ∗

j (t) in (13). While the first two constraints
denote QoI requirement constraints for high and low priority
tasks, the third constraint represents the per-sensor energy
reserve for the sum of allocated energy among tasks. The
solution of this optimization problem gives the best achievable
QoI level for the new task by adapting existing ones’ QoI
requirements.

B. System Dynamic Behaviors

This section aims to understand the detailed system behav-
iors due to dynamic task arrivals and departures, heteroge-
neous QoI requirements, resource optimizations and negoti-
ations, as key design elements for such O&M framework.
Fig. 3(a) illustrates the simulated traffic pattern (i.e., the
number of tasks, task arrival and departure processes, QoI
requirements), and Fig. 3(b) and (c) shows dynamic QoI
changes experienced by 70 tasks, with respect to (w.r.t.) two
different QoI satisfaction index parameterkh, kl.

For fixed QoI parameterskh, kl, abrupt QoI changes can
be seen under the relatively high traffic load conditions.
When new task arrives, the negotiation process will attempt
to accommodate it while reasonably degrading existing tasks’

level of QoI satisfactions, but still maintaining the minimum
required levels for them. Meanwhile, when completed tasks
are removed, pre-allocated network resources are releasedby
the resource optimizer so that the QoI levels of ongoing tasks
are improved. However, our framework shows its capability
to always optimize the resource utilization (power in this use
case) in a way to maximize the QoI satisfaction whenever
there is an opportunity. Meanwhile, when there is a sudden
surge task arrival during a short period of time or the tasks
require very stringent QoI requirements (as shown from time
2500mins to 3000mins), some tasks would experience QoI
failures as their QoI satisfaction levels cannot be satisfied
in any meaningful anyway; but nevertheless there are still
portions of tasks successfully maintain the minimum level,
i.e., Ij ≥ 0, to utilize the limited network resource2.

On the other hand, when we increase QoI parameterskh, kl
proportionally, which means the improved QoI satisfaction
level even with the same attained detection probability, ithelps
the system ease the resource competition among tasks and
increase their satisfaction level (due to higher estimatedQoI
network capacity).

C. Optimal Network Design Analysis

Given the proposed QoI-aware framework, we would like to
explore the system limits under the conditions of constrained
network resources and varying QoI requirements for different
tasks, aiming at higher QoI network capacity, longer system
lifetime, and increased admission rate, while satisfying the
required QoI of admitted tasks. Particularly, for the considered
intruder detection use case, WSN lifetimeTmax is defined in
a QoI-friendly fashion, as:

WSN lifetime is defined as the useful length of time for
the WSN so that the amount of remaining energy reserves can
always guarantee a minimum probability of detectionαmin for
any task appearing at this time, located anywhere within the
sensing field.

For this, we view the entire WSN system as a service
or “queuing” system where resources are not just the server
and buffer capacities, but bandwidth, radio conditions, energy
reserves of the system, etc. In this queuing system, the service
capacity is not fixed or knowna priori. It is represented by
QoI network capacity, which, is as previously discussed, is
learned at runtime from the QoI levels that the WSN delivered
in the past and relates to network resource availability, energy
consumption rate, etc. Given an average arrival rate of taskλ,
and an average task service duration1/µ, questions of interest
for such a system include:

(1) Given network loadρ = λ/µ, what is the maximum WSN
lifetime Tmax provided that all tasks accepted experience
satisfactory QoI levels, i.e.,Ij ≥ 0? Or,

2This is more like a game, where tasks compete for limited network
resources according to the relative compatibility of theirpriority and requested
QoI requirements with dynamic network status. In other words, not necessarily
in the extreme case all tasks give up execution, but some low priority tasks
with low QoI requirements may successfully survive.
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Fig. 3. Simulation results for system behavior, (a) task arrival and departure
time line; real-time QoI satisfaction index change with chosen parameter (b)
kh = 17, kl = 5.5, and (c)kh = 51, kl = 16.5. All figures are plotted with
the same set of traffic and their QoI requirements.

(2) Given minimum WSN lifetimeTmin and satisfactory QoI
levels for all tasks, what is the region of admissible rates
λ ≤ λmax that the system can sustain as a function ofµ?

