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This work introduces novel methodology for the simultaneous modelling and forecasting of three-
dimensional wind field. This is achieved based on a quaternion wind model, which by virtue of its
division algebra accounts naturally for the coupling between the three wind dimensions. To fully exploit
the available second order statistics, we employ the newly developed augmented quaternion statistics
and perform prediction based on the widely linear model. The proposed quaternion domain processing
also facilitates the fusion of external atmospheric parameters, such as air temperature, yielding improved
forecasts. Simulations for wind regimes with different dynamics and over a range of prediction horizons,
together with the fusion of air temperature, support the approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There has been a growing interest in so-called ‘green’ energy
sources and, for example, wind farm technology is becoming an
integral part of the electricity grid [1,21]. One important component
of this technology is the use of control engineering, such as in the
mitigation of wind forced vibrations on wind turbines [2,3]. To
address the problems arising from intermittency associated with
the wind as an energy source, prediction based control in this
context can assist in:

1. monitoring and controlling the vibrations of the wind turbine
in real time, hence providing more accurate and robust damage
protection;

2. automatic optimisation of wind turbine (WT) parameters, such
as the adjustment of the rotor blade to the correct elevation
angle, maximising the area of the rotor exposed to thewind [4];

3. smoothing out the variation in wind power production with
battery storage to ensure the scheduling plan is enforced, thus
improving market operation [5];
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4. enhancing power management over a network of WTs through
the forecasting of the power generation via wind prediction.
This also facilitates the integration of the so-called ‘smart grid’
technologies [6].

Short-term wind forecasting plays a key role in the wind farm
control technology [4,5,7,9,10]; the distinctive feature of our
approach is that it is based on the assumption that both the wind
speed and direction influence the power output. For example,
milder winds generally come from a wide range of angles (direc-
tions) [12], making the estimation of wind direction a non-negli-
gible factor in the intelligent operation of a WT. The importance of
wind direction in this context is particularly significant in spatial
correlation studies used, for example, to determine the position of
WT in a wind park.

Wind speed is directly related to the power output P of the WT,
according to [13,14]

P ¼ 1
2
rCAn3 (1)

where r denotes air density, A the area swept by the rotor, n thewind
speed component perpendicular to the area swept by the rotor and C
the power coefficient. In two-dimensional (2D) wind forecasting,
recent studies have successfully employed simultaneous modelling
of both the wind speed and direction by virtue of complex domain
processing [8e10]. Such complex domain modelling was performed
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both based on standard complexmodels [7,9] and those based on the
so-called ‘augmented complex statistics’, accounting for the likely
rotational dependence of signal distributions, as shown in Fig. 1.
Whereas the complex model is proven suitable for the forecasting
related to optimisation of power output, modern anemometers also
measure the vertical wind speed (or equivalently the speed vector
and spherical angle) and some atmospheric parameters (air
temperature, air density). These parameters are very important in
the modelling of the vibrations of wind turbines and in protection
against damage due to sudden gusts and turbulent air [2,3,27,28]. It
is therefore likely that the estimation of wind speed and direction
based on a quaternion model, which accounts naturally for the 3D
wind speed and atmospheric parameters, will bemore accurate than
that based on complex 2D model, both in the 2D estimation and in
cases where a combination of 2D models is not sufficient to model
3D and 4D phenomena.

In this work, we aim to investigate whether our existing 2D
wind forecasting algorithms [5,7,10] can be extended to four-
dimensional (4D) models, and thus cater for all the three wind
speed components and air temperature.

