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Abstract—Emerging technologies and applications including
Internet of Things (IoT), social networking, and crowd-sourcing
generate large amounts of data at the network edge. Machine
learning models are often built from the collected data, to enable
the detection, classification, and prediction of future events.
Due to bandwidth, storage, and privacy concerns, it is often
impractical to send all the data to a centralized location. In this
paper, we consider the problem of learning model parameters
from data distributed across multiple edge nodes, without sending
raw data to a centralized place. Our focus is on a generic class
of machine learning models that are trained using gradient-
descent based approaches. We analyze the convergence rate of
distributed gradient descent from a theoretical point of view,
based on which we propose a control algorithm that determines
the best trade-off between local update and global parameter
aggregation to minimize the loss function under a given resource
budget. The performance of the proposed algorithm is evaluated
via extensive experiments with real datasets, both on a networked
prototype system and in a larger-scale simulated environment.
The experimentation results show that our proposed approach
performs near to the optimum with various machine learning
models and different data distributions.

I. INTRODUCTION

The rapid advancement of Internet of Things (IoT) and
social networking applications results in an exponential growth
of the data generated at the network edge. It has been predicted
that the data generation rate will exceed the capacity of today’s
Internet in the near future [1]. Due to network bandwidth and
data privacy concerns, it is impractical and often unnecessary
to send all the data to a remote cloud. As a result, research
organizations estimate that over 90% of the data will be stored
and processed locally [2]. Local data storing and processing
with global coordination is made possible by the emerging
technology of mobile edge computing (MEC) [3], [4], where
edge nodes, such as sensors, home gateways, micro servers,
and small cells, are equipped with storage and computation
capability. Multiple edge nodes work together with the remote
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Fig. 1: System architecture.

cloud to perform large-scale distributed tasks that involve both
local processing and remote coordination/execution.

To analyze large amounts of data and obtain useful informa-
tion for the detection, classification, and prediction of future
events, machine learning techniques are often applied. The
definition of machine learning is very broad, ranging from
simple data summarization with linear regression to multi-
class classification with support vector machines (SVMs) and
deep neural networks [5], [6]. The latter have shown very
promising performance in recent years, for complex tasks such
as image classification. One key enabler of machine learning
is the ability to learn (train) models using a very large amount
of data. With the increasing amount of data being generated
by new applications and with more applications becoming
data-driven, one can foresee that machine learning tasks will
become a dominant workload in distributed MEC systems in
the future. However, it is challenging to perform distributed
machine learning on resource-constrained MEC systems.

In this paper, we address the problem of how to efficiently
utilize the limited computation and communication resources
at the edge for the optimal learning performance. We consider
a typical edge computing architecture where edge nodes are
interconnected with the remote cloud via network elements,
such as gateways and routers, as illustrated in Fig. 1. The
raw data is collected and stored at multiple edge nodes, and
a machine learning model is trained from the distributed data
without sending the raw data from the nodes to a central place.

We focus on gradient-descent based distributed learning
algorithms, which have general applicability to a wide range
of machine learning models. The learning process includes
local update steps where each edge node performs gradient
descent to adjust the (local) model parameter to minimize
the loss function defined on its own dataset. It also includes
global aggregation steps where model parameters obtained at



different edge nodes are sent to an aggregator, which is a
logical component that can run on the remote cloud, a network
element, or an edge node. The aggregator aggregates these
parameters (e.g., by taking a weighted average) and sends an
updated parameter back to the edge nodes for the next round of
iteration. The frequency of global aggregation is configurable;
one can aggregate at an interval of one or multiple local
updates. Each local update consumes computation resource
of the edge node, and each global aggregation consumes
communication resource of the network. The amount of con-
sumed resources may vary over time, and there is a complex
relationship among the frequency of global aggregation, the
model training accuracy, and resource consumption.

We propose an algorithm to determine the frequency of
global aggregation so that the available resource is most
efficiently used. This is important because the training of
machine learning models is usually resource-intensive, and
a non-optimal operation of the learning task may waste a
significant amount of resources. Our main contributions in this
paper are as follows:

1) We analyze the convergence rate of gradient-descent
based distributed learning from a theoretical perspective, and
obtain a novel convergence bound that incorporates non-i.i.d.
data distributions among nodes and an arbitrary number of
local updates between two global aggregations.

2) Using the above theoretical result, we propose a control
algorithm that learns the data distribution, system dynamics,
and model characteristics, based on which it dynamically
adapts the frequency of global aggregation in real time to
minimize the learning loss under a fixed resource budget.

3) We evaluate the performance of the proposed control
algorithm via extensive experiments using real datasets both on
a hardware prototype and in a simulated environment, which
confirm that our proposed approach provides near-optimal
performance for different data distributions, various machine
learning models, and system configurations with different
numbers of edge nodes.

II. RELATED WORK

Existing work on MEC focuses on generic applications,
where solutions have been proposed for application offload-
ing [7], [8], workload scheduling [9], [10], and service migra-
tion triggered by user mobility [11], [12]. However, they do not
address the relationship among communication, computation,
and training accuracy for machine learning applications, which
is important for optimizing the performance of learning tasks.

Distributed machine learning based on gradient descent
has been studied from a theoretical perspective in [13], [14],
[15], where asymptotic bounds on the training convergence
and communication cost are obtained. The results were then
extended to general classes of distributed learning approaches
in [16]. To some extent, these results characterize the com-
munication and computation trade-off. However, none of them
consider the adaptation of global aggregation frequency. Many
of the analyses also have unrealistic assumptions such as
independent and identically distributed (i.i.d.) data at different

nodes [13], [14], whereas the more general case involving non-
i.i.d. data distributions is much harder to analyze.

From the practical perspective, [17] proposed a variant
of distributed gradient descent, termed as federated learning,
where the global aggregation is performed in a synchronous
manner. Experiments using various datasets confirmed the ef-
fectiveness of this approach. The global aggregation frequency
is fixed in [17]. It does not provide any theoretical convergence
guarantees and the experiments were not conducted in a
network setting. The only work where the global aggregation
frequency varies dynamically in a networked system was
presented very recently in [18]. To reduce the network traffic,
an aggregation is performed only when the model parameter
changes beyond an empirically chosen threshold. However,
non-i.i.d. data distribution among nodes is not considered, and
there is no theoretical analysis on how the threshold value
impacts learning. The thresholding approach in [18] only aims
at reducing the network traffic, which is insufficient in MEC
systems where the computation resource is also limited.

In contrast to the above research, our work in this paper
formally addresses the problem of dynamically determining
the global aggregation frequency to optimize the learning with
a given resource budget in MEC systems. This is a non-
trivial problem due to the complex dependency between each
learning step and its previous learning steps, which is hard
to capture analytically. It is also challenging due to non-i.i.d.
data distributions at different nodes and the real-time dynamics
of the system. We propose an algorithm that is derived from
theoretical analysis and adapts to real-time system dynamics.

We start with summarizing the basics of distributed machine
learning in the next section. In Section IV, we describe our
problem formulation. The convergence analysis and control
algorithm are presented in Sections V and VI, respectively.
Experimentation results are shown in Section VII and the
conclusion is presented in Section VIII.

III. PRELIMINARIES AND DEFINITIONS

A. Loss Function

Machine learning models include a set of parameters which
are learned based on training data. A training data sample j
usually consists of two parts. One is a vector xj that is
regarded as the input of the machine learning model (such
as the pixels of an image); the other is a scalar yj that is the
desired output of the model. To facilitate the learning, each
model has a loss function defined on its parameter vector w
for each data sample j. The loss function captures the error of
the model on the training data, and the model learning process
is to minimize the loss function on a collection of training data
samples. For each data sample j, we define the loss function
as f(w,xj , yj), which we write as fj(w) in short1.

1Note that some unsupervised models (such as K-means) only learn on xj
and do not require the existence of yj in the training data. In such cases, the
loss function value only depends on xj .



