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Abstract—In this paper, the novel area of the task-oriented,
quality-of-information (QoI)-aware operation and management
of wireless sensor networks (WSNs) is proposed and investigated.
Driven by a runtime monitoring of the QoI levels provided to
sensing tasks, the paper proposes a task admission and WSN
resource utilization procedures to control the overall QoI levels
provided to new and existing tasks. The paper describes the key
design elements in support of the proposed approach, namely:
(a) the QoI satisfaction index of task, which quantifies the degree
to which the required QoI is satisfied by the WSN; (b) the QoI-
centric sensor network capacity, which expresses the ability of
the WSN to host a new task (with specific QoI requirements)
without sacrificing the QoI of other currently hosted tasks;
(c) a negotiation-based admission control process that relies on
iteratively reconfiguring and optimizing the usage of network
resources and the degree of QoI acceptance of prioritized sensing
tasks; and (d) a resource allocation method to optimally allocate
network resources for running and new tasks. Finally, extensive
performance results are provided for assessing the performance
of the proposed approach for the case of an intruder detection
use scenario.

I. INTRODUCTION

Continuing advances in sensor-related technologies, includ-
ing those in pervasive computing and communications, are
opening more and more opportunities for the deployment
and operation of smart autonomous wireless sensor networks
(WSNs) [1]. A significant portion of research in the area of
WSN deployment and operation focuses primarily on the “in-
ternal” aspects of WSNs such as energy-efficiency, coverage,
routing topologies for efficient query and data dissemination,
and so on [1]. The complementary area that considers the
“external” relationships that WSNs have with the information
needs of the sensing tasks (or simply tasks) they support have
experienced significantly less exposure.

The central theme of this paper (and of our research in
general) is bridging between the operational characteristics
of WSNs with the quality-related information requirements
of the tasks they service. Specifically, the paper considers a
WSN during its operation in a dynamic environment where
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multiple sensing tasks share the information-producing, sens-
ing capabilities of the WSN. The tasks have varying quality
of information (QoI) requirements and arrive at the WSN at
random times and request service (i.e., retrieve desired sensed
information) of random length. The network is managed (e.g.,
tasks are admitted and network resources are allocated) in
a prioritized, task-centric manner manifested by the QoI the
serviced tasks receive from the WSN relative to the QoI
they requested. Broadly speaking, QoI relates to the ability to
judge available information fit-for-use for a particular purpose
[2], [3]. For the purposes of this paper, we will assume
that QoI is characterized by a number of quality attributes,
such as accuracy, latency, and spatiotemporal relevancy [4]
that sensing tasks request from the network. Addressing this
problem gives rise to the novel research direction of QoI-aware
operation and management (O&M) of WSNs.

Our approach to coping with the problem is influenced by
the increasing body of research for WSNs exploiting utility
analysis techniques [5], [6]. These techniques strive to drive
WSNs toward a desirable operational point that maximizes
some measure of goodness (utility) produced by the network.
They do so by fine tuning configurable WSN resources,
such as traffic flows, routing paths, transmission power,
buffer allocations, etc. This certainly parallels our pursuit
for providing QoI-aware O&M. However, and in addition
to not dealing with tasks coming and going, utility-based
techniques are anchored on an a priori knowledge (in the
form of a analytically tractable, closed form expressions) of
the goodness produced by the network as a function of the
managed resources. This goodness is expressed in the form
of simple network-level benefits, typically a maximization of
packet flows. Deriving such an expression for the benefit at
the information level (e.g., increased information accuracy)
in a closed form is extremely difficult, especially when
considering entire WSNs simultaneously supporting multiple
sensing tasks with different QoI requirements and priorities;
we acknowledge though the existence of benefits of models
tying a single sensor to a single task, e.g., detection probability
vs. energy, which we will exploit.

Therefore, in building our QoI-aware O&M framework for
WSNs, we have opted to decouple (or layer) describing the
dynamic QoI performance experienced by all the tasks from
the entire network at large from the QoI relationships between
sensor resources to individual tasks. For the former, we adopt
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a runtime learning of the QoI benefit provided by the WSN
as a whole to the sensing tasks it supports by monitoring
the level of “QoI satisfaction” they attain in relation to the
QoI levels they had requested. This relaxes the requirement
for the a priori knowledge of network-wide utility functions
and facilitates the dynamic accommodation of sensing tasks
with heterogenous requirements. For the latter, we leverage
existing models and relationships linking network resources
to QoI performance, e.g., relationships between transmit
power, sensor location to probability of detection, sensor
coverage, etc., [7], [8], [9].

Several novelties are central to the design of our QoI-
aware O&M framework whose descriptions form the basis
of this paper. First is the metric QoI satisfaction index,
which quantifies the degree to which a WSN (and its current
operational configuration) satisfies the QoI requirements of
a task it serves. Second is the the concept of QoI-centric
sensor network capacity, which expresses the ability of a WSN
to host a new sensing task (with specific QoI requirements)
without sacrificing the QoI of other currently hosted ones.
Third is a priority and negotiation-based admission control
process which, when a new task is to be admitted to the
network, uses the aforementioned items to iteratively adjust
network resources and QoI levels in an effort to maintain
desirable and predictable QoI satisfactions for all serviced
tasks. Last is an optimal resource allocation framework to
achieve certain network objectives (e.g., fairness) given QoI
and network resource constraints.

The rest of the paper is organized as follows. In Section II,
we highlight related research activities. Section III presents the
system model. Section IV describes four key design elements
for such QoI-aware O&M framework. An exemplar of our
O&M framework for a specific use case and numerical results
are presented in Section V. Finally, we conclude in Section VI
with a summary and concluding remarks.

II. RELATED WORK

To the best of our knowledge, the proposed QoI-aware
O&M framework for WSNs represents the first management
solution of its kind (including: QoI, arriving and departing
tasks, priority treatment); we note that early thoughts on the
subject were verbalized by the authors in [10] without any of
the technical detail and extend covered in this paper. There is,
of course, related work that has motivated and influenced our
current research path. Despite the study of QoI in enterprise
systems [2], [3], it was not until recently that work in [11]
proposed a conceptual framework to enable the dynamic
binding of sensor information producers and consumers in
QoI-aware manner, a principle that is a cornerstone behind
our framework; this has been further extended on to a formal
definition of QoI in sensor networks in [4].