In connectionwith power output, wind speed recorded from the
Vertical (V) direction, along with the resultant speed from the
NortheSouth (NeS) and EasteWest (EeW) direction determines
the optimal angle of attack (aerodynamic parameter) between the
blade and the incoming free-stream wind [14]. Based on this
optimal angle of attack, the blade pitch angle (design parameter)
can then be tuned accordingly to maximise the power coefficient C
in (1). As for air temperature, it affects the output power P in (1) in
the following ways:

� Theairdensity r is governedbyair temperatureTsincer¼ P/(RT),
where P, R, T denote the absolute pressure (Pascal), the specific
gas constant (Joules per Kilogramme per Kelvin), and the abso-
lute temperature (Kelvin). Although, it is common to assume
r¼ 1.225, a 3%error in air density leads to a 3%error in the power
output (1). In the context of a network of WTs, the error accu-
mulated from each WT is not negligible in the management of
power grid.

� Existing studies suggest a strong correlation between air
temperature and wind speeds [15,16], as confirmed in our
Fig. 1. Wind lattice (angular distribution of wind speed).
statistical analysis of the wind data and in simulation studies.
As wind speed is the most prominent factor in power output
estimation (see equation (1)), we aim to exploit this correlation
to improve the prediction of wind speeds in order to maximise
the power output.

One convenient way to represent wind field is to consider
simultaneously the three perpendicular wind speeds and temper-
ature as a full quaternion-valued quantity, a hypercomplex exten-
sion of the two-dimensional complex-valued wind model [9,10],
given by

q ¼ sþ ınE þ |nN þ knV (2)

where nE, nN, nV and s denote respectively the wind speeds
measured in the EasteWest direction, NortheSouth direction,
Vertical direction (metres per second), and the temperature
(Celsius). Observe that the relationship between the three imagi-
nary components ı, |, k of a quaternion is given by [11]

ı| ¼ k |k ¼ ı kı ¼ |
ı|k ¼ ı2 ¼ |2 ¼ k2 ¼ �1 (3)

If the air temperature is not a part of the hypercomplex wind
field model (2), then we have the so-called “pure quaternion”
q¼ ınE þ |nN þ knV, which models 3D wind speed only, as illustrated
in Fig. 2. Notice that by using quaternions, both the full and pure
quaternion models account naturally for the statistical dependence
between the wind measurements (such as wind speeds and air
temperature); this is instrumental in avoiding the undermodelling
errors introduced by standard dual univariate models [17] or the
corresponding quadruple univariate real-valued models. The
quaternion domain modelling also allows for the use of new
developments in quaternion statistics - so-called augmented
statistics, to take advantage of the noncircular distributions and
nonstationarity of the intermittent wind signals [18], as discussed
in Section 3. This way, we can exploit the time-varying correlation
between each dimension of the signal, and improve prediction
accuracy. Prior to the formulation of the proposed forecasting
framework, we shall investigate statistical properties of the wind
data, followed by details of quaternion statistics in Section 3.

2. Wind characteristics

Two anemometers were used to record the wind data1 at
a sampling frequency of 32 Hz; the first anemometer (labelled as
“North”) was positioned in the North direction, and the second
anemometer (labelled as “South”) was placed 5 m south of the
“North” anemometer. Table 1 shows the interchannel correlation
properties of these wind data, calculated based on Pearson’s
coefficient

rxy ¼ Efx� xgEfy� yg
sxsy

(4)

where E{$} is the statistical expectation operator, ð$Þ the mean
value operator, s standard deviation, and �1 � rxy � 1. Notice that
rxy ¼ 1 indicates a perfect positive linear relationship, and
conversely rxy ¼ �1 indicates perfect negative linear relationship
between x and y. The wind measurements pertaining to the North
anemometer are denoted as {s1,nE1,nN1,nV1} and similarly for the
South anemometer measurements {s2,nE2,nN2,nV2}, and are incor-
porated in the quaternion model (2).
1 The measurements were conducted by Aihara Laboratory, in urban environ-
ment, at the Institute for Industrial Science, University of Tokyo, Japan.
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Fig. 2. A three-dimensional wind vector as a pure quaternion q.
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Table 2 summarises the statistical properties of the two datasets
considered. Observe that the last feature

