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ABSTRACT
The accuracy of direction of arrival estimation tends to de-
grade under reverberant conditions due to the presence of re-
flected signal components which are correlated with the direct
path. The recently proposed direct-path dominance test pro-
vides a means of identifying time-frequency regions in which
a single signal path is dominant. By analysing only these re-
gions it was shown that the accuracy of the FS-MUSIC algo-
rithm could be significantly improved. However, for real-time
implementation a less computationally demanding localisa-
tion algorithm would be preferable. In the present contribu-
tion we investigate the direct-path dominance test as a pre-
processing step to pseudo-intensity vector-based localisation.
A novel formulation of the pseudo-intensity vector is pro-
posed which further exploits the direct path dominance test
and leads to improved localisation performance.

Index Terms— direction of arrival estimation, spherical
harmonic domain, pseudo-intensity vectors

1. BACKGROUND

Direction-of-Arrival (DOA) estimation (also known as bearing-
only source localisation) is a fundamental problem in acous-
tic signal processing, particularly as a preprocessing step for
beamforming and speech dereverberation [1]. In the con-
text of robot audition it is important for estimation to be
computationally efficient such that source localisation can
be performed in real time and with low latency on relatively
low cost hardware. In this paper we assume a spherical mi-
crophone array such that processing can be performed in the
Spherical Harmonic Domain (SHD). This is advantageous
because beampatterns can be created which are independent
of the look direction making the system equally adept at
localising sources to the rear and above as those to the front.

Localisation using Steered Response Power (SRP) mea-
sures the output power from a beamformer as it is steered in
turn at a grid of possible source directions and selects one
or more maxima as DOA(s). Under anechoic conditions the
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Minimum Variance Distortionless Response (MVDR) beam-
former achieves the optimal measure of signal power in the
look direction. However, when reverberation is present cor-
related signal components arriving from other directions de-
grade the beampattern and with it the spatial resolution of the
SRP map. Subspace localisation methods similarly suffer in
the presence of coherent reflections.

Frequency smoothing [2] is a well established technique
for decorrelating coherent reflections by combining informa-
tion across multiple frequency bands. It has an elegant for-
mulation in the Spherical Harmonic Domain (SHD) due to
frequency independence of the array manifold and has been
applied to localisation of individual reflections using Multi-
ple Signal Classification (MUSIC) [3], Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT)
[4] and SRP [5].

For MUSIC [6] the noise space of the correlation matrix
is used to evaluate the spatial spectrum for a grid of possi-
ble source directions. The effective rank of the correlation
matrix yields the number of independent sources. In princi-
ple, exploiting the sparsity of speech, one can perform accu-
rate DOA estimation for multiple sources by computing the
MUSIC spectrum independently for each TF-region whose
correlation matrix has effective rank one. However, coher-
ent reflections are not independent and so the effective rank is
less than the total number of sources and reflections. To im-
prove the identification of TF-regions whose effective rank is
one, the coherence test proposed in [7] averages the correla-
tion matrix over time. The Direct-Path Dominance (DPD) test
[8] leads to further improvement using frequency smoothing
by also averaging the correlation matrix over frequency thus
decorrelating coherent reflections.

In contrast to SRP and MUSIC, the Pseudo-Intensity Vec-
tor (PIV) approach to DOA estimation [9] does not evaluate a
cost function over a grid of possible source directions. Instead
it calculates a direct estimate of an intensity vector which rep-
resents the direction and magnitude of the propagating wave-
front. It therefore offers DOA estimation with no trade-off be-
tween spatial resolution and computational cost. In general it
has been found that averaging PIVs over time and frequency
is sufficient to produce DOA estimates which are robust to
noise and moderate levels of diffuse reverberation. Further-



more, multiple sources can be localised, for example, using
spherical k-means clustering [10]. However, like other ap-
proaches, its accuracy degrades in the presence of strong co-
herent reflections. One might hypothesise that using the DPD
test as a preprocessing step would improve the accuracy of
PIV-based DOA estimation.

The contributions of this paper are 1) to evaluate the ac-
curacy of PIVs using only TF-regions which pass the DPD
test and 2) to propose a new formulation of the PIVs calcu-
lated directly from the time and frequency smoothed correla-
tion matrices.