The network utility maximization (NUM) framework has
been recently extended to consider a unique aspect of WSNs:
shared consumption of a single sensor data source by multiple
sensing tasks with different utility functions [5]. This is further
addressed in [6], where NUM is used for jointly adapting

source data rates and node transmission powers in a multicast,
multi-hop wireless environment.

Other work has focused on modeling the state of the net-
work with respect to supporting quality-related administrative
decisions. This includes characterizing information loss due to
network delays and buffer overflows to make task admission
decisions [12] and monitoring network resource allocations
and the status of sensed phenomena to determine available
QoI [13] and sustain required QoS [14]. Sensor network
management issues were studied in [15], [16], where in [16]
information quality (completeness and accuracy) is supported
by a dynamic Bayesian network model based constraint op-
timization problem which takes into account all the levels of
information processing, from measurement to aggregation to
data delivery with predefined network utility. Similarly, [15]
further compared the solution with Bayesian network model.

Finally, we refer to WSN middleware designs [17] to
support some notion of information quality [18], [19], [20];
the latter work has inspired aspects of our research in the area.

III. SYSTEM MODEL

We consider a WSN comprising a set of sensor nodes,
𝒮 = {𝑠𝑖; 𝑖 = 1, 2, . . . , 𝑁} and a sink node (of sufficient
processing and energy capabilities). Sensing tasks arrive at
the WSN and request service (i.e., retrieve sensed information)
to last some period of time. The arrival and service duration
processes are in general stochastic in nature and their details
will be specified as needed later on. Let 𝒥 represent the set
of tasks currently serviced by the WSN and let sensors in
𝒮𝑗 ⊂ 𝒮 be servicing task 𝑗; sensors may potentially serve
multiple tasks simultaneously.

Task 𝑗 ∈ 𝒥 requires the monitoring of specific feature(s)
of interest such as temperature, event occurrence or location,
density of a hazardous chemical, and so on. Each feature is
associated with one or more QoI attributes, such as accuracy
and latency in the received information, whose desired values
are declared by the tasks upon their arrival for service. We
use the superscript 𝑟 to denote a QoI attribute value required
(and declared) by a task and 𝑎 for the level of of the QoI
attribute attained by the WSN, e.g., 𝜏 𝑟

𝑗 and 𝜏𝑎𝑗 will denote
the probability of detection of an event (an accuracy attribute)
or likewise 𝑑𝑟𝑗 and 𝑑𝑎𝑗 for the latency. Finally, tasks belong
to one of 𝑈 priority classes with higher priority sensing
tasks enjoy preferential treatment and higher guarantees for
receiving satisfactory QoI levels. The set 𝒥𝑢 ⊂ 𝒥 represents
all the tasks of priority 𝑢, 𝑢 = 1, 2, . . . , 𝑈 . Task admission
control is performed at the sink node before being assigned to
any sensor node.

The QoI levels attained are the result of multiple operations
spanning several layers (physical, MAC, network, information
processing) whose interrelation is too complex to describe
effectively in any meaningful way. Therefore, we have opted
to go around this issue by adopting a “black box” view for the
WSN encompassing the sensor nodes and associated network
resources. These sensors include data sources, relays, and
sinks, which are involved in collecting and reporting sensor
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Fig. 1. The flow of QoI-aware O&M framework for any WSN. The system continuously measures the degree of resource occupancy and updates its
knowledge of the state of system. When the new sensing task arrives for admission, QoI-aware sensor network capacity is obtained that aids admission
decision. Then, optimal resource allocation, or negotiation process if necessary, seeks for optimal resource occupancy for all sensing tasks. When any task
completes, the resource allocation function is called again to re-optimize the distribution of limited network resources so that running tasks’ QoI are improved.

measurements. Finite resources are shared by multiple sensing
tasks within the black box that include, but are not limited to,
devices, time, buffers, bandwidth, energy, etc. The inputs to
the black box are the sensing tasks’ QoI requirements and
system/network-level parameters. The output of the black box
is a task’s degree of QoI satisfaction.

The I/O behavior of the black box is not known ex-
actly but estimated at runtime. Without loss of general-
ity, let this I/O behavior be represented by the mapping
𝑓(⋅), where 𝑓 : ℝ

𝑀 → ℝ
(
𝑥(𝑡) → 𝑦(𝑡)

)
1. We con-

sider two types of input variables: 𝑥(𝑡) =
(
𝑥1(𝑡), 𝑥2(𝑡)

)
,

where 𝑥1(𝑡) =
(
𝑥1
1(𝑡), 𝑥

1
2(𝑡), . . . , 𝑥

1
𝑀1

(𝑡)
)

denotes 𝑀1 di-
mension system-level parameters, like the number of run-
ning tasks and the buffer size of each sensor, and 𝑥2 (𝑡) =
(𝑥2

1(𝑡), 𝑥
2
2(𝑡), . . . , 𝑥

2
𝑀2

(𝑡)) denotes 𝑀2 dimension sensing
tasks’ QoI requirements, like accuracy and latency; 𝑀 =
𝑀1 + 𝑀2. The output 𝑦(𝑡) reflects the overall system
utilization, denoted as QoI satisfaction index, see next
section. We characterize the potential new task admis-
sion as an input change Δ𝑥(𝑡) =

(
Δ𝑥1(𝑡),Δ𝑥2(𝑡)

)
=(

Δ𝑥1
1(𝑡), ...,Δ𝑥1

𝑀1
(𝑡),Δ𝑥2

1(𝑡), ...,Δ𝑥2
𝑀2

(𝑡)
)

into the black
box, which will result in change of output to:

𝑦(𝑡) = 𝑓
(
𝑥(𝑡) + Δ𝑥(𝑡)

)
. (1)

Next, we describe the overall flow of the proposed O&M
framework, see Fig. 1; detail of the key concepts intro-
duced are presented in the next section. The region above
the dashed red line pertains to the external QoI (task-
oriented) black-box behavior of WSN, while below the
line relates to the internal operation of the WSN. Let
ℛ(𝑡) =

(
𝑅1(𝑡), 𝑅2(𝑡), . . . , 𝑅𝑃 (𝑡)