In the following Lemma we broadly derive some expression
regarding the above questions under the intruder detection
scenario considered. Recall that in this use case, the resource
occupancy for each taskj is reduced to a scalar as power
levels,ξ∗

j
= γ∗

j , and thus the relationship betweenγ∗
j and QoI

satisfaction indexIj can be analytically represented by (13).
Lemma 6.1:The task arrival rateλ vs. WSN lifetimeT

trade off is of the formλT
µ

≤ E
βα

, whereα , E (αr
1) denotes

the average detection probability given its distributions, β ,

min∀i∈S1
pdi1 denotes a constant given geographic locations

of sensor sources and tasks. Furthermore, the maximum WSN
lifetime and the maximum admissible rate can be expressed
asTmax = β E

αρ
, andλmax = β Eµ

αTmin

, respectively.
Proof: Recall that for each taskj, the amount of resource

allocated is sufficiently reflected in (13). Or, we rewrite itas,

γ∗
j (t) = αr

j

exp
(
1
k
tan Ij

)

min∀i∈Sj
pdij

. (17)

According to Lemma 5.1, the the lower bound resource
condition for satisfactory QoI is takenIj = 0 as the input

that producesγ∗
j,min(t) = γ∗

j (t)|Ij=0, or,

γ∗
j (t) ≥ γ∗

j,min(t) =
αr
j

min∀i∈Sj
pdij

. (18)

At the same time though, resource constraints enforce the
total amount of allocated network resource to no more than
total energy reserve levelE , i.e.,

∑

∀j∈J T

γ∗
j (t)lj ≤ E . (19)

whereJ T denotes the task set has been serviced during WSN
lifetime T , and lj denotes the duration of certain taskj that
conforms to exponential distribution with parameterµ. Due to
the stochastic nature of task arrivals and departures, we use
the conditions of expectation to approximate the LHS random
variables, as:

E ≥ E

( ∑

∀j∈J T

γ∗
j (t)lj

)
= E

(
E

( ∑

∀j∈J T

γ∗
j (t)lj

∣∣∣J T
))

= E

( ∑

∀j∈J T

E

(
γ∗
j (t)lj

))
= E

(
J T

E

(
γ∗
1 (t)l1

))

= E

(
J T
)
E

(
γ∗
1 (t)l1

)
= λTE

(
γ∗
1 (t)

)
E

(
l1

)

=
λT

µ
E

(
γ∗
1 (t)

)
, (20)

where we use the fact that the task’s arrival process, departure
process, and task optimal resource occupanciesγ∗

j (t), ∀j ∈
J T are independent random variables. Furthermore, the aver-
age number of tasksE

(
J T
)

admitted during WSN lifetime
T can be approximated by Little’s theorem [19] asE

(
J T
)
=

λT , and average duration of task can be represented by
E (l1) = 1/µ. Therefore, we further simplify (20) by using
condition (18), as:

E ≥
λT

µ
E

(
γ∗
1 (t)

)
≥

λT

µ
E

(
γ∗
1,min(t)

)

=
λT

µ
E

(
αr
1

min∀i∈S1
pdi1

)
=

αλT

βµ
, (21)

where the last equality condition uses the notationα , E (αr
1)

that denotes the average detection probability given its dis-
tributions, β , min∀i∈S1

pdi1 that denotes a constant given
geographic locations of sensor sources and task. Hence, we
rewrite (21) as,

λT

µ
≤

E

βα
(22)

Finally, we derive the maximum network lifetimeTmax and
maximum task admissible rateλmax as:

Tmax = β
E

αρ
, λmax = β

Eµ

αTmin
. (23)

Lemma 6.1 proves that (22) serves as the principle sys-
tem design criterion for this use case, where it shows the
fundamental trade-offs among maximum network lifetime,
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Fig. 4. Simulation results on (a)-(b) average QoI outage probability among all completed tasks, of two different priority classes, and (c) average task
blocking probability. All are plotted w.r.t different taskarrival ratesλ and average task lifetime1/µ.

task duration, arrival rate, and QoI requirement. For instance,
higher QoI requirement would constrain the energy usage for
multiple tasks which in turn has impact on admissible arrival
rate and WSN lifetime.

D. Network Performances

The proposed algorithm, referred as “AC+Negotiation”, is
compared with the scheme without negotiation process “AC
only” and the traditional WSN traditional WSN management.

Traditional WSN research is an one-off deployment con-
figuration assuming “static” behaviors of system parameters,
where sensors are positioned on the field of interests and set-up
their power consumptions in order to attain a particular level
of probability of detection (e.g.,αr

j = 90%). Furthermore,
the WSN does not adjust any of its operational parameters
throughout its lifetime, independent of application needs. In
contrast, with the proposed QoI-aware management, system
parameters will be adjusted judiciously, so that WSN lifetime
will be longer given satisfactory QoI requirements. In this
simulation, for both “static” and the “dynamic” scenarios,we
assume that tasks arrive and last stochastically with the same
statistics, and we choose that the probability of detectionfor
which the system is designed to operate in the static case is the
average of the probability of detections the various missions
request in the dynamic case.

