
Mobility-Induced Service Migration in Mobile
Micro-Clouds

Shiqiang Wang∗, Rahul Urgaonkar†, Ting He†, Murtaza Zafer‡¶, Kevin Chan§, and Kin K. Leung∗
∗Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

†IBM T. J. Watson Research Center, Yorktown Heights, NY, United States
‡Samsung Research America, San Jose, CA, United States
§Army Research Laboratory, Adelphi, MD, United States

Email: ∗{shiqiang.wang11, kin.leung}@imperial.ac.uk, †{rurgaon, the}@us.ibm.com,
‡murtaza.zafer.us@ieee.org, §kevin.s.chan.civ@mail.mil

Abstract—Mobile micro-cloud is an emerging technology in
distributed computing, which is aimed at providing seamless
computing/data access to the edge of the network when a
centralized service may suffer from poor connectivity and long
latency. Different from the traditional cloud, a mobile micro-cloud
is smaller and deployed closer to users, typically attached to a
cellular basestation or wireless network access point. Due to the
relatively small coverage area of each basestation or access point,
when a user moves across areas covered by different basestations
or access points which are attached to different micro-clouds,
issues of service performance and service migration become
important. In this paper, we consider such migration issues. We
model the general problem as a Markov decision process (MDP),
and show that, in the special case where the mobile user follows
a one-dimensional asymmetric random walk mobility model, the
optimal policy for service migration is a threshold policy. We
obtain the analytical solution for the cost resulting from arbitrary
thresholds, and then propose an algorithm for finding the optimal
thresholds. The proposed algorithm is more efficient than standard
mechanisms for solving MDPs.

Index Terms—Cloud computing, Markov decision process
(MDP), mobile micro-cloud, mobility, service migration, wireless
networks

I. INTRODUCTION

Cloud technologies have been developing successfully in the

past decade, which enable the centralization of computing and

data resources so that they can be accessed in an on-demand ba-

sis by different end users. Traditionally, clouds are centralized,

in the sense that services are provided by large data-centers that

may be located far away from the user. A user may suffer from

poor connectivity and long latency when it connects to such a

centralized service. In recent years, efforts have been made to

distribute the cloud closer to users, to provide faster access and

higher reliability to end users in a particular geographical area.

A notable concept in this regard is the mobile micro-cloud,

where a small cloud consisting of a small set of servers is

attached directly to the wireless communication infrastructure

(e.g., a cellular basestation or wireless access point) to provide

service to users within its coverage. Applications of the mobile

micro-cloud include data and computation offloading for mobile

devices [1], [2], which is a complement for the relatively low
¶ Contributions of the author to this work are not related to his current

employment at Samsung Research America.

Micro-
cloud 1

Micro-
cloud 2

Micro-
cloud i

Area 1 Area i
…

Area 2

Backhaul network

…

Figure 1. Application scenario with mobile micro-cloud.

computational and data storage capacity of mobile users. It is

also beneficial for scenarios requiring high robustness or high

data-processing capability closer to the user, such as in hostile

environments [3] or for vehicular networks [4]. There are a few

other concepts which are similar to that of the mobile micro-

cloud, including edge computing [5], Cloudlet [3], and Follow

Me Cloud [6]. We use the term mobile micro-cloud throughout

this paper.

A significant issue in the mobile micro-cloud is service

migration caused by the mobility of users. Because different

micro-clouds are attached to different basestations or access

points, a decision needs to be made on whether and where

to migrate the service, when a user moves outside the service

area of a micro-cloud that is providing its service. Consider

the scenario as shown in Fig. 1, which resembles the case

where a micro-cloud is connected to a basestation that covers a

particular area, and these micro-clouds are also interconnected

with each other via a backhaul network. When a mobile user

moves from one area to another area, we can either continue

to run the service on the micro-cloud for the previous area,

and transmit data to/from the user via the backhaul network,

or we can migrate the service to the micro-cloud responsible

for the new area. In both cases, a cost is incurred; there is a

data transmission cost for the first case, and a migration cost

for the second case.

In the literature, only a few papers have studied the impact

of mobility and its relationship to service migration for mobile

micro-clouds. In [7], analytical results on various performance

factors of the mobile micro-cloud are studied, by assuming a

symmetric 2-dimensional (2-D) random walk mobility model.