TABLE I: Loss functions for popular machine learning models

Model Loss function f(w,xj , yj) (, fj(w))

Smooth SVM λ
2
‖w‖2 + 1

2
max

{
0; 1− yjwTxj

}2 (λ is const.)

Linear regression 1
2
‖yj −wTxj‖2

K-means 1
2
minl ‖xj−w(l)‖2 where w , [wT

(1)
,wT

(2)
, ...]T

Convolutional
neural network

Cross-entropy on cascaded linear and non-linear
transforms, see [6]

Examples of loss functions of popular machine learning
models are summarized2 in Table I. For convenience, we
assume that all vectors are column vectors in this paper and
use xT to denote the transpose of x. We use “,” to denote “is
defined to be equal to” and use ‖ · ‖ to denote the L2 norm.

Assume that we have N edge nodes with local datasets
D1,D2, ...,Di, ...,DN . For each dataset Di at node i, the loss
function on the collection of data samples at this node is

Fi(w) ,
1

|Di|
∑
j∈Di

fj(w). (1)

For convenience, we define Di , |Di|, where | · | denotes the
size of the set, and D ,

∑N
i=1Di. Assuming Di∩Di′ = ∅ for

i 6= i′, we define the global loss function on all the distributed
datasets as

F (w) ,

∑
j∈∪iDi

fj(w)

|∪iDi|
=

∑N
i=1DiFi(w)

D
. (2)

The global loss function F (w) cannot be directly computed
without sharing information among multiple nodes.

B. The Learning Problem

The learning problem is to find

w∗ = argminF (w). (3)

Due to the inherent complexity of most machine learning mo-
dels, it is often impossible to find a closed-form solution to (3).
Thus, (3) is often solved using gradient-descent techniques.

C. Distributed Gradient Descent

We present a canonical distributed gradient-descent algo-
rithm to solve (3), which is widely used in the state-of-the-
art (e.g., [17]). Each node i has its local model parameter
wi(t), where t = 0, 1, 2, ... denotes the iteration index. At
t = 0, the local parameters for all nodes i are initialized to
the same value. For t > 0, new values of wi(t) are computed
according to a gradient-descent update rule on the local loss
function, based on the parameter value in the previous iteration
t − 1. This gradient-descent step on the local loss function
(defined on the local dataset) at each node is referred to as
the local update. After one or multiple local updates, a global
aggregation is performed through the aggregator to update the
local parameter at each node to the weighted average of all
nodes’ parameters. We define that each iteration includes a
local update followed by a possible global aggregation.

2While our focus is on non-probabilistic learning models, similar loss
functions can be defined for probabilistic models where the goal is to minimize
the negative of the log-likelihood function, for instance.
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Fig. 2: Illustration of the values of wi(t) and w̃i(t) at node i.

Algorithm 1: Distributed gradient descent
Input: τ , T
Output: w(T )

1 Initialize wi(0) and w̃i(0) to the same value for all i;
2 for t = 1, 2, ..., T do
3 For each node i in parallel, compute local update using (4);
4 if t is an integer multiple of τ then
5 (Global aggregation) Set w̃i(t)← w(t) for all i, where w(t)

is defined in (5);
6 else
7 (No global aggregation) Set w̃i(t)← wi(t) for all i;

After global aggregation, the local parameter wi(t) at each
node i usually changes. For convenience, we use w̃i(t) to
denote the parameter at node i after possible global aggrega-
tion. If no aggregation is performed at iteration t, we have
w̃i(t) = wi(t). If aggregation is performed at iteration t, then
generally w̃i(t) 6= wi(t) and we set w̃i(t) = w(t), where
w(t) is a weighted average of wi(t) defined in (5) below. An
example of these definitions is shown in Fig. 2.

The local update in each iteration is performed on the
parameter after possible global aggregation in the previous
iteration. For each node i, the update rule is as follows:

wi(t) = w̃i(t− 1)− η∇Fi (w̃i(t− 1)) (4)

where η ≥ 0 is the step size. For any iteration t (which may
or may not include a global aggregation step), we define

w(t) =

∑N
i=1Diwi(t)

D
. (5)

This global model parameter w(t) is only observable to nodes
in the system if global aggregation is performed at iteration
t, but we define it for all t to facilitate the analysis later.

We define that the system performs τ steps of local updates
at each node between every two global aggregations. We
define T as the total number of iterations. For simplicity,
we assume that T is an integer multiple of τ , which will be
relaxed when we discuss practical aspects in Section VI-B.
The distributed gradient descent algorithm is presented in
Algorithm 1, which ignores details such as the communication
between the aggregator and edge nodes. Such implementation
details will be discussed later in Section VI-B.

The rationale behind Algorithm 1 is that when τ = 1, i.e.,
when we perform global aggregation after every local update
step, the distributed gradient descent (ignoring communication
aspects) is equivalent to the centralized gradient descent,
where the latter assumes that all data samples are available
at a centralized location and the global loss function and its
gradient can be observed directly. This is due to the linearity
of the gradient operator. See Appendix A for details.



IV. PROBLEM FORMULATION

When there is a large amount of data (which is usually
needed for training an accurate model) distributed at a large
number of nodes, the distributed learning process can consume
a significant amount of resources. The notion of “resources”
here is generic and can include time, energy, monetary cost
etc. related to both computation and communication. One
often has to limit the amount of resources used for learning
each model, in order not to backlog the system and to keep
the operational cost low. This is particularly important in
edge computing environments where the computation and
communication resources are not as abundant as in datacenters.

Therefore, a natural question is how to make efficient use
of a given amount of resources to minimize the loss function
of model training. For the distributed gradient-descent based
learning approach presented above, the question narrows down
to determining the optimal values of T and τ , so that F (w)
is minimized subject to a given resource constraint for this
learning task.

Formally, we define that each step of local update at all
participating nodes consumes c units of resource, and each
step of global aggregation consumes b units of resource, where
c ≥ 0 and b ≥ 0 are both real numbers. For given T and τ ,
the total amount of consumed resource is then T

(
c+ b

τ

)
. Let

R denote the total resource budget. We seek the solution to
the following problem:

min
τ,T

F (w(T )) (6)

s.t. T

(
c+

b

τ

)
≤ R.

To solve (6), we need to find out how the values of τ and
T affect the loss function (after T iterations) F (w(T )). It
is generally impossible to find an exact analytical expression
to relate τ and T with F (w(T )), because it depends on the
convergence property of gradient descent (for which only up-
per/lower bounds are known [19]) and the impact of the global
aggregation frequency. Further, the resource consumptions c
and b can be time-varying in practice which makes the problem
even more challenging than (6) alone.

We analyze the convergence rate upper bound of distributed
gradient descent (Algorithm 1) in Section V. We then use this
bound as an approximation to solve (6) and propose a control
algorithm for adaptively choosing the best values of τ and T
to achieve near-optimal resource utilization in Section VI.

V. CONVERGENCE ANALYSIS

We analyze the convergence of Algorithm 1 in this section
and find an upper bound of F (w(T )) − F (w∗), where we
recall that T is the total number of iterations. To facilitate the
analysis, we first introduce some notations.

A. Definitions

We use K to denote the total number of global aggregations
within T iterations. Because we assumed earlier that T is an
integer multiple of τ , we have K = T

τ . Further, we can divide
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Fig. 3: Illustration of definitions in different intervals.

the T iterations into K different intervals, as shown in Fig. 3,
with only the first and last iterations in each interval containing
global aggregation. We use the shorthand notation [k] to denote
the iteration interval [(k − 1)τ, kτ ], for k = 1, 2, ...,K.

For each interval [k], we use v[k](t) to denote an auxiliary
parameter vector that follows a centralized gradient descent
according to

v[k](t) = v[k](t− 1)− η∇F (v[k](t− 1)) (7)

where v[k](t) is only defined for t ∈ [(k−1)τ, kτ ] for a given
k. This update rule is based on the global loss function F (w)
which is only observable when all data samples are available at
a central place (thus the centralized gradient descent), whereas
the iteration in (4) is on the local loss function Fi(w).