P jrxyj indicates the cross-
correlation of a particular wind measurement with other wind
measurements. For instance, the cross-correlation of the wind
speed E1 is the sum of the absolute value of the entries of the first
column of Table 1, except for the first entry. Symbols N, sx, x, min,
max denote respectively the number of samples, standard devia-
tion, the mean value, minimum and maximum values.
2.1. Discussion

From Table 1, it is clear that the highest degree of correlation
came from the EasteWest wind speeds and the air temperatures,
conforming with the studies in Refs. [15,16]; the strong correlation
between wind speed and air temperature also justifies our qua-
ternionic forecasting framework. Table 2 (via the standard devia-
tion s) indicates that the wind blowing from the NortheSouth
direction was the strongest source of energy, whereas the Vertical
direction was the weakest source of energy; this is also reflected in
the behaviour of the

P jrxyj coefficient. We shall now proceed to
demonstrate how these couplings can be exploited conveniently
for enhanced wind forecasting in the quaternion domain ℍ.
3. Augmented quaternion statistics

Consider four centred real-valued random vectors qa,qb,qc,qd;
complete statistics of these variables are given by 10 real-valued
covariance matrices
Table 1
Correlation properties of the 4D wind datasets, with n denoting wind speeds in the
three perpendicular directions, and s air temperature.

North South

nE1 nN1 nV1 s1 nE2 nN2 nV2 s2

nE1 1.00 0.32 �0.04 0.55 0.53 0.07 0.10 0.64
nN1 0.32 1.00 �0.08 0.08 �0.01 0.65 0.02 0.12
nV1 �0.04 �0.08 1.00 0.18 0.04 �0.21 0.08 0.02
s1 0.55 0.08 0.18 1.00 0.30 �0.15 0.10 0.44
nE2 0.53 �0.01 0.04 0.30 1.00 �0.08 0.22 0.65
nN2 0.07 0.65 �0.21 �0.15 �0.08 1.00 �0.16 �0.12
nV2 0.10 �0.02 0.08 0.10 0.22 �0.16 1.00 0.19
s2 0.64 0.12 0.02 0.44 0.65 �0.12 0.19 1.00
Cqi
¼ Efqiqig icfa; b; c; dg

Cq q ¼ Efq q g Cq q ¼ Efq q g

a b a b a c a c

Cqaqd
¼ Efqaqdg Cqcqd

¼ Efqcqdg
Cqbqc

¼ Efqbqcg Cqbqd
¼ Efqbqdg

(5)

These real-valued matrices have an equivalent compact repre-
sentation in the quaternion domain ℍ, given by

Cq ¼ E
�
qqH

�
Cı
q ¼ E

�
qqıH

�
C|
q ¼ E

�
qq|H

�
Ck
q ¼ E

�
qqkH

� (6)

where ($)Hdenotes theHermitian transpose,q¼qaþ ıqbþ |qcþ kqd,
and the so-called quaternion involutions qı, q|, qk are defined as

qı ¼ qa þ ıqb � |qc � kqd
q| ¼ qa � ıqb þ |qc � kqd
qk ¼ qa � ıqb � |qc þ kqd

(7)

Observe that these quaternion involutions are similar to the
conjugate operation ($)* in the complex domain, in the sense that
they are self inverse componentwise mappings. We can solve Eq.
(6) to derive the corresponding real-valued quadrivariate statistics
in (5), for example,

Cqa
¼ 1

4
<
n
Cq þ Cı

q þ C|
q þ Ck

q

o
where <f$g denotes the real part of a quaternion vector; for more
details on advanced quaternion statistics, see Ref. [18]. In the
context of our four-dimensional wind model, the quadrivariate
nature of the quaternion domain ℍ makes it a natural choice to
perform wind forecasting and to simplify the computation by
reducing the 10 real-valued covariance matrices in (5) to only four
quaternion-valued covariance matrices in (6). This results in an
ease of implementation, while still exploiting the full second order
statistical information from the quaternion-valued representation
of the wind.
4. The forecasting configuration