A service migration procedure based on Markov decision

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

process (MDP) for 1-D random walk is studied in [8]. It mainly

focuses on formulating the problem with MDP, which can then

be solved with standard techniques for solving MDPs.

In this paper, similarly to [8], we consider an MDP formu-

lation of the migration problem. In contrast to [8], we propose

an optimal threshold policy to solve for the optimal action

of the MDP, which is more efficient than standard solution

techniques. A threshold policy means that we always migrate

the service for a user from one micro-cloud to another when

the user is in states bounded by a particular set of thresholds,

and not migrate otherwise. We first prove the existence of an

optimal threshold policy and then propose an algorithm with

polynomial time-complexity for finding the optimal thresholds.

The analysis in this paper can also help us gain new insights

into the migration problem, which set the foundation for more

complicated scenarios for further study in the future.

The remainder of this paper is organized as follows. In

Section II, we describe the problem formulation. Section III

shows that an optimal threshold policy exists and proposes an

algorithm to obtain the optimal thresholds. Simulation results

are shown in Section IV. Section V draws conclusions.

II. PROBLEM FORMULATION

We consider a 1-D region partitioned into a discrete set of

areas, each of which is served by a micro-cloud, as shown

in Fig. 1. Such a scenario models user mobility on roads, for

instance. A time-slotted system (Fig. 2) is considered, which

can be viewed as a sampled version of a continuous-time

system, where the sampling can either be equally spaced over

time or occur right after a handoff instance.

Mobile users are assumed to follow a 1-D asymmetric

random walk mobility model. In every new timeslot, a node

moves with probability p (or q) to the area that is on the right

(or left) of its previous area, it stays in the same area with

probability 1 − p − q. If the system is sampled at handoff

instances, then 1 − p − q = 0, but we consider the general

case with 0 ≤ 1 − p − q ≤ 1. Obviously, this mobility model

can be described as a Markov chain. We only focus on a single

mobile user in our analysis; equivalently, we assume that there

is no correlation in the service or mobility among different

users.

The state of the user is defined as the offset between the mo-

bile user location and the location of the micro-cloud running

the service at the beginning of a slot, before possible service

migration, i.e., the state in slot t is defined as st = ut − ht,

where ut is the location (index of area) of the mobile user, and

ht the location of the micro-cloud hosting the service. Note

that st can be zero, positive, or negative. At the beginning of

each timeslot, the current state is observed, and the decision

on whether to migrate the service is made. If migration is

necessary, it happens right after the state observation, i.e., at

the beginning of the timeslot. We assume that the time taken

for migration is negligible compared with the length of a slot.

We study whether and where to migrate the service when the

mobile user has moved from one area to another. The cost in a

single timeslot Ca(s) is defined as the cost under state s when

…

Timet t+1

State
observation

Possible
migration

State
observation

Operating after possible
migration at time t

Possible
migration

Figure 2. Timing of the proposed mechanism.

performing action a, where a represents a migration decision

for the service such as no migration or migration to a specified

micro-cloud. The goal is to minimize the discounted sum cost

over time. Specifically, under the current state s0, we would

like to find a policy π that maps each possible state s to an

action a = π(s) such that the expected long-term discounted

sum cost is minimized, i.e.,

V (s0) = min
π

E

[∞∑
t=0

γtCπ(st) (st)

∣∣∣∣∣s0
]

(1)

where E [·|·] denotes the conditional expectation, and 0 < γ < 1
is a discount factor.

Because we consider a scenario where all micro-clouds are

connected via the backhaul (as shown in Fig. 1), and the

backhaul is regarded as a central entity (which resembles

the case for cellular networks, for example), we consider the

following one-timeslot cost function for taking action a in state

s in this paper:

Ca(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if no migration or data transmission

β, if only data transmission

1, if only migration

β + 1, if both migration and data transmission
(2)

Equation (2) is explained as follows. If the action a under state

s causes no migration or data transmission (e.g., if the node and

the micro-cloud hosting the service are in the same location,

i.e., s = 0, and we do not migrate the service to another

location), we do not need to communicate via the backhaul

network, and the cost is zero. A non-zero cost is incurred when

the node and the micro-cloud hosting the service are in different

locations. In this case, if we do not migrate to the current node

location at the beginning of the timeslot, the data between the

micro-cloud and mobile user need to be transmitted via the

backhaul network. This data transmission incurs a cost of β.