)𝑇 ∈ ℝ
𝑃 denote a 𝑃

dimension column vector describing the instantaneous re-
maining resources, like energy, bandwidth, etc., and 𝜉 ∗

𝑗
(𝑡) =(

𝜉1,∗𝑗 (𝑡), 𝜉2,∗𝑗 (𝑡), . . . , 𝜉𝑃,∗
𝑗 (𝑡)

)𝑇 ∈ ℝ
𝑃 denote the correspond-

ing optimal resource occupancy of each sensing task 𝑗, ∀𝑗 ∈ 𝒥
1The underlined notation signifies a vector quantity.

after the resource allocation. Then, column vector 𝜂(𝑡) =(
𝜂1(𝑡), 𝜂2(𝑡), . . . , 𝜂𝑃 (𝑡)

)𝑇 ∈ ℝ
𝑃 represents the total resource

occupancy for all running tasks at time 𝑡, i.e., 𝜂(𝑡) =∑
∀𝑗∈𝒥 𝜉∗

𝑗
(𝑡).

The mapping 𝑓(⋅) is obtained by monitoring the QoI deliv-
ered to sensing tasks serviced by the WSN so that whenever
there is a task admission or completion, the current network
status (𝑀 input variables) is updated along with the corre-
sponding single output. When the new sensing task arrives
for network admission, it expresses its QoI requirements to
the WSN, which will results in a input change Δ𝑥(𝑡) (if the
task is actually admitted). The mapping 𝑓(⋅) is derived by
smoothly interpolating across the levels of QoI level delivered
so far by the network to various tasks it has serviced and this is
used to estimate the QoI-centric sensor network capacity, see
Section IV-B, that is used to decide whether to admit the new
task. The new task’s QoI requirements are then compared with
the sensor network capacity element-by-element such that if
there is enough network resources to support, optimal resource
allocation, see Section IV-D, runs to seek for optimal resource
occupancy among all sensing tasks, and 𝜉 ∗

𝑗
(𝑡), ∀𝑗 ∈ 𝒥 , is

obtained. Otherwise, a negotiation process is called such that
existing tasks’ QoI requirements are adapted to release some
resources for the new task, see Section IV-C. When sensing
task completes, the resource allocation function is called again
to re-optimize the distribution of limited network resources so
that existing running tasks’ QoI will be improved.

In the next section, we will elaborate on the four key design
elements of our proposal, namely, (1) QoI satisfaction index,
(2) sensor network capacity, (3) negotiation-based admission
control process, and (4) optimal resource allocation.

IV. KEY DESIGN ELEMENTS

A. QoI Satisfaction Index

As its name implies, this index is used to describe the level
of QoI satisfaction the tasks received from the WSN. It is
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Fig. 2. (a) The illustrative example for the definition of QoI satisfaction index. It is desirable to have 𝑧𝑎𝑗 ≥ 𝑧𝑟𝑗 since it is assumed that the QoI attribute
values are such that the bigger the better. (b) An example of the shape of curve produced by mapping 𝑓 to show how to obtain sensor network capacity
𝛼max(𝑡). (c) Real-time statistics for sensor network capacity estimation.

applicable to each task 𝑗 and QoI attribute 𝑧 and is defined as:

I𝑧𝑗 ≜ tanh
(
𝑘 ln

𝑧𝑎𝑗
𝑧𝑟𝑗

)
, ∀𝑗 ∈ 𝒥 , (2)

where 𝑧, which represents elements of the 𝑥2 (𝑡) vector,
could be 𝜏 or 𝑑 for accuracy or latency, respectively, and 𝑘
denotes a scaling factor. The selection of the functions ln(⋅)
and tanh(⋅) is rather arbitrary but result in the intuitively
appealing and desirable behavior for satisfaction as shown in
Fig. 2(a). A per task QoI satisfaction index I𝑗 can be defined
by combining the per QoI attribute indexes above. In this
paper, we opt to use the minimum of these indexes, i.e.,

I𝑗 = min
(
I𝑧𝑗
) ∈ (−1, 1), ∀𝑗 ∈ 𝒥 . (3)

Likewise, we can define the instantaneous QoI satisfaction
index I(𝑡) as the minimum of indexes min∀𝑗∈𝒥 I𝑗 of tasks in
service at time 𝑡. It follows immediately from the definition
of satisfaction index that:

Corollary 4.1: For any sensing task 𝑗 ∈ 𝒥 , its (multiple)
QoI requirements are simultaneously satisfied if and only if
I𝑗 ∈ [0, 1).

Note that the QoI satisfaction index not only represents the
sensing quality at a selected group of data sources 𝒮𝑗 , but also
reflects the communications quality of multi-hop WSNs for the
reporting route, when the data is measured at the sink side.
This is important because QoI relies on two parts: information
sensing of multiple data sources, and information reporting
through multi-hop WSNs that may incur further packet loss,
delay, or damage.

B. Sensor Network Capacity

Before admitting a new task for service, we would like
to identify the potentially limiting resources and estimate the
maximum “capacity” 𝒞(𝑡) = (𝒞1(𝑡), 𝒞2(𝑡), . . . , 𝒞𝑃 (𝑡))𝑇 ∈ ℝ

𝑃

a WSN can support at any given time 𝑡. Thus, we define:
Sensor network capacity indicates the time-varying ca-

pability a WSN can provide to any task with satisfactory
QoI requirements, such that I𝑗 ∈ [0, 1), ∀𝑗 ∈ 𝒥 . Sensor
network capacity 𝒞(𝑡) is a multi-dimensional column vector

with network defined dimension 𝑃 such that each element
𝒞𝑖(𝑡) ∈ 𝒞(𝑡), ∀𝑖 = 1, 2, . . . , 𝑃 , can represent any one of the
following parameters (not exclusively though): the network-
wide maximum cardinality of the sensing task set 𝒥 , max-
imum queue length for each node, maximum information
accuracy, smallest information gathering delay, etc.