Fig. 4(a) illustrates the average QoI outage probability of
all completed tasks as a function of both task arrival rate
λ and average task lifetime1/µ. QoI outage is defined as
the portion of all completed tasks whose QoI requirements
fail, i.e., tasks for which the satisfaction index was less
than 0 at least once during their lifetime. For fixed average
task lifetime, it is interesting to observe saturation of QoI
outage probability for all three schemes when we increase the
arrival rate since rejections to new tasks help maintain running
ones’ QoI satisfaction. However, levels at which the three
schemes saturate vary significantly: the proposed algorithm
can even guarantee81% of QoI satisfaction for any underlying
application, as compared to74% for “AC only” scheme,
and 40% for “Traditional”. This is because the impact of
newly admitted tasks on existing ones has been estimated and

accurately reflected in the parameter of QoI network capacity
in terms of maximum detection probability which controls the
QoI-aware network status, and the negotiation process helps
optimize resource utilization to release some resources for
higher priority tasks. On the other hand, when the average
task lifetime is increased, QoI outage increases by 20%. This
is because the increasing network loadρ(= λ/µ) at any time in
the network may jeopardize the satisfaction of ongoing tasks,
since finite network resources are shared by more tasks than
before, which in turn may violate the QoI network capacity
bound.

The behavior of average QoI outage probability for differ-
ent priority user groups is shown in Fig. 4(b), where only
the “AC+Negotiation” scheme is plotted with fixed average
task lifetime 1/µ = 40mins. Interestingly, although similar
behaviors for high and low priority user groups can be seen,
the saturation speed of their QoI outage probability differs sig-
nificantly. This is primarily because our proposed negotiation
process successfully guarantees non-negotiable QoI levels for
high priority tasks, however, and adaptable QoI levels for low
priority ones. On the other hand, successful task rejections help
maintain low QoI outage probability and high QoI satisfaction
for existing tasks in the network.

Fig. 4(c) shows the behavior of average task blocking
probability w.r.t. both task arrival rate and lifetime. While
“Traditional” is not plotted in this figure since no rejections are
made, task blocking probability increases significantly when
more tasks are offered (higherλ). However, these successful
task rejections help maintain low QoI outage probability and
high QoI satisfaction for existing ones in the network, as
shown in Fig. 4(a). On the other hand, when network load
ρ is increased by enlarging task lifetime, resource availability
decreases as being occupied by higher number of concurrent
tasks serviced. Last, for reasonably loaded system, our scheme
“AC+Negotiation” can successfully guarantee as low as 5%
blocking probability as compared with 8% when negotiation
process is not used.

Table. I demonstrates the average jitter of QoI satisfaction
index among completed and satisfactory tasks, which is de-
fined as the variance of satisfaction indexes, i.e.,σ∀j∈J (Ij).



TABLE I
AVERAGE JITTER OFQOI SATISFACTION INDEX, WITH FIXED TASK

ARRIVAL RATE λ = 0.5 PER MINUTE

AC+Negotiation AC only Traditional

1/µ = 20 mins 0.16 0.21 0.27

1/µ = 40 mins 0.17 0.22 0.28
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Fig. 5. Simulations on the normalized WSN lifetime w.r.t. different task
arrival rateλ and task departure rateµ.

Unlike QoI outage and blocking probability, this performance
metric directly reflects the human aspect of experiences when
interfacing the system that indicates the performance stability
(or fairness) for the proposed O&M framework to provide QoI
experiences for all tasks. For fixed average task lifetime1/µ,
a 31% jitter increase can been seen if full scheme is compared
with the other two schemes.

Fig. 5 shows the normalized WSN lifetime w.r.t. different
task arrival rate and departure rates. It can be seen a significant
WSN lifetime improvement compared with traditional settings,
and this improvement increases when tasks arrive more fre-
quently (due to more efficient resource allocation among all
tasks). Furthermore, proposed approach successfully approx-
imate the analytical results given in (23) while traditional
settings perform far away behind. Meanwhile, given desired
WSN lifetime, this figure also shows the way to obtain the
maximum admissible rateλmax the network can support given
minimum probability of detectionαmin.

VII. C ONCLUSIONS ANDFUTURE WORK

QoI-aware WSN O&M represents a broader area of research
challenges that this paper only begins to address. Different
from other works focusing on network utility maximization
problem with predefined utility functions, this paper employs
a unique and runtime design perspective where the WSN learns
and optimizes the network utility by probing the satisfaction
levels of completed tasks. Three key design elements were
proposed, including a novel concept of QoI satisfaction index,
QoI network capacity, and an adaptive and negotiation-based
admission control process. Finally, extensive numerical results
on a complete intruder detection user scenario show the
proposed framework can successfully guarantee satisfactory
QoI, prolong the the WSN lifetime while maintaining low
blocking probability and jitter.