When we perform migration, we need resources to support

migration. The migration cost is assumed to be 1, i.e., the

cost Ca(s) is normalized by the migration cost. Finally, if

both migration and data transmission occur, in which case we

migrate to a location that is different from the current node

location, the total cost is β + 1.

Lemma 1. Migrating to locations other than the current
location of the mobile user is not optimal.

Proof: We consider an arbitrary trajectory of the mobile

user. Denote tu as the first timeslot (starting from the current

timeslot) that the mobile user is in the location indexed u.

Assume that the user is currently in location u0, then the current

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

timeslot is tu0
.

Case 1 – migrating to location u �= u0 at tu0 : This incurs

a cost of β + 1 at timeslot tu0 , because tu > tu0 as a node

cannot be in two different locations at the same time. Define a

variable tm ∈ [tu0
+ 1, tu] being the largest timeslot index such

that we do not perform further migration at timeslots within the

interval [tu0
+ 1, tm − 1], which means that either we perform

migration at tm or we have tm = tu. Then, we have a cost of

β at each of the timeslots t ∈ [tu0 + 1, tm − 1].
Case 2 – no migration at tu0

: In this case, the cost at each

timeslot t ∈ [tu0
, tm − 1] is either β (if st = ut − ht �= 0) or

zero (if st = 0). For the timeslot tm, we construct the following

policy. If tm < tu, we migrate to the same location as in Case

1, which means that the cost at tm cannot be larger than that

in Case 1. If tm = tu, we migrate to u, which can increase

the cost at tm by at most one unit compared with the cost in

Case 1. With the above policy, the costs at timeslots t > tm in

Cases 1 and 2 are the same.
The cost at tu0

in Case 1 is one unit larger than that in Case 2,

and the cost at tm in Case 1 is at most one unit smaller than that

in Case 2. Because 0 < γ < 1, Case 2 brings lower discounted

sum cost than Case 1. Therefore, there exists a better policy

than migrating to u �= u0 at tu0 . This holds for any movement

pattern of the mobile user, and it ensures that the cost in any

timeslot is either 0, 1, or β.
From Lemma 1, we only have two candidate actions, which

are migrating to the current user location or not migrating.

This simplifies the action space to two actions: a migration

action, denoted as a = 1; and a no-migration action, denoted

as a = 0. In practice, there is usually a limit on the maximum

allowable distance between the mobile user and the micro-

cloud hosting its service for the service to remain usable. We

model this limitation by a maximum negative offset M and a

maximum positive offset N (where M < 0, N > 0), such

that the service must be migrated (a ≡ 1) when the node

enters state M or N . This implies that, although the node can

move in an unbounded space, the state space of our MDP for

service control is finite. The overall transition diagram of the

resulting MDP is illustrated in Fig. 3. Note that because each

state transition is the concatenated effect of (possible) migration

and node movement, and the states are defined as the offset

between node and host location, the next state after taking a

migration action is either −1, 0, or 1.
With the above considerations, the cost function in (2) can

be modified to the following:

Ca(s) =

⎧⎪⎨
⎪⎩
0, if s = 0

β, if s �= 0,M < s < N, a = 0

1, if s �= 0,M ≤ s ≤ N, a = 1

(3)

With the one-timeslot cost defined as in (3), we obtain the

following Bellman’s equations for the discounted sum cost

when respectively taking action a = 0 and a = 1:

V (s|a = 0) =

{
γ
∑1

j=−1 p0jV (j), if s = 0

β + γ
∑s+1

j=s−1 psjV (j), if s �= 0,M<s<N
(4)

V (s|a = 1) =

{
γ
∑1

j=−1 p0jV (j), if s = 0

1 + γ
∑1

j=−1 p0jV (j), if s �= 0,M≤s≤N
(5)

where pij denotes the (one-step) transition probability from

state i to state j, their specific values are related to parameters

p and q as defined earlier. The optimal cost V (s) is

V (s) =

{
min{V (s|a = 0), V (s|a = 1)}, if M<s<N

V (s|a = 1), if s=M or s=N
(6)

III. OPTIMAL THRESHOLD POLICY

A. Existence of Optimal Threshold Policy

We first show that there exists a threshold policy which is

optimal for the MDP in Fig. 3.