We define that v[k](t) is “synchronized” with w(t) at the
beginning of each interval [k], i.e., v[k]((k − 1)τ) , w((k −
1)τ), where w(t) is the average of local parameters defined
in (5). Note that we also have w̃i((k − 1)τ) = w((k − 1)τ)
for all i because the global aggregation (or initialization when
k = 1) is performed in iteration (k − 1)τ .

The above definitions enable us to find the convergence
bound of Algorithm 1 by taking a two-step approach. The first
step is to find the gap between w(kτ) and v[k](kτ) for each k,
which is the difference between the distributed and centralized
gradient descents after τ steps of local updates without global
aggregation. The second step is to combine this gap with the
convergence rate of v[k](t) within each interval [k] to obtain
the convergence rate of w(t).

For the purpose of the analysis, we make the following
assumption to the loss function.

Assumption 1. We assume the following for all i:

1) Fi(w) is convex
2) Fi(w) is ρ-Lipschitz, i.e., ‖Fi(w) − Fi(w′)‖ ≤ ρ‖w −

w′‖ for any w,w′

3) Fi(w) is β-smooth, i.e., ‖∇Fi(w)−∇Fi(w′)‖ ≤
β ‖w −w′‖ for any w,w′

The above assumption is satisfied for smooth-SVM and
linear regression (see Table I). The experimentation results
that will be presented in Section VII show that our control
algorithm also works well for models (such as neural network)
whose loss functions do not satisfy the above assumption.

Lemma 1. F (w) is convex, ρ-Lipschitz, and β-smooth.



Proof. This is straightforward from Assumption 1, the defini-
tion of F (w), and triangle inequality.

We also define the following metric to capture the diver-
gence between the gradient of a local loss function and the
gradient of the global loss function. This divergence is related
to how the data is distributed at different nodes.

Definition 1. (Gradient Divergence) For any i and w, we
define δi as an upper bound of ‖∇Fi(w)−∇F (w)‖, i.e.,

‖∇Fi(w)−∇F (w)‖ ≤ δi. (8)

We also define δ ,
∑

iDiδi
D .

B. Main Results

The below theorem gives an upper bound on the difference
between w(t) and v[k](t) when t is within the interval [k].

Theorem 1. For any interval [k] and t ∈ [k], we have∥∥w(t)− v[k](t)
∥∥ ≤ h(t− (k − 1)τ) (9)

where
h(x) ,

δ

β
((ηβ + 1)x − 1)− ηδx (10)

for any x > 0. Furthermore, as F (·) is ρ-Lipschitz, we have
F (w(t))− F (v[k](t)) ≤ ρh(t− (k − 1)τ).

Proof. See Appendix B.

Note that we always have η > 0 and β > 0 because
otherwise the gradient descent procedure or the loss function
becomes trivial. Therefore, we have (ηβ+1)x ≥ ηβx+1 for
x ≥ 0 due to Bernoulli’s inequality. Substituting this into (10)
confirms that we always have h(x) ≥ 0.

It is easy to see that we have h(0) = h(1) = 0. Therefore,
when t = (k − 1)τ , i.e., at the beginning of the interval
[k], the upper bound in (9) is zero. This is consistent with
the definition of v[k]((k − 1)τ) = w((k − 1)τ) for any k.
When t = 1 + (k − 1)τ , the upper bound in (9) is also zero.
This agrees with the discussion in Section III-C, showing that
there is no gap between distributed and centralized gradient
descents when only one local update is performed after the
global aggregation. If τ = 1, we have that t − (k − 1)τ is
either 0 or 1 for any interval [k] and t ∈ [k]. Hence, the upper
bound in (9) becomes exact for τ = 1.

For τ > 1, the value of x = t− (k−1) can be larger. When
x is large, the exponential term with (ηβ+1)x in (10) becomes
dominant, and the gap between w(t) and v[k](t) can increase
exponentially with t for t ∈ [k]. We also note that h(x) is
proportional to the gradient divergence δ (see (10)), which is
intuitive because the more the local gradient is different from
the global gradient (for the same parameter w), the larger the
gap will be. The gap is caused by the difference in the local
gradients at different nodes starting at the second local update
after each global aggregation. In an extreme case when all
nodes have exactly the same data samples (and thus the same
local loss functions), the gradients will be always the same
and δ = 0, in which case w(t) and v[k](t) are always equal.

Theorem 1 gives an upper bound of the difference between
distributed and centralized gradient descents for each iteration
interval [k], assuming that v[k](t) in the centralized gradient
descent is synchronized with w(t) at the beginning of each
[k]. Based on this result, we have the following theorem.

Theorem 2. The convergence upper bound of Algorithm 1
after T iterations is given by

F (w(T ))− F (w∗) ≤ 1

T
(
ωη
(
1− βη

2

)
− ρh(τ)

τε2

) (11)

when the following conditions are satisfied:
1) η ≤ 1

β

2) ωη(1− βη
2 )− ρh(τ)

τε2 > 0
3) F

(
v[k](t)

)
−F (w∗) ≥ ε for all t and k for which v[k](t)

is defined
4) F (w(T ))− F (w∗) ≥ ε

where ε > 0 and ω , mink
1

‖v[k]((k−1)τ)−w∗‖2
.

Proof. See Appendix C.

In the above theorem, condition 1 says that the step size
should be small enough in order to guarantee convergence. A
larger step size is allowed for a smoother function (i.e., with
smaller β). When condition 1 holds, condition 2 always holds
for τ = 1, because h(1) = 0. When τ > 1, it holds for small
enough h(τ), implying that in order to guarantee convergence,
the gap in (9) needs to be small. This means that the global
aggregation needs to be performed frequently enough so that
the local gradients do not deviate too much from the global
gradient, otherwise the algorithm may not converge. The value
of ε together with conditions 3 and 4 specify lower bounds
on the optimality gap. When τ > 1 and ε is small, i.e.,
when the loss function is close to its optimal value, the term
with ρh(τ)

τε2 is large and the bound becomes loose. When ε is
below a certain threshold, condition 2 does not hold anymore.
Because F (w(T ))−F (w∗) generally becomes smaller when
T gets larger, yielding a smaller ε, intuitively, this means that
when τ > 1, convergence is only guaranteed to a non-zero
optimality gap as T → ∞. Convergence to zero optimality
gap is guaranteed with τ = 1 (because h(1) = 0 in which
case the bound does not depend on ε). Instead of focusing
on the T →∞ case, we consider limited resource budget and
thus finite T in this paper. Therefore, in most of our considered
problem scenarios, the values of w(T ) and v[k](t) are not “too
close” to the optimum and there exists a value of ε such that
all the conditions in Theorem 2 hold.

Because a global aggregation step is performed at iteration
T , all nodes in the system know the value of w(T ) and it is
the final result of distributed gradient descent. We also note
that the bound in (11) has no restriction on how the data is
distributed at different nodes.

VI. CONTROL ALGORITHM

We propose an algorithm that approximately solves (6) in
this section. We first assume that the resource consumptions



c and b are known, and we solve for the values of τ and T .
Then, we consider practical scenarios where c, b, and some
other parameters are unknown and may vary over time, and
we propose a control algorithm that estimates the parameters
and dynamically adjusts the value of τ in real time.

A. Approximate Solution to (6)

We use the upper bound in (11) as an approximation of
F (w(T )) − F (w∗). Because for a given global loss func-
tion F (w), its minimum value F (w∗) is a constant, the
minimization of F (w(T )) in (6) is equivalent to minimizing
F (w(T ))− F (w∗). With this approximation and rearranging
the inequality constraint in (6), we can rewrite (6) as

min
τ,T

1

T
(
ωη
(
1− βη

2

)
− ρh(τ)

τε2

) (12)

s.t. T ≤ Rτ

cτ + b
and conditions in Theorem 2.