Due to the intermittent and nonstationary nature of wind, we
need to employ an adaptive prediction setting whereby at time
instant k, the prediction algorithm estimates thewind vector (kþ T)
steps ahead, based on the present and past samples at
k,.,(k � N þ 1) [24,26]. This is achieved by employing the
quaternion widely linear adaptive filter [20], which makes use of
the augmented quaternion statistics [18]. We also demonstrate
how to predict simultaneously heterogeneous wind parameters
[22,23] such as wind direction and 3D wind speed, used for the
intelligent manipulation of the blades of the wind turbine with
respect to the angle of attack of the wind.
4.1. The adaptive prediction algorithm WL-QLMS

To account for the complete second order statistics in (6), we
need to consider not only the quaternion variable q, but also its
involutions qı, q|, qk. Therefore, the predicted estimate y of the
adaptive widely linear quaternion least mean square (WL-QLMS)
algorithm can be expressed in terms of the past samples of the
wind q ¼ [q(k),.,q(k � N � 1)]T as

y ¼ waHqa ¼ gHqþ hHqı þ uHq| þ vHqk (8)

where the augmented tap input vector qa and its corresponding
adaptive weight coefficients wa are given by



Table 2
Statistical properties of the wind datasets.

North South

E1 N1 V1 T1 E2 N2 V2 T2

N 6000 6000 6000 6000 6000 6000 6000 6000
sx 0.29 0.39 0.16 0.13 0.25 0.36 0.13 0.14
x �0.22 0.22 �0.09 31.19 �0.29 0.11 0.01 29.44
min �1.21 �0.90 �0.62 30.97 �1.14 �0.64 �0.47 29.18
max 0.44 1.53 0.53 31.66 0.28 1.31 0.45 29.90P jrxyj 2.25 1.28 0.65 1.8 1.83 1.44 0.87 2.18
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wa ¼ ½g1ðkÞ;.; gNðkÞ; h1ðkÞ;.;hNðkÞ;u1ðkÞ;.;uNðkÞ;
v1ðkÞ;.; vNðkÞ�T

qa ¼ ½qðkÞ;.; qðk� N � 1Þ; qıðkÞ;.; qıðk� N � 1Þ;
q|ðkÞ;.; q|ðk� N � 1Þ; qkðkÞ;.; qkðk� N � 1Þ�T

and the symbol ($)T denotes the vector transpose operator. The
error signal e(k) required for the adaptation of the adaptive weights
is obtained from

eðkÞ ¼ dðkÞ � yðkÞ ¼ eaðkÞ þ ıebðkÞ þ |ecðkÞ þ kedðkÞ (9)

and is employed in the quadratic cost function J ðkÞ, corresponding
to the error power defined by

J ðkÞ ¼ jeðnÞj2 ¼ eðkÞe*ðkÞ (10)

The cost function (10) is minimised recursively by

waðkþ 1Þ ¼ waðkÞ � m
vJ ðkÞ
vwaðkÞ (11)

where m is the rate of adaptation, and the gradient with respect to
the augmented adaptive weight vector wa is given by (for more
detail on the derivation see Refs. [19,20])

vJ ðkÞ
vwaðkÞ ¼ �

h
2qaðkÞe*ðkÞ � eðkÞqa*

i
(12)

giving the weight update of WL-QLMS as

waðkþ 1Þ ¼ waðkÞ þ m
h
2qaðkÞe*ðkÞ � eðkÞqa*

i
(13)

This update is general and caters for both second order circular
(proper) signals for which the probability distribution is rotation
invariant, and for improper signals. This completes the overview of
the quaternion-valued gradient descent based WL-QLMS
algorithm.
Fig. 3. The three-dimensional orientation model governed by parameters (jnj,f,q),
given in Eq. (15).
4.2. The four-dimensional forecasted wind data