In the course of this work, we have identified several im-

portant future research directions motivated by the deployment
issues in a broader space of application scenarios. First isto
extend the overall O&M solution to a distributed configuration
for large-scalead hoc networked environments as well as
investigating extensions to the definitions of capacity and
negotiation. Second is to include sensor network duty-cycling
algorithms as well as the inclusion of networked actuators,
which would most likely change the nature of tasks admitted
to the framework. Finally, in an effort to make the O&M
framework easilyreusablein real-world sensor network appli-
cations, we plan to investigate how to embody the framework
in a formalized middleware instantiation.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,”IEEE Comm. Mag., vol. 40, no. 8, pp. 102–114,
Aug 2002.

[2] R. Y. Wang and D. M. Strong, “Beyond accuracy: what data quality
means to data consumers,”J. Manage. Inf. Syst., vol. 12, no. 4, pp.
5–33, 1996.

[3] M. Johnson and K. Chang, “Quality of information for datafusion in
net centric publish and subscribe architectures,” inFUSION 2005, July.

[4] C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, D. Verma,
and R. I. Young, “Building principles for a quality of information
specification for sensor information,” inFUSION 2009, July.

[5] S. Eswaran, A. Misra, and T. La Porta, “Utility-based adaptation in
mission-oriented wireless sensor networks,” inIEEE SECON 2008, June,
pp. 278–286.

[6] Y. Hou, K. K. Leung, and A. Misra, “Joint rate and power control for
multicast sensor data dissemination in wireless ad-hoc networks,” in
PIMRC 2009.

[7] C. Bisdikian, J. Branch, K. K. Leung, and R. I. Young, “A letter soup
for the quality of information in sensor networks,” inIEEE Information
Quality and Quality of Service (IQ2S) Workshop (in IEEE PerCom’09),
Galveston, Texas, USA, March.

[8] A. Tolstikov, J. Biswas, and C.-K. Tham, “Data loss regulation to ensure
information quality in sensor networks,” inISSNIP 2005, pp. 133–138.

[9] A. Tolstikov, C.-K. Tham, and J. Biswas, “Quality of information assur-
ance using phenomena-aware resource management in sensor networks,”
in IEEE Int’l Conf. on Networks 2006, vol. 1, Sept., pp. 1–7.

[10] Y. Zhang and Q. Ji, “Active and dynamic information fusion for
multisensor systems with dynamic bayesian networks,”IEEE Trans. on
Systems, Man, and Cybernetics, Part B, vol. 36, no. 2, pp. 467–472,
April 2006.

[11] A. Tolstikov, C.-K. Tham, W. Xiao, and J. Biswas, “Information quality
mapping in resource-constrained multi-modal data fusion system over
wireless sensor network with losses,” inInt’l Conf. on Information,
Comm. & Signal Processing, 2007, Dec., pp. 1–5.

[12] A. Tolstikov, W. Xiao, J. Biswas, S. Zhang, and C.-K. Tham, “Infor-
mation quality management in sensor networks based on the dynamic
bayesian network model,” inISSNIP 2007, Dec., pp. 751–756.

[13] K. Henricksen and R. Robinson, “A survey of middleware for sensor
networks: state-of-the-art and future directions,” inInt’l Workshop on
Middleware for sensor networks, New York, USA, 2006, pp. 60–65.

[14] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware
to support sensor network applications,”IEEE Network, vol. 18, no. 1,
pp. 6–14, Jan/Feb 2004.

[15] J. W. Branch, J. S. Davis II, D. M. Sow, and C. Bisdikian, “Sentire: A
framework for building middleware for sensor and actuator networks,”
in IEEE PerSeNS’05 Workshop, vol. 0, pp. 396–400.

[16] C. H. Liu, K. K. Leung, C. Bisdikian, and J. Branch, “A newapproach
to architecture of sensor networks for mission-oriented applications,” in
SPIE Defense, Security, and Sensing 2009, April.

[17] E. Onur, C. Ersoy, H. Delic, and L. Akarun, “Surveillance wireless
sensor networks: Deployment quality analysis,”IEEE Network, vol. 21,
no. 6, pp. 48–53, 2007.

[18] S. S. Iyengar and A. Elfes, “Occupancy grids: a stochastic spatial
representation for actie robot perception,”Autonomous Mobile robots:
Perception, Mapping, and Navigation, vol. 1, pp. 60–70, 1991.

[19] L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley, Jan. 1975.