With reference to our black box view of WSN, we set its
output 𝑦(𝑡) ≜ I(𝑡) = 𝑓(𝑥(𝑡)). Assuming 𝑓(⋅) is (at least)
doubly differentiable, we write:

𝑦 = 𝑓
(
𝑥+Δ𝑥

) ≈ 𝑓(𝑥) +
𝑀∑
𝑖=1

𝑓 ′
𝑥𝑖
Δ𝑥𝑖

+
1

2

( 𝑀∑
𝑖=1

𝑓 ′′
𝑥𝑖
Δ𝑥2

𝑖 +
𝑀∑
𝑖=1

∑
𝑗 ∕=𝑖

𝑓 ′′
𝑥𝑗𝑥𝑖

Δ𝑥𝑖Δ𝑥𝑗

)
, (4)

where the time index 𝑡 is implied and 𝑓 ′
𝑥𝑖

= ∂𝑓/∂𝑥𝑖, 𝑓 ′′
𝑥𝑖

=
∂𝑓2/∂𝑥2

𝑖 , 𝑓
′′
𝑥𝑗𝑥𝑖

= ∂𝑓2/∂𝑥𝑗∂𝑥𝑖.
Given more stringent QoI requirements for the input vari-

ables, a lower QoI satisfaction index is expected. At the same
time, Corollary 4.1 indicates that the shape of curve will
reach a lowest satisfaction level when QoI satisfaction index
I(𝑡) = 0, at which level the sensor network capacity is also
defined. This lowest point is estimated based on the curve
for 𝑓(⋅) derived along each dimension of the mapping, see
Fig. IV(b) and (c). The procedure is to project a “large”
sensing task with stringent enough QoI requirement into the
network, so that it pushes the system to the capacity bound:
the minimum supportable QoI satisfaction index I(𝑡) = 0

To illustrate this, consider a use case where event detection
tasks ask service from the WSN declaring a required detection
probability 𝛼𝑟

𝑗 , ∀𝑗 ∈ 𝒥 . In this case, the sensor network capac-
ity reduces to a scalar representing the maximum probability
of detection the WSN can provide to its tasks, 𝒞(𝑡) ≜ 𝛼max(𝑡).
We assume that a new task arrives at 𝑡 = 0 when the WSN’s
state was: 𝑥(0) =

(
𝑥1(0), 𝑥2(0)

)
=
(
𝑛(0), 𝛼(0)

) ∈ ℝ
2,

where 𝑛(0) denotes the number of existing tasks as the
system parameter, and 𝛼(0) denotes the worst-case guaranteed
detection probability as the QoI parameter. Then our black box
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is represented by mapping,

𝑦(0) ≜ I(0) = 𝑓
(
𝑛(0), 𝛼(0)

)
. (5)

A large new sensing task admission corresponds to an input
change Δ𝑥(0) =

(
Δ𝑥1(0),Δ𝑥2(0)

)
=
(
𝛼(0), 𝑛(0)

)
=(

𝛼max(𝑡)− 𝛼(0), 1
)
, and for the expected output change,

𝑦(0) = I(𝑡) = 𝑓
(
𝑛max(𝑡), 𝛼max(𝑡)

)
= 0. (6)

Therefore, we rewrite (4) as,

I(𝑡) = I(0) + Δ𝑛𝑓 ′
𝑛(𝑡) +Δ𝛼𝑓 ′

𝛼(𝑡)

+
Δ𝑛2

2
𝑓 ′′
𝑛(𝑡) +

Δ𝛼2

2
𝑓 ′′
𝛼(𝑡) +Δ𝑛Δ𝛼𝑓 ′′

𝑛(𝑡)𝛼(𝑡), (7)

or,

I(0) + 𝑓 ′
𝑛(𝑡) +

[
𝛼max(𝑡)− 𝛼(0)

]
𝑓 ′
𝛼(𝑡) +

1

2
𝑓 ′′
𝑛(𝑡) +[

𝛼max(𝑡)− 𝛼(0)
]2

2
𝑓 ′′
𝛼(𝑡) +

[
𝛼max(𝑡)− 𝛼(0)

]
𝑓 ′′
𝑛(𝑡)𝛼(𝑡) = 0, (8)

where all partial derivatives are computed at current system
state 𝑥(0) =

(
𝑛(0), 𝛼(0)

)
at time 𝑡 = 0. It is not difficult

to observe that (8) is a quadratic function with only decision
variable 𝛼max(𝑡), hence, we can write:

𝒞(𝑡) ≜ 𝛼max(𝑡) = 𝛼(0)−
𝑓 ′′
𝑛(𝑡)𝛼(𝑡) + 𝑓 ′

𝛼(𝑡)

𝑓 ′′
𝛼(𝑡)

+√[
𝑓 ′′
𝑛(𝑡)𝛼(𝑡) + 𝑓 ′

𝛼(𝑡)

]2 − 2𝑓 ′′
𝛼(𝑡)

[
2𝑓 ′

𝑛(𝑡) + 𝑓 ′′
𝑛(𝑡) − 2I(0)

]
𝑓 ′′
𝛼(𝑡)

. (9)

Furthermore, if the shape of curve 𝑓 is smooth enough around
current system operating point 𝑥(0) =

(
𝑛(0), 𝛼(0)

)
so that the

second order derivatives are negligible, we simplify (9) as:

𝒞(𝑡) ≜ 𝛼max(𝑡) = 𝛼(0)−
I(0) + 𝑓 ′

𝑛(𝑡)

𝑓 ′
𝛼(𝑡)

. (10)

Fig. 2(b) illustrates of how this methodology is used, and Fig.
2(c) provides illustrates real-time statistics (from a system sim-
ulation) of QoI satisfaction indexes collected and interpolated
to estimate the current shape of the 𝑓(⋅) curve.

C. Negotiation-based Admission Control for Sensing Tasks

As shown in Fig. 1, following the estimation of the sensor
network capacity, suppose a new sensing task 𝑗 ′ with priority
𝑢𝑗′ and QoI requirements {𝑧𝑟

𝑗′}, arrives at the sink for the
admission decision at time 𝑡; the 𝑧’s scan the elements of
vector 𝑥2(𝑡) in the figure, in abuse of notation, we will right
𝑧 = 𝑥2 for it. Before assigning the task to any sensor(s), an
admission control decision is made according to the following
conditions (see Fig. 1),

𝒞(𝑡) ર {𝑧𝑟𝑗′}
{

admit, if true,
negotiate, otherwise,

where notation ર denotes the element-by-element comparison.
Typically, an admission control scheme will outright ban the
new sensing task if some threshold condition was violated.