In the following, we assume that η and ε are chosen small
enough so that conditions 1, 3, and 4 in Theorem 2 are
satisfied. When condition 2 holds, the denominator in (12)
is positive, and thus, the optimal value of T is T = Rτ

cτ+b .
Substituting this into (12) and taking the reciprocal of the
objective function, we have

max
τ=1,2,3,...

Rτ

cτ + b

(
ωη

(
1− βη

2

)
− ρh(τ)

τε2

)
(13)

s.t. Conditions 1, 3, 4 in Theorem 2.

The optimal solution to (13) always satisfies condition 2 in
Theorem 2, because τ = 1 (in which case h(τ) = 0) yields
the objective function to be positive and thus satisfying the
condition. Dividing the objective function in (13) by Rω

c yields

G(τ) ,
τ

τ + a

(
η

(
1− βη

2

)
− ρh(τ)

τε2ω

)
(14)

where a , b
c is the relative resource consumption of global

aggregation normalized by that of local update.
Based on the above reasoning, we know that the optimal τ

that minimizes (12) and maximizes (13) and (14) are the same.
Therefore, we can solve

τ∗ = argmax
τ

G(τ) (15)

from which we can also obtain T ∗ = Rτ∗

cτ∗+b . The following
proposition shows that G(τ) has a unique maximum.

Proposition 1. When η ≤ 1
β , G(τ) is a strictly concave

function for τ ≥ 1.

Proof. See Appendix D.

The equation dG(τ)
dτ = 0 has no closed-form solution and

hence there is no closed-form expression for τ∗. Because τ
takes integer values, we can solve for τ∗ using a binary search
procedure similar to that in [12] which has a complexity of
O(log τmax), where τmax is the maximum value of τ in the
search which will be discussed further in the next subsection.

Algorithm 2: Procedure at the aggregator
Input: Resource budget R, control parameter ϕ, search range param. γ
Output: w(T )

1 Initialize τ ← 1, t← 0, s← 0; //s is a resource counter
2 Initialize w(0) as a constant or a random vector;
3 repeat
4 Send w(t) and τ to all edge nodes, also send STOP if it is set;
5 t0 ← t; //Save iteration index of last transmission of w(t)
6 t← t+ τ ; //Next global aggregation is after τ iterations
7 Receive wi(t), ĉi from each node i;
8 Compute w(t) according to (5);
9 if STOP flag is set then

10 return w(t) as the final result;
11 Estimate resource consumptions ĉ and b̂ according to received ĉi

from all nodes i and local measurements at the aggregator;
12 s← s+ ĉτ + b̂;
13 if t0 > 0 then
14 Receive β̂i, ∇Fi(w(t0)) from each node i;

15 Estimate β̂ ←
∑N

i=1Diβ̂i
D

;

16 Compute ∇F (w(t0))←
∑N

i=1Di∇Fi(w(t0))

D
, estimate

δ̂i ← ‖∇Fi(w(t0))−∇F (w(t0))‖ for each i, from which

we estimate δ̂ ←
∑N

i=1Diδ̂i
D

;
17 Compute new value of τ according to (15) via binary search

on integer values within [1, τmax], where we set τmax ← γτ ;
18 if s+ ĉτ + b̂ ≥ R then
19 Decrease τ to the maximum possible value such that the

estimated resource consumption for remaining iterations is
within budget R, set STOP flag;

Algorithm 3: Procedure at each edge node i
1 Initialize t← 0;
2 repeat
3 Receive w(t) and new τ from aggregator, set w̃i(t)← w(t);
4 t0 ← t; //Save iteration index of last transmission of w(t)
5 if t > 0 then
6 Estimate

β̂i ← ‖∇Fi(wi(t))−∇Fi(w(t))‖ / ‖wi(t)−w(t)‖;
7 for m = 1, 2, ..., τ do
8 t← t+ 1; //Start of next iteration
9 Perform local update and obtain wi(t) according to (4);

10 if m < τ then
11 Set w̃i(t)← wi(t);
12 Estimate resource consumption ĉi for one local update at node i;
13 Send wi(t), ĉi to aggregator;
14 if t0 > 0 then
15 Send β̂i, ∇Fi(w(t0)) to aggregator;
16 until STOP flag is received;

B. Dynamic Control Algorithm

The expression of G(τ) (which includes h(τ)) has pa-
rameters which may be unknown in practice. Among these
parameters, c and b (and thus a) are related to the resource
consumption, β and δ are related to the loss function char-
acteristics. These four parameters are estimated in real time
during the learning process, which will be further explained
later. The parameter η is the gradient-descent step size which
is pre-specified and known. The remaining parameters ρ, ε,
and ω all appear in a single term in the definition of G(τ)
(see (14)), and we define ϕ , ρ

ε2ω as a control parameter that
is manually chosen and remains fixed for the same machine
learning model. Experimentation results presented in the next
section show that a fixed value of ϕ works well across different
data distributions and various numbers of nodes. We note that



a larger value of ϕ amplifies the gradient divergence δ (which
is proportional to h(τ)) and yields a smaller value of τ∗, and
vice versa. Thus, in practice, it is not hard to tune the value
of ϕ on a small and simple setup, which can then be applied
to general cases (also see the results on the sensitivity of ϕ in
Section VII-B4). We are not concerned about the conditions
in Theorem 2 in the practical implementation.

As mentioned earlier, the local updates run on edge nodes
and the global aggregation is performed through the assistance
of an aggregator (which is a logical component that may
also run on one of the edge nodes). The procedures at the
aggregator and each edge node are presented in Algorithms 2
and 3, respectively, where Lines 7–11 of Algorithm 3 are
for local updates and the rest is considered as part of global
aggregation or initialization. We assume that the aggregator
initiates the learning process, and the initial model parameter
w(0) is sent by the aggregator to all edge nodes.

The value of τ is recomputed during each global aggregation
step, based on the most updated parameter estimations. As
shown in Line 17 of Algorithm 2, we search for new values
of τ up to γ times the current value of τ (i.e., τmax = γτ ),
and find the value that maximizes G(τ), where γ > 0 is a
fixed parameter. The presence of γ limits the search space and
also avoids τ from growing too quickly as initial parameter
estimates may be inaccurate. The new value of τ is sent to
each node together with w(t) (Line 4 of Algorithm 2).

The values of c and b are estimated based on measurements
of resource consumptions at the edge nodes and the aggregator
(Line 11 of Algorithm 2). The estimation method depends on
the type of resource under consideration. For example, when
the resource is energy, the sum energy consumption (per local
update) at all nodes is considered as c; when the resource is
time, the maximum computation time (per local update) at all
nodes is considered as c. The aggregator also monitors the total
resource consumption based on the estimates, and compares
the total resource consumption against the resource budget R
(Line 18 of Algorithm 2). If the consumed resource is at the
budget limit, it stops the learning and returns the final result.

The values of β and δ are estimated based on the local and
global gradients computed at w(t) and wi(t) (see Lines 14–
16 of Algorithm 2 and Lines 6 and 15 of Algorithm 3).
To perform the estimation, each edge node needs to have
access to both its local model parameter wi(t) and the global
model parameter w(t) for the same iteration t (see Line 6 of
Algorithm 3), which is only possible when global aggregation
is performed in iteration t. Because w(t) is only observable
by each node after global aggregation, estimated values of β
and δ are only available for recomputing τ starting from the
second global aggregation step after initialization, which uses
estimates obtained in the previous global aggregation step3.

3See the condition in Line 13 of Algorithm 2 and Lines 5 and 14 of
Algorithm 3. Also note that the parameters β̂i and ∇Fi(w(t0)) sent in
Line 15 of Algorithm 3 are obtained at the previous global aggregation step
(t0 and β̂i are obtained in Lines 4–6 of Algorithm 3).

VII. EXPERIMENTATION RESULTS

A. Setup

To evaluate the performance of our proposed control algo-
rithm, we conducted a large number of experiments, both on
networked prototype system with 5 nodes and in a simulated
environment with the number of nodes varying from 5 to 500.