Proposition 1. There exists a threshold policy (k1, k2), where
M < k1 ≤ 0 and 0 ≤ k2 < N , such that when k1 ≤ s ≤ k2,
the optimal action for state s is a∗(s) = 0, and when s < k1
or s > k2, a∗(s) = 1.

Proof: It is obvious that different actions for state zero

a(0) = 0 and a(0) = 1 are essentially the same, because the

mobile user and the micro-cloud hosting its service are in the

same location under state zero, either action does not incur

cost and we always have Ca(0)(0) = 0. Therefore, we can

conveniently choose a∗(0) = 0.

In the following, we show that, if it is optimal to migrate at

s = k1 − 1 and s = k2 + 1, then it is optimal to migrate at

all states s with M ≤ s ≤ k1 − 1 or k2 + 1 ≤ s ≤ N . We

relax the restriction that we always migrate at states M and

N for now, and later discuss that the results also hold for the

unrelaxed case. We only focus on k2 + 1 ≤ s ≤ N , because

the case for M ≤ s ≤ k1 − 1 is similar.

If it is optimal to migrate at s = k2 + 1, we have

V (k2 + 1|a = 1) ≤ β

∞∑
t=0

γt =
β

1− γ
(7)

where the right hand-side of (7) is the discounted sum cost of a

never-migrate policy supposing that the user never returns back

to state zero when starting from state s = k2 + 1. This cost is

an upper bound of the cost incurred from any possible state-

transition path without migration, and migration cannot bring

higher cost than this because otherwise it contradicts with the

presumption that it is optimal to migrate at s = k2 + 1.

Suppose we do not migrate at state s′ where k2+1 < s′ ≤ N ,

then we have a (one-timeslot) cost of β in each timeslot until the

user reaches a migration state (i.e., a state at which we perform

migration). From (5), we know that V (s|a = 1) is constant for

s �= 0. Therefore, any state-transition path L starting from state

s′ has a discounted sum cost of

VL(s
′) = β

tm−1∑
t=0

γt + γtmV (k2 + 1|a = 1)

where tm > 0 is a parameter representing the first timeslot that

the user is in a migration state after reaching state s′ (assuming

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

0 1 2 … N-1 N

p p

qq

p

q

1-p-q 1-p-q 1-p-q1-p-q
p

M M+1 … -2 -1

p

q q

p

q

1-p-q 1-p-q 1-p-q
p

q

q 1-p-q p

Figure 3. MDP model for service migration. The solid lines denote transition under action a = 0 and the dotted lines denote transition under action a = 1.
When taking action a = 1 from any state, the next state is s = −1 with probability q, s = 0 with probability 1− p− q, or s = 1 with probability p.

that we reach state s′ at t = 0), which is dependent on the state-

transition path L. We have

VL(s
′)− V (k2 + 1|a = 1)

= β
(1− γtm)

1− γ
− (

1− γtm
)
V (k2 + 1|a = 1)

=
(
1− γtm

)(β

1− γ
− V (k2 + 1|a = 1)

)
≥ 0

where the last inequality follows from (7). It follows that, for

any possible state-transition path L, VL(s
′) ≥ V (k2+1|a = 1).

Hence, it is always optimal to migrate at state s′, which brings

cost V (s′|a = 1) = V (k2 + 1|a = 1).

The result also holds with the restriction that we always

migrate at states M and N , because no matter what thresholds

(k1, k2) we have for the relaxed problem, migrating at states

M and N always yield a threshold policy.

Proposition 1 shows the existence of an optimal threshold

policy. The optimal threshold policy exists for arbitrary values

of M , N , p, and q.