However, here we opt first for a negotiation between all sens-
ing tasks, new and old, and the admission control functionality,
in search of an acceptable (to the sensing tasks) and attainable
(by the network) compromise regarding the QoI satisfaction
index delivered by the network. Resource management in this
case includes scheduling, rate and power control allocation,
sensor selection, integration of data compression, etc.

Under the guidance of the resource optimization, ongoing
sensing tasks may internally reconfigure and reallocate net-
work resource usages among themselves, so that the optimized
network status will give the best achievable QoI for the new
sensing task. Nevertheless, sometimes the network might be
overloaded operating near the capacity bound, i.e., however
the network resources are optimized and reconfigured, the
required QoI will not be satisfied. Hence, the negotiation
process is employed, i.e., the new sensing task may gradually
adapt its QoI level in order to meet network capabilities, or
existing tasks with lower priority levels may tune their QoI
requirements and release resources for the new higher priority
one. This information would feed to the admission control
module for admission; if still unsuccessful, WSN will trigger
the resource optimization module to further reconfigure the
limited resources based on updated QoI levels. This is an
iterative process, where sensing task QoI, admission control,
and resource optimization collaborate until satisfactory QoIs
for all tasks are reached, or otherwise the new sensing task is
eventually rejected.

Mathematically, during the negotiation phase, the following
optimization is pursued:{
𝜉∗
𝑗
(𝑡)
}
∀𝑗∈𝒥

= argmaxℱ
({

𝑧𝑟𝑗
}𝑧∈𝑥2(𝑡)

∀𝑢𝑗<𝑢𝑗′
, 𝜉

𝑗
(𝑡)
∣∣
∀𝑗∈𝒥

)
(11)

subject to:

{
𝑧𝑎𝑗 ≥ 𝑧𝑟𝑗 , ∀𝑗 ∈ 𝒥 , 𝑧 ∈ 𝑥2(𝑡)

𝜂(𝑡) ≜
∑

∀𝑗∈𝒥 𝜉
𝑗
(𝑡) ⪯ ℛ(𝑡),

recall that 𝑢𝑗′ denotes the priority of the new task. The objec-
tive function Fairness ℱ is chosen as the optimization target
since service degradation and adaptation for lower priority
tasks may violate ongoing sensing tasks’ QoI satisfactions. The
arguments to this optimization problem are adaptable multiple

QoI requirements
{
𝑧𝑟𝑗
}𝑧∈𝑥2(𝑡)

∀𝑢𝑗<𝑢𝑗′
of those tasks with lower

priority classes, and resource occupancy vector 𝜉
𝑗
(𝑡)
∣∣
∀𝑗∈𝒥 .

Note that the optimization is further constrained by the need
to respect the QoI satisfaction for the task of different priority
groups and resource constraints under current network status.

D. Optimal Resource Allocation

After the admission decision is made for the new sensing
task, network resources will be allocated given that all running
tasks’ QoI levels cannot be violated, which is guaranteed by
an optimization problem as shown in Fig. 1. Suppose a generic
mathematical function 𝒪(⋅) is used to represent the network
design objective, where inputs are resource allocation vector
𝜉
𝑗
(𝑡) for all running and new task 𝑗 ∈ 𝒥 . The optimization



6

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

Meters

M
et

er
s

New task

Existing
tasks

Sensing 
coverage

Sensing 
coverage

Fig. 3. A runtime simulation snapshot, where two detection tasks are running
in the network (who declared a region of interest for detection upon its arrival),
while a new sensing task (with new declared region of interest) arrives for
admission. Several sensors are selected per sensing task as data sources (sensor
8 executes two tasks simultaneously by adjusting antenna beams).

problem is constrained with QoI satisfaction for all tasks and
resource availabilities under limited resource bound, as:{

𝜉∗
𝑗
(𝑡)
}
∀𝑗∈𝒥

= argmax𝒪
(
𝜉
𝑗
(𝑡)
∣∣
∀𝑗∈𝒥

)
(12)

subject to:

{
𝑧𝑎𝑗 ≥ 𝑧𝑟𝑗 , ∀𝑗 ∈ 𝒥 , 𝑧 ∈ 𝑥2(𝑡)

𝜂(𝑡) ≜
∑

∀𝑗∈𝒥 𝜉
𝑗
(𝑡) ⪯ ℛ(𝑡),

A specific example of the objective functions ℱ (for the
negotiation) and 𝒪 (for the resource allocation) will be used
in the numerical example later on.

V. NUMERICAL RESULTS

We exercise our framework for an event (such as intruder)
detection use-case [7], where multiple detection tasks arrive
dynamically into a WSN (see Fig. 3). There are 30 sensors
deployed randomly in a 200m × 200m square region. Tasks
arrive according to Poisson process with rate 𝜆 and have a
duration 𝑙 (or 𝑙𝑗 for the 𝑗-th task) that is exponentially dis-
tributed with mean 1/𝜇; the arrival and service processes are
assumed i.i.d. Sensing tasks are defined by declaring regions
of random shape over which they are interested in detecting
intruders. We use detection probability as the QoI requirement
with the probability 𝛼𝑟

𝑗 denoting task 𝑗’s requirement. All tasks
are categorized randomly into a high priority task set 𝒥1 and
a low priority task set 𝒥2, or 𝒥 = 𝒥1∪𝒥2. High priority tasks
have guaranteed QoI requirements that are not negotiable. Low
priority tasks’s QoI requirements are negotiable between least-
satisfactory (𝛼𝑟,𝑤

𝑗 ) and most-satisfactory (𝛼𝑟,ℎ
𝑗 ) QoI levels.

Sensors cover regions (i.e., are able to detect events in the
region) using smart antenna arrays forming beans that sweep
the regions. A sensor may service multiple tasks by forming
multiple such beams (as sensor 8 in Fig. 3). The strength of
a beam is controlled is power controlled and we assume that
at deployment time, there is a total energy reserve ℰ .