The prototype system consists of three Raspberry Pi (ver-
sion 3) devices and two laptop computers, which are all
interconnected via Wi-Fi in an office building. This represents
an edge computing environment where the computational
capabilities of edge nodes are heterogeneous. All these 5 nodes
have local datasets (described below) on which model training
is conducted. The aggregator is located on one of the laptop
computers, and hence co-located with one of the local datasets.

We consider time as the resource in our experiments. For
the prototype system, we train each model for a fixed amount
of time budget. The values of c and b correspond to the actual
time used for each local update and global aggregation, respec-
tively. The simulation environment performs model training
with simulated resource consumptions, which are set as the
average values of the measurements from the prototype.

When the amount of training data is large, it is usually
computationally prohibitive to compute the gradient of the loss
function defined on the entire (local) dataset. In such cases,
stochastic gradient descent (SGD) is often used [5], [6], which
uses the gradient computed on the loss function defined on
a randomly sampled subset of data to approximate the real
gradient. Although the theoretical analysis in this paper is
based on deterministic gradient descent (DGD), we consider
both DGD and SGD in the experiments to evaluate the general
applicability of the proposed algorithm.

1) Models and Datasets: We evaluate the training of four
different models on three different datasets. The models in-
clude smooth SVM, linear regression, K-means, and deep
convolutional neural networks (CNN)4. See Table I for a
summary of the loss functions of these models, and see [5], [6]
for more details. Among them, the loss functions for smooth-
SVM (which we refer to as SVM in short in the following)
and linear regression satisfy Assumption 1, whereas the loss
functions for K-means and CNN are non-convex and thus do
not satisfy Assumption 1.

SVM and CNN are trained on the MNIST dataset [20],
which contains 70, 000 handwritten digits (60, 000 for training
and 10, 000 for testing). For SVM, we use even and odd
digits as a binary label, and we use multi-class labels of 10
different digits for CNN. The SVM training via DGD only
uses 1, 000 training and 1, 000 testing data samples out of the
entire dataset, because DGD cannot process a large amount
of data. The SGD variant of SVM and CNN uses the entire
MNIST dataset. Linear regression is performed on Facebook
metrics dataset [21], which has 500 samples with multiple
attributes related to posts published on a cosmetics brand. The

4The CNN has 7 layers with the following structure: 5 × 5 × 32 Convo-
lutional → 2× 2 MaxPool → 5× 5× 32 Convolutional → 2× 2 MaxPool
→ 1568× 256 Fully connected → 256× 10 Fully connected → Softmax.



model finds a linear relationship between the total interaction
number and all other attributes. K-means is performed on the
user knowledge modeling dataset [22], which has 403 samples
each with 5 attributes summarizing the user interaction with a
web environment. The samples can be grouped into 4 clusters
representing different knowledge levels, but we assume that
we do not have prior knowledge of this grouping.

2) Data Distribution at Different Nodes (Cases 1– 4):
We consider four different ways of distributing the data into
different nodes. In Case 1, each data sample is randomly
assigned to a node, thus each node has unbiased (but not full)
information. In Case 2, all the data samples in each node have
the same label5. This represents the case where each node has
biased information, because the entire dataset has samples with
multiple different labels. In Case 3, each node has the entire
dataset (thus full information). In Case 4, data samples with
the first half of the labels are distributed to the first half of
the nodes as in Case 1; the other samples are distributed to
the second half of the nodes as in Case 2. This represents a
combined biased and unbiased case.

3) Training and Control Parameters: In all our experi-
ments, we set the search range parameter γ = 10. Unless
otherwise specified, we set the control parameter ϕ = 0.2 for
SVM, linear regression, and K-means, and we set ϕ = 10−4

for CNN. The gradient descent step size is η = 0.01 for SVM,
linear regression, and CNN, and η = 0.1 for K-means.

B. Results

1) Loss and Accuracy Values: In our first set of exper-
iments, the SVM, linear regression, and K-means models
were trained on the prototype system, where the resource
(time) budget for each model training instance is fixed to
15 seconds. Due to the resource limitation of Raspberry Pi
devices, the CNN model was trained in a simulated environ-
ment of 5 nodes, with a total budget equivalent to 200 local
updates, and a global aggregation consuming a = 5.0 times the
resource of one local update. The value a = 5.0 was obtained
from the time measurements of SVM (SGD) on the prototype.

We compare the loss function values of our proposed
algorithm (with adaptive τ ) to baseline approaches that include
centralized training and distributed training with fixed τ . We
also compare the classification accuracies for the SVM and
CNN classifiers. The centralized baseline is obtained in a
simulated environment by running only local updates on a
single node subject to the total resource budget, where the
local update resource consumption is estimated based on
measurements on the prototype system averaged over all cases
of each model. The distributed baselines run on the prototype
system (except for CNN as discussed earlier) under the same
setup but with different fixed values of τ (i.e., no adaptation).
Note that this setup with non-adaptive τ is the same as the

5When there are more labels than nodes, each node may have data with
more than one label, but the number of labels at each node is no more than
the total number of labels divided by the total number of nodes rounded to
the next integer.
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Fig. 4: Loss function values and classification accuracy with different τ . Only
SVM and CNN classifiers have accuracy values. The curves show the results
from the baseline with different fixed values of τ . Our proposed solution
(represented by a single marker for each case) yields an average τ and
loss/accuracy that is close to the optimum in all cases.

federated learning approach in [17]. When fixing τ = 1, it is
also equivalent to the synchronous SGD approach in [23].

The average results of 30 different experiments (15 for
CNN) are shown in Fig. 4. We note that the proposed approach
only has one data point (represented by a single marker in
the figure) in each case, because the value of τ is adaptive in
this case and the marker location shows the average τ with
the corresponding loss or accuracy. The centralized case also
only has one data point but we show a flat line across different
values of τ for the ease of comparison. We see that the
proposed approach performs close to the optimal point for all
cases and all models6. We also see that the optimal value of τ
is different for different cases and models, so a fixed value of τ
does not work well for all cases. In some cases, the distributed

6Note that the loss and accuracy values shown in Fig. 4 can be improved if
we allow a longer training time. For example, the accuracy of CNN on MNIST
data can become close to 1.0 if we allow a long enough time for training.
The goal of our experiments here is to show that our proposed approach can
operate close to the optimal point with a fixed and limited amount of training
time (resource budget) as defined at the beginning of Section VII-B1.



Fix τ = 10 Proposed

10
1

10
2

0.223

0.224

0.225

0.226

0.227

Number of nodes

L
o
s
s
 f
u
n
c
ti
o
n

 

 

10
1

10
2

0.23

0.24

0.25

0.26

Number of nodes

L
o
s
s
 f
u
n
c
ti
o
n

 

 

10
1

10
2

0.223

0.224

0.225

0.226

0.227

Number of nodes

L
o
s
s
 f
u
n
c
ti
o
n

 

 

10
1

10
2

0.23

0.235

0.24

0.245

0.25

Number of nodes

L
o
s
s
 f
u
n
c
ti
o
n

 

 

10
1

10
2

0.869

0.8695

0.87

0.8705

0.871

0.8715

Number of nodes

A
c
c
u
ra

c
y

 

 

(a) Case 1

10
1

10
2

0.85

0.855

0.86

0.865

Number of nodes

A
c
c
u
ra

c
y

 

 

(b) Case 2

10
1

10
2

0.867

0.868

0.869

0.87

0.871

0.872

Number of nodes

A
c
c
u
ra

c
y

 

 

(c) Case 3

10
1

10
2

0.83

0.84

0.85

0.86

Number of nodes

A
c
c
u
ra

c
y

 

 

(d) Case 4

Fig. 5: Loss function values and classification accuracy with different numbers
of nodes for SVM (SGD).

approach can perform better than the centralized approach,
because for a given amount of time budget, distributed learning
is able to make use of the computation resource at multiple
nodes. It does not always perform better than centralized
because the resource consumption of the centralized approach
is estimated as the average over all distributed cases for each
model, so some will perform worse. For DGD approaches,
Case 3 does not perform as well as Case 1, because the amount
of data at each node in Case 3 is larger than that in Case 1,
and DGD processes the entire amount of data thus Case 3
requires more resource (time) for each local update.