2. PROBLEM FORMULATION

2.1. Spherical harmonic domain signal model

Consider a soundfield composed of L plane waves sampled
by a spherical microphone array of radius r with Q sensors.
The sound pressure at the q-th microphone, located at angle
⌦q = (✓q,�q) is given in the frequency domain by

p(k, r,⌦q) =
L
X

l=1

v(k,⌦q, l)sl(k) + nq(k) (1)

where k is the wavenumber, sl(k) denotes the complex am-
plitude of the l-th plane wave at the origin and the array man-
ifold, v(k,⌦, ), describes the response at ⌦, relative to that
at the origin, to a plane wave with incident angle  . Spatially
white sensor noise is represented by nq(k).

The Spherical Fourier Transform (SFT) over the surface
of the sphere can be approximated up to spherical harmonic
order N as the weighted sum of the microphone signals in the
frequency domain

pnm(k, r) ⇡
Q
X

q=1

wqp(k, r,⌦q) [Y
m
n (⌦q)]

⇤
, n  N, |m|  n

(2)
where Y m

n is the spherical harmonic of order n and degree m
and {wq}Q1 are the weights of the sampling scheme [11]. The
approximation is valid provided kr < N , the Q � (N + 1)2

sensors are approximately equally distributed over the sphere
and the sampling weights are chosen appropriately [12].

The SFT of a single plane wave sl(k) is [13]

p

(l)
nm(k, r) = bn(kr) [Y

m
n ( l)]

⇤
sl(k) (3)

where the mode strength bn(kr) is determined by the array
configuration (e.g. whether it is rigid or open). Dividing
out the mode strength removes the frequency dependence
of the array manifold yielding mode strength compensated
eigenbeams whose direction dependence is independent of
frequency

p̃

(l)
nm(k, r) = [Y m

n ( l)]
⇤
sl(k) (4)

though care must be taken that bn(kr) is invertible at the fre-
quencies of interest. We combine all (N + 1)2 eigenbeams
into a vector

p̃(l)
nm(k) =

h

p̃

(l)
00 p̃

(l)
1(�1) p̃

(l)
10 p̃

(l)
11 . . . p̃

(l)
NN

iT

(5)

where superscript T denotes the matrix transpose operator.
Considering now the spatially white sensor noise nq(k),

performing the SFT followed by mode strength compensation
gives spherical harmonic coefficients

ñnm(k) =
1

bn(kr)

Q
X

q=1

wq [Y
m
n (⌦q)]

⇤
nq(k)

which can similarly be expressed as a vector

ñnm(k) =
⇥

ñ00 ñ1(�1) ñ10 ñ11 . . . ñNN

⇤T
. (6)

The original signal model in (1) can thus be expressed in the
SHD as

anm(k) =
L
X

l=1

p̃(l)
nm(k) + ñnm(k). (7)

For the analysis of time varying signals it is convenient to
work in the Short Time Fourier Transform (STFT) domain.
We therefore reformulate (7) as

anm(⌫, ⌧) =
L
X

l=1

p̃(l)
nm(⌫, ⌧) + ñnm(⌫, ⌧) (8)

where the discrete frequencies and frame times, denoted by ⌫

and ⌧ , respectively, follow directly from the choice of frame
length and hop size.

2.2. Direct path dominance

An estimate of the spatial correlation matrix is given by [8]

R̃a(⌫, ⌧) =
1

J

J⌫
X

j⌫=�J⌫

J⌧
X

j⌧=�J⌧

anm(⌫ + j⌫ , ⌧ + j⌧ )

⇥ anm
H(⌫ + j⌫ , ⌧ + j⌧ ) (9)

where J = (2J⌫ +1)(2J⌧ +1). Averaging across time alone
approximates the expected value but the maximum rank of
the matrix would be limited to the number of non-coherent
sources (since a direct path and its reflection(s) are linearly
dependent over ⌧ .) Local frequency smoothing increases the
rank of the matrix up to the total number of plane waves
present (whether coherent or not) since the energy in each
frequency band at a given time is independent of the other
frequency bands. The fact that this frequency smoothing can
be achieved simply as an average over frequency is due to the
frequency-independence of the array manifold SHD [3]. If
the effective rank of R̃a(⌫, ⌧) is unity then we assume that



the spatial correlation matrix is dominated by energy from
a single direction. Reflections always arrive after the direct
path and tend to be at a reduced amplitude so are unlikely to
be observed in isolation. It is therefore reasonable to assume
that the direction corresponds to the direct path hence the test
is named the Direct-Path Dominance (DPD) test. The set of
time-frequency indices which pass the DPD test is defined as