Detection Model: In [21], a simple detection model is used
where the detection probability 𝑝𝑑

𝑖𝑗 for sensing task 𝑗 is

described such that the physical properties of the sensors are
accommodated by generic model parameters, i.e.,

𝑝𝑑𝑖𝑗 =

⎧⎨⎩
1, if 𝑟𝑖𝑗 < 𝑑1𝑡 ,

𝑒−𝛽1(𝑟𝑖𝑗−𝑑1
𝑡 )

𝛽2
, if 𝑑1𝑡 < 𝑟𝑖𝑗 < 𝑑2𝑡 ,

0, elseif 𝑟𝑖𝑗 > 𝑑2𝑡 > 𝑑1𝑡 ,

(13)

∀𝑖 ∈ 𝒮𝑗 , where 𝛽1 = 0.12, 𝛽2 = 0.8 are typical scaling
parameters used, 𝑑1𝑡 = 28m, 𝑑2𝑡 = 58m, and 𝑟𝑖𝑗 denotes
the sensor-to-target distance. The optimal resource occupancy
vector 𝜉∗

𝑗
(𝑡) is reduced to the beam-forming power used to

service the task, 𝜉∗
𝑗
(𝑡) ≜ 𝛾∗

𝑗 (𝑡) and the QoI attained in this
case is described by:

I𝑗 = tanh

(
𝑘 ln

𝛾∗
𝑗 (𝑡)×min∀𝑖∈𝒮𝑗 𝑝

𝑑
𝑖𝑗

𝛼𝑟
𝑗

)
, ∀𝑗 ∈ 𝒥 , (14)

where sensor measurement 𝛼𝑎
𝑗 = 𝛾∗

𝑗 (𝑡)min∀𝑖∈𝒮𝑗 𝑝
𝑑
𝑖𝑗 . For task

𝑗 ∈ 𝒥 , the minimum detection probability attained by multiple
sensor sources is considered as the actual received information,
i.e., min∀𝑖∈𝒮𝑗 𝑝

𝑑
𝑖𝑗 , and we assume 𝛼𝑎

𝑗 is linear to the power
𝛾∗
𝑗 (𝑡) (alternative relationships are also possible).
Optimal Power Allocation: As discussed in Section IV-D,

resources are allocated among all existing and new sensing
tasks to satisfy all tasks’ QoI requirements and also certain
design objective is satisfied. For this use case, we select as
network objective achieving a level of fairness among the
sensing tasks. Specifically, corresponding to (12), we set:{

𝛾∗
𝑗 (𝑡)

}
∀𝑗∈𝒥 = argmax𝒪

(
𝛾𝑗(𝑡)

∣∣
∀𝑗∈𝒥

)
≜ argmax min

∀𝑗∈𝒥
I𝑗 (15)

subject to:

{
𝛼𝑎
𝑗 ≥ 𝛼𝑟

𝑗 , ∀𝑗 ∈ 𝒥 ,∑
∀𝑗 on 𝑖 𝛾𝑗(𝑡)𝑙𝑗 ≤ 𝜁𝑖(𝑡), ∀𝑖 ∈ 𝒮𝑗 ,

where the design objective 𝒪(⋅) in (12) is chosen to balance
the QoI satisfaction indexes achieved among all running and
new tasks (for their corresponding priority level). I 𝑗 is defined
in (14) as a function of resource occupancy (i.e., power used)
𝛾𝑗(𝑡). The first constraint represents the QoI satisfaction con-
dition among all tasks, while the second constraint represents
the energy reserve, and 𝜁𝑖(𝑡) denotes the remaining energy
constraint for each sensor; 𝑙𝑗 is the duration of the 𝑗-th task.
Assuming equal power is allocated for every sensor source of
a particular sensing task, the decision variable for this opti-
mization problem is a set of power allocations {𝛾 ∗

𝑗 (𝑡)}∀𝑗∈𝒥 .
Negotiation Process: When the network does not have

enough resources (i.e., enough power) to support the new
sensing task, existing lower priority ones have to adapt/degrade
their QoI levels to release resources for the new task. Cor-
responding to (11), the design objective we select here is to
minimize the maximum percentage of QoI loss among all tasks
participating in negotiation, i.e., the low priority tasks in 𝒥2:{

𝛾∗
𝑗 (𝑡)

}
∀𝑗∈𝒥 = argmaxℱ

(
𝛼𝑟
𝑗 ∣∀𝑗∈𝒥2 , 𝛾𝑗(𝑡)∣∀𝑗∈𝒥

)
≜ argmin max

∀𝑗∈𝒥2

Ĩ𝑗 − I𝑗

Ĩ𝑗
(16)
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Fig. 4. Simulation results on (a)-(b) QoI outage probability among all completed sensing tasks, of two different priority user groups, and (c) sensing task
blocking probability. All are plotted with respect to different sensing task arrival rates 𝜆 and average sensing task lifetime 1/𝜇.

subject to:

⎧⎨⎩
𝛼𝑎
𝑗 ≥ 𝛼𝑟,ℎ

𝑗 , ∀𝑗 ∈ 𝒥1,

𝛼𝑎
𝑗 ≥ 𝛼𝑟,𝑤

𝑗 , ∀𝑗 ∈ 𝒥2,∑
∀𝑗 on 𝑖 𝛾𝑗(𝑡)𝑙𝑗 ≤ 𝜁𝑖, ∀𝑖 ∈ 𝒮𝑗 ,

where Ĩ𝑗 denotes the attained QoI level before negotiation
by using power 𝛾∗

𝑗 (𝑡) in (14). While the first two constraints
denote QoI requirement constraints for high and low priority
users, the third constraint represents the per-sensor energy
reserve for the sum of allocated energy among sensing tasks.
The solution of this optimization problem gives the best
achievable QoI level for the new task by adapting existing
ones’ QoI requirements.

A. Simulations

The proposed algorithm, referred as “AC+Negotiation,” is
compared with the scheme without negotiation process “AC
only” and one with none of the schemes called “No scheme.”
The overall network performances are investigated in terms of
the QoI outage probability among all completed sensing tasks
in Fig. 4(a) and Fig. 4(b), blocking probability in Fig. 4(c),
and average jitter of QoI satisfaction index in Table I.