As the four-dimensional wind data is forecasted by the WL-
QLMS prediction algorithm as

y ¼ waHqa ¼ bqðkþ TÞ
¼ bsðkþ TÞ þ ıbnEðkþ TÞ þ |bnNðkþ TÞ þ kbnV ðkþ TÞ
we can cast the predicted bqðkþ TÞ 4D wind vector into its hori-
zontal parameters such as wind speed bn2D and direction bq2D
respectively, as follows [5,10]
bn2Dðkþ TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibn2Eðkþ TÞ þ bn2Nðkþ TÞ

q
bq2Dðkþ TÞ ¼ tan�1

�b
nNðkþTÞb
nEðkþTÞ

� (14)

These parameters can then be used for the predictive estimation
of wind power as described in Ref. [5].

On the other hand, to assist in the intelligent positioning of the
blade of the wind turbine with respect to the angle of attack of the
wind, we require the forecasting of the three-dimensional (3D)
orientation of the wind, which is illustrated in Fig. 3. The 3D
orientation of the wind which is governed by spherical coordinates
ðjbn3Dj; bf3D;

bq3DÞ, and can be computed as follows

jbn3Dðkþ TÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibn2Eðkþ TÞ þ bn2Nðkþ TÞ þ bn2V ðkþ TÞ

q
bq3Dðkþ TÞ ¼ cos�1

� b
nV ðkþTÞ

jbn3DðkþTÞj

�
bF3Dðkþ TÞ ¼ atan2

�bnNðkþ TÞ;bnEðkþ TÞ
� (15)

where atan2($) is a variant of the function tan�1($), that gives the
angle from the EasteWest direction axis to the vector ðbnN ;bnEÞ in the
full range (�p,p]. It can conveniently be expressed in terms of
tan�1($) as

atan2
�bnN;bnE� ¼ 2 tan�1

0
@ b

nNffiffiffiffiffiffiffiffiffiffiffib
n
2

Nþbn2E
q

þbnE
1
A cbnN ¼ 0 bnE > 0

¼ 2tan�1

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibn2N þ bn2E
q

� bnEbnN
1
A cbnNs0

¼ 0 otherwise
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5. Simulation results and discussion

To evaluate the benefits of the proposed approach, two sets of
experiments were conducted on the wind data recorded from the
“North” anemometer and a third set on the wind data obtained
from “South” anemometer described in Section 2. In the first set of
simulations, the 4D quaternion model (2) was assessed against 2D
models reported in the literature [5,9,10], whereas in the second
experiment we illustrate the advantages of considering the air
temperature in wind forecasting. The third set of simulations was
performed to test the robustness of the proposed approach.

Performance measure: The measurement used to evaluate the
performance was the prediction gain Rp, given by [10,25]

Rp ¼ 10 log10

0
@bs2qbs2e

1
A½dB� (16)

where bs2
q denotes the estimated variance of the input signal {q(k)},

and bs2
e the estimated variance of the forward prediction error {e

(k)}. For a fair comparison, the power estimates bs2
q and bs2

e were
calculated based on the NortheSouth direction and EasteWest
direction in the first and third experiments, whereas in the second

experiment bs2
q and bs2

e were estimated by considering all the three
perpendicular directions.

5.1. Experiment 1: two-dimensional model versus four-dimensional
model

To compare the two-dimensional model with the four-dimen-
sional model on one-step ahead prediction of the horizontal wind
speed and direction in (14), we employed the augmented complex
least mean square (ACLMS) [10] and the widely linear quaternion
least mean square (WL-QLMS) prediction algorithms given in (13),
both of which use their respective augmented statistics and widely
linear models.