B. Simplifying the Cost Calculation

The existence of the optimal threshold policy allows us

simplify the cost calculation, which helps us develop an al-

gorithm that has lower complexity than standard MDP solution

algorithms. When the thresholds are given as (k1, k2), the value

updating function (6) is changed to the following:

V (s) =

{
V (s|a = 0), if k1 ≤ s ≤ k2

V (s|a = 1), otherwise
(8)

From (4) and (5), we know that, for a given policy with

thresholds (k1, k2), we only need to compute V (s) with

k1−1 ≤ s ≤ k2+1, because the values of V (s) with s ≤ k1−1
are identical, and the values of V (s) with s ≥ k2 − 1 are

also identical. Note that we always have k1 − 1 ≥ M and

k2 + 1 ≤ N , because k1 > M and k2 < N as we always

migrate when at states M and N .

Define

v(k1,k2) = [V (k1 − 1) V (k1) · · ·V (0) · · ·V (k2) V (k2 + 1)]
T

(9)

c(k1,k2) =
[
1 ︸ ︷︷ ︸

−k1 elements

β · · · β 0 ︸ ︷︷ ︸
k2 elements

β · · · β 1
]T

(10)

P′
(k1,k2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0,k1−1 · · · p00 · · · p0,k2+1

pk1,k1−1 · · · pk1,0 · · · pk1,k2+1

...
...

...

p0,k1−1 · · · p00 · · · p0,k2+1

...
...

...

pk2,k1−1 · · · pk2,0 · · · pk2,k2+1

p0,k1−1 · · · p00 · · · p0,k2+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where superscript T denotes the transpose of the matrix.

Then, (4) and (5) can be rewritten as

v(k1,k2) = c(k1,k2) + γP′
(k1,k2)

v(k1,k2) (12)

The value vector v(k1,k2) can be obtained by

v(k1,k2) =
(
I− γP′

(k1,k2)

)−1

c(k1,k2) (13)

The matrix
(
I− γP′

(k1,k2)

)
is invertible for 0 < γ < 1,

because in this case there exists a unique solution for v(k1,k2)

from (12). Equation (13) can be computed using Gaussian elim-

ination that has a complexity of O
(
(|M |+N)

3
)

. However,

noticing that P′
(k1,k2)

is a sparse matrix (because pij = 0 for

|j−i| > 1), there can exist more efficient algorithms to compute

(13).

C. Algorithm for Finding the Optimal Thresholds

To find the optimal thresholds, we can perform a search

on values of (k1, k2). Further, because an increase/decrease in

V (s) for some s increases/decreases each element in the cost

vector v due to cost propagation following balance equations

(4) and (5), we only need to minimize V (s) for a specific state

s. We propose an algorithm for finding the optimal thresholds,

as shown in Algorithm 1, which is a modified version of the

standard policy iteration mechanism [9, Ch. 3].

Algorithm 1 is explained as follows. We keep iterating until

the thresholds no longer change, which implies that the optimal

thresholds have been found. The thresholds (k∗1 , k
∗
2) are those

obtained from each iteration.

Lines 4–6 compute V (s) for all s under the given thresholds

(k∗1 , k
∗
2). Then, Lines 8–22 determine the search direction for

k1 and k2. Because V (s) in each iteration is computed using the

current thresholds (k∗1 , k
∗
2), we have actions a(k∗1) = a(k∗2) =

0, and (4) is automatically satisfied when replacing its left

hand-side with V (k∗1) or V (k∗2). Lines 9 and 16 check whether

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Algorithm 1 Modified policy iteration algorithm for finding

the optimal thresholds

1: Initialize k∗1 ← 0, k∗2 ← 0
2: repeat
3: k′∗1 ← k∗1 , k′∗2 ← k∗2 //record previous thresholds

4: Construct c(k∗
1 ,k

∗
2)

and P′
(k∗

1 ,k
∗
2)

according to (10) and

(11)

5: Evaluate v(k∗
1 ,k

∗
2)

from (13)

6: Extend v(k∗
1 ,k

∗
2)

to obtain V (s) for all M ≤ s ≤ N

7: for i = 1, 2 do
8: if i = 1 then
9: if 1 + γ

∑1
j=−1 p0jV (j) < V (k∗1) then

10: dir ← 1, loopVec ← [k∗1 + 1, k∗1 + 2, ..., 0]
11: k∗1 ← k∗1 + 1
12: else
13: dir ← 0, loopVec ← [k∗1 − 1, k∗1 − 2, ...,M + 1]
14: end if
15: else if i = 2 then
16: if 1 + γ