Fig. 4(a) illustrates the QoI outage probability of all com-
pleted sensing tasks as a function of both task arrival rate 𝜆 and
average task lifetime 1/𝜇. QoI outage is defined as the portion
of all tasks completed whose QoI attained was below required
(or negotiated) during some time in their lifetime. For given
average task lifetime, we observe the QoI outage probability
saturating with the task arrival rate for all three schemes which
results from the rejection of new tasks which helps maintain
running ones’ QoI satisfaction. However, the saturation level
of the three schemes vary significantly: with satisfaction levels
reaching approximately 80% for AC+Negotiation, compared
with 65%, and 40% for AC only, and no scheme, when
1/𝜇 = 20min. This is because the impact of newly admitted
sensing tasks on existing ones has been estimated and reflected
accurately enough in the sensor network capacity in terms
of the detection probability which controls the QoI-aware
network status. Furthermore, the negotiation process helps
optimize resource utilization to release some resources for
higher priority users. As expected, the QoI outage probability
increases with increasing task lifetime or task arrival rate, as

a result of the increased workload 𝜌 = 𝜆 𝜇 at any time in
the network that may jeopardize ongoing sensing tasks’ QoI
satisfaction, since finite network resources are shared by more
sensing tasks than before, which in turn may violate the sensor
network capacity bound.

The behavior of QoI outage probability for different pri-
ority user groups is shown in Fig. 4(b), where only the
“AC+Negotiation” scheme is plotted with fixed average sens-
ing task lifetime 1/𝜇 = 40 mins. Interestingly, although
similar behaviors for high and low priority user groups can
be seen, the saturation speed of their QoI outage probability
differs significantly. This is primarily because our proposed
negotiation process successfully guarantees non-negotiable
QoI levels for high priority tasks, however, and adaptable QoI
levels for low priority ones. On the other hand, successful task
rejections help maintain low QoI outage probability and high
QoI satisfaction for existing sensing tasks in the network.

Fig. 4(c) shows the behavior of sensing task blocking
probability with respect to both task arrival rate and lifetime.
While “No scheme” is not plotted in this figure since no re-
jections are made, sensing task blocking probability increases
significantly when more tasks are offered (higher 𝜆). However,
these successful task rejections help maintain low QoI outage
probability and high QoI satisfaction for existing ones in the
network, as shown in Fig. 4(a). On the other hand, when
the task lifetime increases, the resource availability decreases
due to usage by a larger number of concurrent tasks that
are serviced. Last, for reasonably loaded system, our scheme
“AC+Negotiation” can successfully guarantee as low as 5%
blocking probability as compared with 8% when negotiation
process is not used.

Table I demonstrates the average jitter of QoI satisfaction
index among the satisfactorily completed tasks. The average
jitter is defined as the variance of satisfaction indexes, i.e.,
𝜎∀𝑗∈𝒥 (I𝑗). It is indicative of the “stability” in the QoI levels
delivered by the sensing system (implementing our O&M
framework) to the tasks it support and, thus, a reflection of a
task’s quality of experience (QoE!) by the sensor-information
service. The smaller the value of the jitter the better, and
Table I shown moderate to significant decrease of jitter of
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TABLE I
AVERAGE JITTER OF QOI SATISFACTION INDEX, WITH FIXED SENSING

TASK ARRIVAL RATE 𝜆 = 0.5 PER MINUTE

AC+Negotiation AC only No scheme

1/𝜇 = 20 mins 0.16 0.21 0.27

1/𝜇 = 40 mins 0.17 0.22 0.28

1/𝜇 = 60 mins 0.18 0.24 0.29

the AC only and AC+Negotiation schemes when compared to
no scheme.

B. Optimal Network Design Analysis

Given the WSN O&M framework, we would like to explore
the system limits under the conditions of constrained network
resources and varying QoI requirements for different sensing
tasks, aiming at higher sensor network capacity, prolonging the
system lifetime, increasing the admission rate, while satisfying
the QoI required of admitted tasks. For this, we view the entire
WSN system as a service or “queuing” system where resources
are not just the server and buffer capacities, but bandwidth,
radio conditions, energy reserves of the system, etc. In this
queuing system, the service capacity is not fixed or known a
priori. It is represented by the sensor network capacity, which,
is as previously discussed, is learned at runtime from the QoI
levels that the WSN delivered in the past and, of course, relates
to network resource availability, energy consumption rate, etc.
Given an average arrival rate of task 𝜆, and an average task
service duration 1/𝜇, questions of interest for such a system
include:

(1) Given network load 𝜌 = 𝜆/𝜇, what is the maximum WSN
lifetime 𝑇max provided that all sensing tasks accepted
experience satisfactory QoI levels, i.e., I𝑗 ≥ 0? Or,

(2) Given minimum WSN lifetime 𝑇min and satisfactory
QoI levels for all sensing tasks, what is the region of
admissible rates 𝜆 ≤ 𝜆max that the system can sustain as
a function of 𝜇?

For the use case under consideration, the following Lemma
summarizes expressions regarding the above questions consid-
ering a single priority system. Recall, the resource occupancy
for each task 𝑗 is the scalar power, i.e., 𝜉∗

𝑗
= 𝛾∗

𝑗 , and
the relationship between 𝛾∗

𝑗 and QoI satisfaction index I𝑗 is
represented by (14), see also the RHS of Fig. 1.

Lemma 5.1: The task arrival rate 𝜆 vs. WSN lifetime 𝑇
trade off is of the form

(
𝜆𝑇/𝜇

) ≤ (ℰ/𝛽𝛼), where 𝛼 ≜ 𝔼(𝛼𝑟
1)

denotes the detection probability, 𝛽 ≜ min∀𝑖∈𝒮1 𝑝
𝑑
𝑖1 denotes

a constant given geographic locations of sensor sources and
tasks. Furthermore, the maximum WSN lifetime and the max-
imum admissible rate can be expressed as 𝑇max =

(
𝛽ℰ/𝛼𝜌),

and 𝜆max =
(
𝛽ℰ𝜇/𝛼𝑇min

)
, respectively.