2) Varying Number of Nodes: Results of SVM (SGD) for
the number of nodes varying from 5 to 500 are shown in
Fig. 5, which are obtained in the simulated environment with
a = 5.0 and total budget equal to 868 local updates (both
parameters are obtained from measurements on the prototype
system). Our proposed approach outperforms the fixed τ = 10
baseline in all cases.

3) Instantaneous Behavior: We further study the instanta-
neous behavior of our system. Results for SVM (DGD) is
shown in Fig. 6 for a single run of 30 seconds (for each case)
on the prototype system. Further results of SVM (SGD) are
available in Appendix E. We see that except for Case 3 of SVM
(DGD), the value of τ∗ converges after a certain amount of
time, showing that the control algorithm is stable. The value
of τ∗ keeps increasing in Case 3 of SVM (DGD) because
all nodes have exactly the same data in this case and DGD
uses all the data samples (i.e., no random sampling). There is
no gradient deviation in this case and the optimal value of τ
is infinity. As expected, the gradient deviation δ is larger for
Cases 2 and 4 where the data samples at different nodes are
biased. The same is observed for β, indicating that the model
parameter w is in a less smooth region for Cases 2 and 4.
Case 3 of SVM (DGD) has a much larger value of c because
it processes more data than in other cases and thus takes more
time, as explained before. The value of b exhibits fluctuations
because of the randomness of the wireless channel.

4) Sensitivity of ϕ: The sensitivity of the control parameter
ϕ is shown in Fig. 7, where the experimentation settings are
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Fig. 6: Instantaneous results of SVM (DGD) with the proposed algorithm.
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Fig. 7: Impact of ϕ on the average value of τ∗.

the same as for Fig. 4. We see that the relationship among τ∗ in
different cases is mostly maintained with different values of ϕ.
The value of τ∗ decreases approximately linearly with logϕ,
which is consistent with the fact that there is an exponential
term w.r.t. τ in h(τ) (and thus G(τ)). For Case 3 of SVM
(DGD), τ∗ remains the same with different ϕ, because δ = 0
(thus h(τ) = 0) in this case and the value of ϕ does not affect
G(τ) (see (14)). We also see that small changes of ϕ does not
change τ∗ much, indicating that one can take big steps when
tuning ϕ in practice and the tuning is not difficult.

VIII. CONCLUSION

In this paper, we have focused on gradient-descent based
distributed learning that include local update and global aggre-
gation steps. Each step of local update and global aggregation
consumes resources. We have analyzed the convergence bound
for distributed learning with non-i.i.d. data distributions. Using
this theoretical bound, a control algorithm has been proposed
to achieve the desirable trade-off between local update and
global aggregation in order to minimize the loss function under
a resource budget constraint. Extensive experimentation results
confirm the effectiveness of our proposed algorithm.
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APPENDIX

A. Distributed vs. Centralized Gradient Descent

Proposition 2. When τ = 1, Algorithm 1 yields the following
recurrence relation for w(t):

w(t) = w(t− 1)− η∇F (w(t− 1)) (16)

Proof. When τ = 1, we have w̃i(t) = w(t) for all t. Thus,

w(t) =

∑N
i=1Diwi(t)

D

=

∑N
i=1Di (w̃i(t− 1)− η∇Fi (w̃i(t− 1)))

D

=

∑N
i=1Diw(t− 1)

D
− η

∑N
i=1Di∇Fi (w(t− 1))

D
= w(t− 1)− η∇F (w(t− 1))

where the second term in the last equality is because∑N
i=1Di∇Fi (w)

D
= ∇

(∑N
i=1DiFi (w)

D

)
= ∇F (w)

due to the linearity of the gradient operator.

Eq. (16) is the recurrence relation for centralized gradient
decent on the global loss F (w). Therefore, the distributed
gradient descent algorithm presented in Algorithm 1 is optimal
(when comparing to centralized gradient descent) for τ = 1.

B. Proof of Theorem 1

To prove Theorem 1, we first introduce the following
lemma.

Lemma 2. For any interval [k], and t ∈ [(k − 1)τ, kτ), we
have ∥∥w̃i(t)− v[k](t)

∥∥ ≤ gi(t− (k − 1)τ)

where we define the function gi(x) as

gi(x) ,
δi
β
((ηβ + 1)x − 1)

Proof. We show by induction that
∥∥wi(t)− v[k](t)

∥∥ ≤ g(t−
(k − 1)τ) for all t ∈ ((k − 1)τ, kτ ].

When t = (k − 1)τ , we know that w̃i(t) = v[k](t) by the
definition of v[k](t), and we have

∥∥w̃i(t)− v[k](t)
∥∥ = gi(0).

We note that w̃i(t) = wi(t) for t ∈ ((k− 1)τ, kτ) because
there is no global aggregation within this interval. Combining
this with (4), for t ∈ ((k − 1)τ, kτ), we have

w̃i(t) = w̃i(t− 1)− η∇Fi(w̃i(t− 1)) (17)

For the induction, we assume that∥∥w̃i(t− 1)− v[k](t− 1)
∥∥ ≤ gi(t− 1− (k − 1)τ) (18)

holds for some t ∈ ((k − 1)τ, kτ). We now show that∥∥w̃i(t)− v[k](t)
∥∥ ≤ gi(t− (k − 1)τ) holds for t. We have∥∥w̃i(t)− v[k](t)
∥∥

=
∥∥ (w̃i(t− 1)− η∇Fi(w̃i(t− 1)))

−
(
v[k](t− 1)− η∇F (v[k](t− 1))

) ∥∥ (from (7), (17))

=
∥∥ (w̃i(t− 1)− v[k](t− 1)

)
− η
[
∇Fi(w̃i(t− 1))

−∇Fi(v[k](t− 1))+∇Fi(v[k](t− 1))−∇F (v[k](t− 1))
]∥∥

(adding a zero term and rearranging)

≤
∥∥w̃i(t− 1)− v[k](t− 1)

∥∥
+ η

∥∥∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1))
∥∥



+ η
∥∥∇Fi(v[k](t− 1))−∇F (v[k](t− 1))

∥∥
(from triangle inequality)

≤ (ηβ + 1)
∥∥w̃i(t− 1)− v[k](t− 1)

∥∥+ ηδi
(from the β-smoothness of Fi(·) and (8))

≤ (ηβ + 1)gi(t− 1− (k − 1)τ) + ηδi
(from the induction assumption in (18))

= (ηβ + 1)

(
δi
β

(
(ηβ + 1)t−1−(k−1)τ − 1

))
+ ηδi

=
δi
β
(ηβ + 1)t−(k−1)τ − δi

β
(ηβ + 1) + ηδi

=
δi
β
(ηβ + 1)t−(k−1)τ − δi

β

=
δi
β
((ηβ + 1)t−(k−1)τ − 1)

= gi(t− (k − 1)τ)

Using the above induction, we have shown
that

∥∥w̃i(t)− v[k](t)
∥∥ ≤ gi(t − (k − 1)τ) for all

t ∈ [(k − 1)τ, kτ).

We are now ready to prove Theorem 1.