∑1
j=−1 p0jV (j) < V (k∗2) then

17: dir ← 1, loopVec ← [k∗2 − 1, k∗2 − 2, ..., 0]
18: k∗2 ← k∗2 − 1
19: else
20: dir ← 0, loopVec ← [k∗2 + 1, k∗2 + 2, ..., N − 1]
21: end if
22: end if
23: for ki = each value in loopVec do
24: if dir = 0 then
25: if β + γ

∑ki+1
j=ki−1 pki,jV (j) < V (ki) then

26: k∗i ← ki
27: else if β + γ

∑ki+1
j=ki−1pki,jV (j)>V (ki) then

28: exit for
29: end if
30: else if dir = 1 then
31: if 1 + γ

∑1
j=−1 p0jV (j) < V (ki) then

32: k∗i ← ki − sign(ki)
33: else if 1 + γ

∑1
j=−1 p0jV (j) > V (ki) then

34: exit for
35: end if
36: end if
37: end for
38: end for
39: until k∗1 = k′∗1 and k∗2 = k′∗2
40: return k∗1 , k∗2

iterating according to (5) can yield lower cost. If it does, it

means that migrating is a better action at state k∗1 (or k∗2),

which also implies that we should migrate at states s with

M ≤ s ≤ k∗1 (or k∗2 ≤ s ≤ N) according to Proposition 1.

In this case, k∗1 (or k∗2) should be set closer to zero, and we

search through those thresholds that are closer to zero than

k∗1 (or k∗2). If Line 9 (or Line 16) is not satisfied, according

to Proposition 1, it is good not to migrate at states s with

k∗1 ≤ s ≤ 0 (or 0 ≤ s ≤ k∗2), so we search k1 (or k2) to the

direction approaching M (or N), to see whether it is good not

to migrate under those states.

Lines 23–37 adjust the thresholds. If we are searching toward

state M or N and Line 25 is satisfied, it means that it is better

not to migrate under this state (ki), and we update the threshold

to ki. When Line 27 is satisfied, it means that it is better to

migrate at state ki. According to Proposition 1, we should also

migrate at any state closer to M or N than state ki, thus we

exit the loop. If we are searching toward state zero and Line 31

is satisfied, it is good to migrate under this state (ki), therefore

the threshold is set to one state closer to zero (ki − sign(ki)).
When Line 33 is satisfied, we should not migrate at state ki.
According to Proposition 1, we should also not migrate at any

state closer to zero than state ki, and we exit the loop.

Proposition 2. The threshold-pair (k∗1 , k
∗
2) is different in every

iteration of the loop starting at Line 2, otherwise the loop
terminates.

Proof: The loop starting at Line 2 changes k∗1 and k∗2
in every iteration so that V (s) for all s become smaller. It is

therefore impossible that k∗1 and k∗2 are the same as in one of

the previous iterations and at the same time reduce the value of

V (s), because V (s) computed from (13) is the stationary cost

value for thresholds (k∗1 , k
∗
2). The only case when (k∗1 , k

∗
2) are

the same as in the previous iteration (which does not change

V (s)) terminates the loop.

Corollary 1. The number of iterations in Algorithm 1 is
O(|M |N).

Proof: According to Proposition 2, there can be at most

|M |N + 1 iterations in the loop starting at Line 2.

If we use Gaussian elimination to compute (13), the time-

complexity of Algorithm 1 is O
(
|M |N (|M |+N)

3
)

.

IV. SIMULATION RESULTS

We compare the proposed threshold method with the standard

value iteration and policy iteration methods [9, Ch. 3]. Simula-

tions are run on MATLAB, on a computer with 64-bit Windows

7, Intel Core i7-2600 CPU, and 8GB memory. The value

iteration terminates according to an error bound of ε = 0.1
in the discounted sum cost. Note that the proposed method and

the standard policy iteration method always produce the optimal

cost. The number of states |M | = N = 10. The transition

probabilities p and q are randomly generated. Simulations are

run with 1000 different random seeds in each setting to obtain

the average performance. The running time and the discounted

sum costs under different values of β are shown in Fig. 4.