Proof: For task 𝑗, we rewrite (14) as follows:

𝛾∗
𝑗 (𝑡) =

𝛼𝑟
𝑗

min∀𝑖∈𝒮𝑗 𝑝
𝑑
𝑖𝑗

𝑒

(
1
𝑘 tanh−1(I𝑗)

)
. (17)

According to Corollary 4.1, the the lower bound resource
condition for satisfactory QoI is taken I𝑗 = 0 as the input

that produces 𝛾∗
𝑗,min(𝑡) = 𝛾∗

𝑗 (𝑡)∣I𝑗=0, or,

𝛾∗
𝑗 (𝑡) ≥ 𝛾∗

𝑗,min(𝑡) =
𝛼𝑟
𝑗

min∀𝑖∈𝒮𝑗 𝑝
𝑑
𝑖𝑗

. (18)

At the same time though, resource constraints enforce the
total amount of allocated network resource to no more than
total energy reserve level ℰ , i.e.,∑

∀𝑗∈𝒥 𝑇

𝛾∗
𝑗 (𝑡)𝑙𝑗 ≤ ℰ . (19)

where 𝒥 𝑇 denotes the task set has been serviced during WSN
lifetime 𝑇 , and 𝑙𝑗 denotes the duration of the a task. Taking
expectations above, and using the i.i.d. property of the arrival
and service processes:

ℰ ≥ 𝔼

( ∑
∀𝑗∈𝒥 𝑇

𝛾∗
𝑗 (𝑡)𝑙𝑗

)
= 𝔼

(
𝔼

( ∑
∀𝑗∈𝒥 𝑇

𝛾∗
𝑗 (𝑡)𝑙𝑗

∣∣∣𝒥 𝑇
))

= 𝔼

( ∑
∀𝑗∈𝒥 𝑇

𝔼

(
𝛾∗
𝑗 (𝑡)𝑙𝑗

))
= 𝔼

(
𝒥 𝑇

𝔼

(
𝛾∗
1 (𝑡)𝑙1

))
= 𝔼

(
𝒥 𝑇
)
𝔼

(
𝛾∗
1 (𝑡)𝑙1

)
= 𝜆𝑇𝔼

(
𝛾∗
1 (𝑡)

)
𝔼

(
𝑙1

)
=

𝜆𝑇

𝜇
𝔼

(
𝛾∗
1 (𝑡)

)
, (20)

where 𝜆𝑇 denotes the average number of tasks that arrived
during the lifetime of the WSN. The RHS of the above
inequality simply expresses the average energy consumed
servicing tasks during period 𝑇 , which of course cannot be
larger than the lifetime ℰ . Hence, it follows:

ℰ ≥ 𝜆𝑇

𝜇
𝔼

(
𝛾∗
1 (𝑡)

)
≥ 𝜆𝑇

𝜇
𝔼

(
𝛾∗
1,min(𝑡)

)
=

𝜆𝑇

𝜇
𝔼

(
𝛼𝑟
1

min∀𝑖∈𝒮1 𝑝
𝑑
𝑖1

)
=

𝛼𝜆𝑇

𝛽𝜇
, (21)

where the last equality condition uses the notation 𝛼 ≜ 𝔼 (𝛼𝑟
1)

that denotes the detection probability, 𝛽 ≜ min∀𝑖∈𝒮1 𝑝
𝑑
𝑖1

that denotes a constant given geographic locations of sensor
sources and task. Hence, we rewrite (21) as,

𝜆𝑇

𝜇
≤ ℰ

𝛽𝛼
(22)

Finally, we derive the maximum network lifetime 𝑇max and
maximum sensing task admissible rate 𝜆max as:

𝑇max = 𝛽
ℰ
𝛼𝜌

, 𝜆max = 𝛽
ℰ𝜇

𝛼𝑇min
. (23)

It follows from the Lemma that Eqn. (22) serves as the prin-
ciple worst-case (in terms of QoI satisfaction) system design
criterion for this use case. It shows the fundamental trade-
offs among maximum network lifetime, sensing task duration,
arrival rate, and QoI requirement. For instance, higher QoI
requirement would constrain the energy usage for multiple
sensing tasks which in turn has impact on admissible arrival
rate and WSN lifetime.
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VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we introduced a framework for the novel area
of QoI-aware O&M design of WSNs dealing with sensing
tasks that arrive for service to the WSN requiring varying
levels of QoI. The framework divides the problem by two:
one addressing the task-oriented QoI performance behavior
of the entire network at large and one describing the QoI
relationships between an individual sensor and a task. We use
a runtime learning process for the former, while exploiting ex-
isting techniques, such as models describing utility of sensors
and network utility analysis techniques for the latter. Four key
design elements were introduced including a novel concept of
QoI satisfaction index, a QoI-centric sensor network capacity,
a negotiation-based admission control process, and the optimal
resource allocation. Finally, an intruder detection use case
served as an example for the framework and extensive numeri-
cal results show how the proposed framework can successfully
guarantee satisfactory QoI while maintaining low blocking
probability and jitter.

The QoI-aware sensor network operations and management
represents a broader area of research challenges that this paper
only begins to address. In the course of this work, we have
identified several important directions for ongoing research
activities, mainly motivated by the requirements of deploying
an O&M solution in a broader space of application scenarios.

In an effort to make the O&M framework easily reusable in
real-world sensor network applications, we plan to investigate
how to embody the framework in a formalized middleware
instantiation. We previously developed a conceptual sensor
network middleware framework called Sentire, [20]. While
details of the logic for factoring QoI into the design and
operation of the middleware was implied, the components
were never fully developed. In the Sentire architecture, several
components were considered that could map to the elements
needed in supporting our framework such as: a resource
manager that is responsible for facilitating task admission
and network resource optimization; a data manager that can
calculate and provide QoI satisfaction index values for the
resource manager to aid the task admission process; and an
interface manager that brokers all data exchanges between
external sensing tasks and the middleware. While this sample
architecture shows how an initial middleware solution might
be crafted, we expect that other directions of future research
will require alterations to this configuration.

Other future research directions include extending the over-
all O&M solution to a distributed configuration for large-
scale ad hoc networked environments as well as investigating
extensions to the definitions of capacity and negotiation. The
first activity will require distributing the functionality for per-
forming negotiation and calculating sensor network capacity
and will affect the design of the middleware architecture.
The second pursuit will involve researching how additional
network and application behaviors will affect capacity and
negotiation. Examples include sensor network duty-cycling
algorithms as well as the inclusion of networked actuators,

which will most likely change the nature of tasks admitted to
the framework.
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