Proof. (Theorem 1)
From (4) and (5), we have

w(t) = w(t− 1)− η
∑
iDi∇Fi(w̃i(t− 1))

D
(19)

Then, for t ∈ ((k − 1)τ, kτ ], we have∥∥w(t)− v[k](t)
∥∥

=

∥∥∥∥w(t− 1)− η
∑
iDi∇Fi(w̃i(t− 1))

D
− v[k](t− 1)

+ η∇F (v[k](t− 1))

∥∥∥∥ (from (19) and (7))

=

∥∥∥∥w(t− 1)− v[k](t− 1)

− η
(∑

iDi∇Fi(w̃i(t− 1))

D
−∇F (v[k](t− 1))

)∥∥∥∥
=

∥∥∥∥w(t− 1)− v[k](t− 1)

− η
(∑

iDi(∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1)))

D

)∥∥∥∥
≤
∥∥w(t− 1)− v[k](t− 1)

∥∥
+ η

(∑
iDi

∥∥∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1))
∥∥

D

)
(from triangle inequality)

≤
∥∥w(t− 1)− v[k](t− 1)

∥∥
+ ηβ

(∑
iDi

∥∥w̃i(t− 1)− v[k](t− 1)
∥∥

D

)
(because F (·) is β-smooth)

≤
∥∥w(t−1)−v[k](t−1)

∥∥+ηβ(∑iDigi(t−1− (k−1)τ)
D

)
(from Lemma 2)

=
∥∥w(t− 1)− v[k](t− 1)

∥∥+ ηδ
(
(ηβ + 1)t−1−(k−1)τ − 1

)
where the last equality is because for any x,

ηβ

(∑
iDigi(x)

D

)
= ηβ

(∑
iDi

δi
β ((ηβ + 1)x − 1)

D

)

= η

(∑
iDiδi
D

)
((ηβ + 1)x − 1)

= ηδ ((ηβ + 1)x − 1)

Equivalently,∥∥w(t)− v[k](t)
∥∥− ∥∥w(t− 1)− v[k](t− 1)

∥∥
≤ ηδ

(
(ηβ + 1)t−1−(k−1)τ − 1

)
(20)

When t = (k− 1)τ , we have w(t) = v[k](t) according to the
definition, thus

∥∥w(t)− v[k](t)
∥∥ = 0. For t ∈ ((k − 1)τ, kτ ],

by summing up (20) over different values of t, we have∥∥w(t)− v[k](t)
∥∥

=

t∑
y=(k−1)τ+1

∥∥w(y)− v[k](y)
∥∥− ∥∥w(y − 1)− v[k](y − 1)

∥∥
≤ ηδ

t∑
y=(k−1)τ+1

(
(ηβ + 1)y−1−(k−1)τ − 1

)

= ηδ

t−(k−1)τ∑
z=1

(
(ηβ + 1)z−1 − 1

)
= ηδ

t−(k−1)τ∑
z=1

(ηβ + 1)z−1 − ηδ(t− (k − 1)τ)

= ηδ
(1− (ηβ + 1)t−(k−1)τ )

−ηβ
− ηδ(t− (k − 1)τ)

= ηδ
(ηβ + 1)t−(k−1)τ − 1

ηβ
− ηδ(t− (k − 1)τ)

=
δ

β

(
(ηβ + 1)t−(k−1)τ − 1

)
− ηδ(t− (k − 1)τ)

= h(t− (k − 1)τ)

C. Proof of Theorem 2

To prove Theorem 2, we first introduce the following
definitions and lemmas.

Definition 2. For an interval [k], we define θ[k](t) =
F (v[k](t)) − F (w∗), for a fixed k, t is defined between
(k − 1)τ ≤ t ≤ kτ .

According to the convergence lower bound of gradient
descent given in [19, Theorem 3.14], we always have

θ[k](t) > 0 (21)

for any finite t and k.

Lemma 3. When η ≤ 1
β , for any k, and t ∈ [(k − 1)τ, kτ ],

we have that
∥∥v[k](t)−w∗

∥∥ does not increase with t, where



w∗ is the optimal parameter defined in (3).

Proof.∥∥v[k](t+ 1)−w∗
∥∥2

=
∥∥v[k](t)− η∇F (v[k](t))−w∗

∥∥2
=
∥∥v[k](t)−w∗

∥∥2 − 2η∇F (v[k](t))
T(v[k](t)−w∗)

+ η2
∥∥∇F (v[k](t))

∥∥2
Because F (·) is β-smooth, from (21) and [19, Lemma 3.5],

we have

0 < θ[k](t) ≤ ∇F (v[k](t))
T(v[k](t)−w∗)−

∥∥∇F (v[k](t))
∥∥2

2β

Thus,

−∇F (v[k](t))
T(v[k](t)−w∗) < −

∥∥∇F (v[k](t))
∥∥2

2β

Therefore,∥∥v[k](t+ 1)−w∗
∥∥2

=
∥∥v[k](t)− η∇F (v[k](t))−w∗

∥∥2 (from (7))

=
∥∥v[k](t)−w∗

∥∥2 − 2η∇F (v[k](t))
T(v[k](t)−w∗)

(expanding the squared norm)

+ η2
∥∥∇F (v[k](t))

∥∥2
<
∥∥v[k](t)−w∗

∥∥2−η∥∥∇F (v[k](t))
∥∥2

β
+ η2

∥∥∇F (v[k](t))
∥∥2

=
∥∥v[k](t)−w∗

∥∥2 − η( 1

β
− η
)∥∥∇F (v[k](t))

∥∥2
When η ≤ 1

β , we obtain∥∥v[k](t+ 1)−w∗
∥∥2 ≤ ∥∥v[k](t)−w∗

∥∥2
Lemma 4. For any k, when η ≤ 1

β and t ∈ [(k − 1)τ, kτ ],
we have

1

θ[k](t+ 1)
− 1

θ[k](t)
≥ ωη

(
1− βη

2

)
(22)

where ω = mink
1

‖v[k]((k−1)τ)−w∗‖2

Proof. Because F (·) β-smooth, from [19, Lemma 3.4], we
have

F (x) ≤ F (y) +∇F (y)T(x− y) +
β

2
‖x− y‖2

for arbitrary x and y. Substituting this into (7) yields

F (v[k](t+ 1))− F (v[k](t))

≤ ∇F (v[k](t))
T(v[k](t+ 1)− v[k](t))

+
β

2

∥∥v[k](t+ 1)− v[k](t)
∥∥2

≤ −η∇F (v[k](t))
T∇F (v[k](t)) +

βη2

2

∥∥∇F (v[k](t))
∥∥2

(from (7))

≤ −η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2 (23)

By definition, θ[k](t) = F (v[k](t)) − F (w∗) and θ[k](t +
1) = F (v[k](t+1))−F (w∗) Substituting this into (23) yields

θ[k](t+ 1)− θ[k](t) ≤ −η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2

Equivalently,

θ[k](t+ 1) ≤ θ[k](t)− η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2 (24)

The convexity condition gives

θ[k](t) = F (v[k](t))− F (w∗) ≤ ∇F (v[k](t))
T(v[k](t)−w∗)

≤
∥∥∇F (v[k](t))

∥∥∥∥v[k](t)−w∗
∥∥

where the last inequality is from the Cauchy-Schwarz inequal-
ity. Hence,

θ[k](t)∥∥v[k](t)−w∗
∥∥ ≤ ∥∥∇F (v[k](t))

∥∥ (25)

Substituting (25) into (24), we get

θ[k](t+ 1) ≤ θ[k](t)−
η
(
1− βη

2

)
θ[k](t)

2∥∥v[k](t)−w∗
∥∥2

≤ θ[k](t)− ωη
(
1− βη

2

)
θ[k](t)

2

where the last inequality in the above is explained as follows.
From Lemma 3, we know that for each interval of [k],∥∥v[k](t)−w∗

∥∥ does not increase with t when t ∈ [(k −
1)τ, kτ ]. Hence,

∥∥v[k]((k − 1)τ) −w∗
∥∥ ≥ ∥∥v[k](t) −w∗

∥∥.
Recall that we defined ω = mink

1

‖v[k]((k−1)τ)−w∗‖2
, we have

−ω ≥ −1
‖v[k]((k−1)τ) −w∗‖ ≥

−1
‖v[k](t) −w∗‖ and the inequality

follows.
As θ[k](t + 1)θ[k](t) > 0 according to (21), dividing both

sides by θ[k](t+ 1)θ[k](t), we obtain

1

θ[k](t)
≤ 1

θ[k](t+ 1)
−
ωη
(
1− βη

2

)
θ[k](t)

θ[k](t+ 1)

We have 0 < θ[k](t+ 1) ≤ θ[k](t) from (21) and (24), thus
θ[k](t)

θ[k](t+1) ≥ 1. Hence,

1

θ[k](t+ 1)
− 1

θ[k](t)
≥
ωη
(
1− βη

2

)
θ[k](t)

θ[k](t+ 1)
≥ ωη

(
1− βη

2

)

We are now ready to prove Theorem 2.