The results show that the proposed method always has lowest

running time, and the running time of the standard policy

iteration method is 2 to 5 times larger than that of the proposed

algorithm, while the value iteration approach consumes longer

time. This is because the proposed algorithm simplifies the

solution search procedure compared with standard mechanisms.

The results also show that the proposed method can provide the

optimal cost compared with a never-migrate (except for states

M and N) or always-migrate policy. It is also interesting to

observe that the optimal cost approaches the cost of a never-

migrate policy when β is small, and it approaches the cost of an

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

0 0.5 1 1.5 2 2.5
10−4

10−3

10−2

β

R
un

ni
ng

 ti
m

e
(s

)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

β

D
is

co
un

te
d

su
m

 c
os

t

Proposed
Policy iteration
Value iteration

Optimal
Never migrate
Always migrate

(a)

0 0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

β

R
un

ni
ng

 ti
m

e
(s

)

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

β

D
is

co
un

te
d

su
m

 c
os

t

Optimal
Never migrate
Always migrate

(b)

0 0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

100

β

R
un

ni
ng

 ti
m

e
(s

) Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

β

D
is

co
un

te
d

su
m

 c
os

t

Optimal
Never migrate
Always migrate

(c)

Figure 4. Performance under different β: (a) γ = 0.5, (b) γ = 0.9, (c) γ = 0.99.

always-migrate policy when β is large. Such a result is intuitive,

because a small β implies a small data transmission cost, and

when β is small enough, then it is not really necessary to

migrate; when β is large, the data transmission cost is so large

so that it is always good to migrate to avoid data communication

via the backhaul network.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a threshold policy-based

mechanism for service migration in mobile micro-clouds. We

have shown the existence of optimal threshold policy and

proposed an algorithm for finding the optimal thresholds. The

proposed algorithm has polynomial time-complexity which

is independent of the discount factor γ. This is promising

because the time-complexity of standard algorithms for solving

MDPs, such as value iteration or policy iteration, are generally

dependent on the discount factor, and they can only be shown

to have polynomial time-complexity when the discount factor

is regarded as a constant1 [10]. Although the analysis in this

paper is based on 1-D random walk of mobile users, it can serve

as a theoretical basis for more complicated scenarios, such as

2-D user-mobility, in the future.

ACKNOWLEDGMENT

This research was partly sponsored by the U.S. Army

Research Laboratory and the U.K. Ministry of Defence and

was accomplished under Agreement Number W911NF-06-3-

0001. The views and conclusions contained in this document

are those of the author(s) and should not be interpreted as

1This is unless the MDP is deterministic, which is not the case in this paper.

representing the official policies, either expressed or implied,

of the U.S. Army Research Laboratory, the U.S. Government,

the U.K. Ministry of Defence or the U.K. Government. The

U.S. and U.K. Governments are authorized to reproduce and

distribute reprints for Government purposes notwithstanding

any copyright notation hereon.

REFERENCES

[1] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satya-
narayanan, “vTube: efficient streaming of virtual appliances over last-mile
networks,” in Proc. of the 4th annual Symposium on Cloud Computing.
ACM, 2013.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. of ACM MobiSys, 2014.

[3] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE Pervasive
Computing, vol. 12, no. 4, pp. 40–49, Oct. 2013.

[4] S. Wang, L. Le, N. Zahariev, and K. K. Leung, “Centralized rate control
mechanism for cellular-based vehicular networks,” in Proc. of IEEE
GLOBECOM 2013, 2013.

[5] S. Davy, J. Famaey, J. Serrat-Fernandez, J. Gorricho, A. Miron,
M. Dramitinos, P. Neves, S. Latre, and E. Goshen, “Challenges to support
edge-as-a-service,” IEEE Communications Magazine, vol. 52, no. 1, pp.
132–139, Jan. 2014.

[6] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, Sept. 2013.

[7] ——, “An analytical model for follow me cloud,” in Proc. of IEEE
GLOBECOM 2013, 2013.

[8] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based
service migration procedure for follow me cloud,” in Proc. of IEEE ICC
2014, 2014.

[9] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007.

[10] I. Post and Y. Ye, “The simplex method is strongly polynomial for deter-
ministic markov decision processes.” in Proc. of ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2013, pp. 1465–1473.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