From Fig. 4, it is apparent that the 4Dmodel followed closely the
dynamics of both the wind speed and direction, whereas the 2D
1000 1050 1100 11
3

4

5

6

7

8

2D
 s

pe
ed

 |ν
|

 

1000 1050 1100 11
−1.6

−1.4

−1.2

−1

−0.8

−0.6

2D
 d

ire
ct

io
n 

θ

Time (s

4D model

2D model

Actual

2D model

Actual

Fig. 4. Performances of the 2D and 4D wind models. Wind speed jnj and di
model followed the general trend of actual wind profile, yielding
reasonable but suboptimal estimates (without detail) of both the
wind speed and direction. This was confirmed by the prediction gain
Rp of 18.66 dB. On the other hand, the additional cross-information
from the vertical speed nv and temperature T of the 4D model
significantly improved performance over the 2D model, with
a prediction gain of Rp ¼ 31.46 dB.
5.2. Experiment 2: three-dimensional model versus four-
dimensional model

In Section 2, it was shown that in the datasets considered air
temperature had a high degree of correlation with wind speed, as
indicated by the high

P jrxyj coefficient in Table 2. The aim of this
experiment is to demonstrate the benefit of using air temperature in
wind forecasting. This was achieved by assessing the three-dimen-
sional pure quaternion model shown in Fig. 2 of the three perpen-
dicular wind speeds against the four-dimensional full quaternion
model in (2) containing air temperature, in a one-step ahead
prediction setting.

From Fig. 5, both the 3D and 4D models provided excellent
predictions of the wind speeds nE, nN, nV, with the 4D model
converging faster, as seen in the right subplot of the wind speed
from the North direction. Also, notice that the 4D model followed
very closely the highly nonstationary trend of air temperature,
yielding improved accuracy over the 3D model, with prediction
gain of 33.44 dB against that of 25.94 dB for the 3D model. The
corresponding 3D wind speed orientation parameters in Eq. (15),
shown in Fig. 6, illustrate visually the advantage of incorporating air
temperature in wind forecasting.
5.3. Experiment 3: robustness of the simulation results

To examine robustness of the results obtained in the first two
experiments, performances of the adaptive prediction algorithms
were evaluated on the set of wind data obtained from the “South”
anemometer, as described in Section 2. Furthermore, the prediction
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Fig. 5. Performances of the 3D and 4D wind models. Wind speeds in the three perpendicular directions were measured in metres/second.
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horizon (in steps ahead) was varied to compare the performances of
the 2D, 3D and 4D models. The results are summarised in Table 3.

In all the cases, the increasing length of the prediction horizon
caused deterioration in performance, as expected. The 2D (4D)
modelwas themost (least) affected by the size of prediction horizon,
confirming that the additional information from the vertical wind
speed and air temperature assisted inproviding better forecasts. This
1.4
1.6

1.8
2

2.2

0.8

1

1.2

1.4

1.6

1.8

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

Actual 3D orientation

θ

3D
 S

pe
ed

 |ν
|

0.8

1

1.2

1.4

1.6

1.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4D mo

θ

3D
 S

pe
ed

 |ν
|

Fig. 6. Orientation of the 3D wind models in Eq. (15).
illustrates the robustness of the results obtained from Experiments 1
and 2, and their consistency with the results of Experiment 3.

6. Concluding remarks

We have introduced a novel methodology for short-term
prediction of wind, whereby a quaternion-valued model has been
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Table 3
Performance measure (16) for varying prediction horizon.

Algorithms 1-Step ahead 10-Steps ahead 20-Steps ahead

2D ACLMS [10] 16.48 15.49 14.32
3D WL-QLMS in Eq. (13) 18.21 17.89 17.04
4D WL-QLMS in Eq. (13) 23.78 23.68 23.60

C.C. Took et al. / Renewable Energy 36 (2011) 1754e17601760
shown to allow for both the 3D wind modelling (pure quaternion)
and the fusion of atmospheric parameters (full quaternion). Recent
advances in augmented quaternion statistics have been used to
exploit the complete second order information in the forecasting of
the wind data (3Dwind field and air temperature), which has led to
improved prediction accuracies. Simulations on real-world 3D and
4D wind data have illustrated the benefits of the proposed direct
multidimensional forecasting approach.
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