Proof. (Theorem 2)
Using Lemma 4 and considering t ∈ [(k−1)τ, kτ ], we have

1

θ[k](kτ)
− 1

θ[k]((k − 1)τ)



=

kτ−1∑
z=(k−1)τ

(
1

θ[k](t+ 1)
− 1

θ[k](t)

)

≥ τωη
(
1− βη

2

)
Summing up the above for all k = 1, 2...,K yields

K∑
k=1

(
1

θ[k](kτ)
− 1

θ[k]((k − 1)τ)

)
≥

K∑
k=1

τωη

(
1− βη

2

)
= Kτωη

(
1− βη

2

)
Rewriting the left-hand side and noting that T = Kτ yields

1

θ[K](T )
− 1

θ[1](0)
−
K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
≥ Tωη

(
1− βη

2

)
which is equivalent to

1

θ[K](T )
− 1

θ[1](0)

≥ Tωη
(
1− βη

2

)
+

K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
(26)

Each term in the sum in right-hand side of (26) can be further
expressed as

1

θ[k+1](kτ)
− 1

θ[k](kτ)
=
θ[k](kτ)− θ[k+1](kτ)

θ[k](kτ)θ[k+1](kτ)

=
F (v[k](kτ))− F (v[k+1](kτ))

θ[k](kτ)θ[k+1](kτ)

≥ −ρh(τ)
θ[k](kτ)θ[k+1](kτ)

(27)

where the last inequality is obtained using Lemma 1 and noting
that, according to the definition, v[k+1](kτ) = w(kτ), thus
F (v[k+1](kτ)) = F (w(kτ)).

It is assumed that θ[k](t) = F (v[k](t))−F (w∗) ≥ ε for all
t and k for which v[k](t) is defined. Consequently,

θ[k](kτ)θ[k+1](kτ) ≥ ε2

−1
θ[k](kτ)θ[k+1](kτ)

≥ − 1

ε2
(28)

Combining (28) with (27), the sum in the right-hand side
of (26) can be bounded by

K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
≥ −

K−1∑
k=1

ρh(τ)

ε2

= − (K − 1)
ρh(τ)

ε2

Substituting the above into (26), we get

1

θ[K](T )
− 1

θ[1](0)
≥ Tωη

(
1− βη

2

)
− (K − 1)

ρh(τ)

ε2

(29)

It is also assumed that F (w(T ))− F (w∗) ≥ ε. Using the
same argument as for obtaining (28), we have

−1
(F (w(T ))− F (w∗)) θ[K](T )

≥ − 1

ε2
(30)

We then have
1

F (w(T ))− F (w∗)
− 1

θ[K](T )

=
θ[K](T )− (F (w(T ))− F (w∗))
(F (w(T ))− F (w∗)) θ[K](T )

=
F (v[K](T ))− F (w(T ))

(F (w(T ))− F (w∗)) θ[K](T )

≥ −ρh(τ)
(F (w(T ))− F (w∗)) θ[K](T )

≥ −ρh(τ)
ε2

(31)

where the first inequality is from Lemma 1 and the second
inequality is from (30).

Summing up (29) and (31), we have

1

F (w(T ))− F (w∗)
− 1

θ[1](0)
≥ Tωη

(
1− βη

2

)
−Kρh(τ)

ε2

= Tωη

(
1− βη

2

)
− T ρh(τ)

τε2

= T

(
ωη

(
1− βη

2

)
− ρh(τ)

τε2

)
where the first equality is because K = T

τ .

We note that
1

F (w(T ))− F (w∗)
≥ 1

F (w(T ))− F (w∗)
− 1

θ[1](0)

≥ T
(
ωη

(
1− βη

2

)
− ρh(τ)

τε2

)
> 0

where the first inequality is because θ[1](0) = F (v[1](0)) −
F (w∗) > 0, and the last inequality is due to the assumption
that ωη(1 − βη

2 ) − ρh(τ)
τε2 > 0. Taking the reciprocal of the

above inequality yields

F (w(T ))− F (w∗) ≤ 1

T
(
ωη
(
1− βη

2

)
− ρh(τ)

τε2

)

D. Proof of Proposition 1

Proof. We note that

G(τ) =
τ

τ + a

(
η

(
1− βη

2

)
− ρh(τ)

τε2ω

)
=

τ

τ + a

(
η

(
1− βη

2

)
−

ρδ
β ((ηβ+1)τ−1)− ρηδτ

τε2ω

)



We define A = η
(
1− βη

2

)
, B = ηβ + 1, C1 = ρδ

βε2ω , C2 =
ρηδ
ε2ω . Then, we can rewrite G(τ) as

G(τ) =
τ

τ + a

(
A− C1(B

τ − 1)

τ
− C2

)
=

(A− C2)τ

τ + a
− C1(B

τ − 1)

τ + a

Taking the derivative, we get

dG(τ)

dτ
=
a(A− C2) + C1(B

τ − 1)

(τ + a)2
− C1B

τ logB

τ + a

d2G(τ)

dτ2
=
C1(τ+a)B

τ logB − 2 (a(A−C2) + C1(B
τ−1))

(τ + a)3

− C1(τ + a)Bτ (logB)2 − C1B
τ logB

(τ + a)2

=
1

(τ + a)3

(
− 2a(A− C2) + C1

[
2(1−Bτ )

+ 2(τ + a)Bτ logB − (τ + a)2Bτ (logB)2
])

(32)

where log denotes the natural logarithm.
When η ≤ 1

β , we always have A − C1(B − 1) − C2 =

η
(
1− βη

2

)
− ρh(1)

ε2ω > 0 because h(1) = 0 and
(
1− βη

2

)
≥

1
2 > 0. Thus, A−C2 > C1(B−1). Combining this with (32),
we have
d2G(τ)

dτ2
<

1

(τ + a)3

(
− 2aC1(B − 1) + C1

[
2(1−Bτ )

+ 2(τ + a)Bτ logB − (τ + a)2Bτ (logB)2
])

=
C1H(τ,B)

(τ + a)3
(33)

where we define

H(τ,B) , −2a(B − 1) + 2(1−Bτ ) + 2(τ + a)Bτ logB

− (τ + a)2Bτ (logB)2

We note that C1 ≥ 0 and (τ + a)3 > 0. From (33), to show
that d2G(τ)

dτ2 < 0, we only need to show that H(τ,B) ≤ 0.
When B = 1, we have

H(τ, 1) = 0

for any τ . When B ≥ 1, we have

∂H(τ,B)

∂B
= −2a− 2Bτ logB + 2Bτ logB

+ 2(τ + a)Bτ (logB)2 − 2(τ + a)Bτ (logB)2

− (τ + a)2Bτ (logB)3

= −2a− (τ + a)2Bτ (logB)3

≤ 0

which means that H(τ,B) is a non-increasing function for
any fixed τ and varying B ≥ 1.

We always have B ≥ 1 according to the definition. We can
thus conclude that we always have H(τ,B) ≤ 0 for τ ≥ 1

and B ≥ 1. It follows that d2G(τ)
dτ2 < 0 and hence G(τ) is a

strictly concave function.

E. Instantaneous Results of SVM (SGD)

The instantaneous results of SVM (SGD) are shown in
Fig. 8.
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Fig. 8: Instantaneous results of SVM (SGD) with the proposed algorithm.