ADPDtest =
n

(⌫, ⌧) : erank
⇣

R̃a(⌫, ⌧)
⌘

= 1
o

(10)

where erank denotes the effective rank.
For those TF-regions which pass the DPD test, R̃a(⌫, ⌧)

can be separated by Singular Value Decomposition (SVD)
into a one-dimensional signal space, Us, and (N + 1)2 � 1
dimensional noise space, Un, according to

R̃a = U⌃UH = [UsUn]



⌃s 0
0 ⌃n

� 

UH
s

UH
n

�

(11)

where the dependence on (⌫, ⌧) is omitted for brevity. In [8]
the spatial spectrum is calculated from Un using MUSIC for
all R̃a(⌫, ⌧) whose effective rank is unity. These individual
spectra are fused to form a single spectrum whose peaks cor-
respond to the DOAs of the multiple sound sources. The res-
olution of the DOAs estimation is therefore dependent on the
number of directions in which the spatial spectrum is evalu-
ated.

2.3. Pseudo-Intensity Vectors

Acoustic intensity describes the flow of energy per unit area
in terms of its magnitude and direction. In [9] an approxima-
tion based on 0- and 1-order eigenbeams called the Pseudo-
Intensity Vector (PIV) was defined as

Ia(⌫, ⌧) =
1

2
R

8

<

:

p̃

⇤
00(⌫, ⌧)

2

4

Dx(⌫, ⌧)
Dy(⌫, ⌧)
Dz(⌫, ⌧)

3

5

9

=

;

(12)

where p̃00(⌫, ⌧) is the omnidirectional pressure and

D↵(⌫, ⌧) =
1

X

m=�1

Y

m
1 ('↵)p̃1(m)(⌫, ⌧), ↵ 2 x, y, z

(13)
are dipoles steered in the negative x, y and z directions, given
by 'x = (⇡/2,⇡), 'y = (⇡/2,�⇡/2) and 'z = (⇡, 0).
Assuming a single plane wave is present, Ia(⌫, ⌧) points in
the direction of propagation so a unit vector indicating the
DOA is simply �Ia(⌫, ⌧)/ kIa(⌫, ⌧)k, where k·k indicates the
`2 norm. Averaging Ia(⌫, ⌧) across frequency provides some
robustness to noise and diffuse reverberation [9], but strong
coherent reflections lead to systematic errors.

We consider two approaches to exploiting the DPD test to
improve PIV-based source localisation. The first, DPD-PIV,
calculates the mean PIV for each TF-region selected by DPD.
The second, DPD-SS-PIV, formulates a new PIV using the
signal space of the selected correlation matrices.

2.3.1. DPD-PIV

Let the i-th entry in ADPDtest correspond to the TF-bin given
by (⌫i, ⌧i). From (9) the corresponding TF-region is given by
⌫i � J⌫  ⌫i + j⌫  ⌫i + J⌫ , ⌧i � J⌧  ⌧i + j⌧  ⌧i + J⌧ .
We define the set of Direct-Path Dominant Pseudo-Intensity
Vectors (DPD-PIVs) as

IDPD(⌫i, ⌧i) =
1

J

J⌫
X

j⌫=�J⌫

J⌧
X

j⌧=�J⌧

Ia(⌫i + j⌫ , ⌧i + j⌧ ),

8i 2 ADPDtest. (14)

2.3.2. DPD-SS-PIV

The signal space Us(⌫, ⌧) obtained from (11) describes the
(single) dominant signal in the SHD

Us(⌫, ⌧) =
⇥

ũ00 ũ1(�1) ũ10 ũ11 . . . ũNN

⇤T
. (15)

We formulate the Direct-Path Dominant Signal Space Pseudo-
Intensity Vectors (DPD-SS-PIVs) directly as

ISS-DPD(⌫i, ⌧i) =
1

2
R

8

<

:

ũ

⇤
00(⌫i, ⌧i)

2

4

Ḋx(⌫i, ⌧i)
Ḋy(⌫i, ⌧i)
Ḋz(⌫i, ⌧i)

3

5

9

=

;

,

8i 2 ADPDtest (16)

where

Ḋ↵(⌫, ⌧) =
1

X

m=�1

Y

m
1 ('↵)ũ1(m)(⌫, ⌧), ↵ 2 x, y, z.

(17)
In contrast to MUSIC, which evaluates a potentially dense
grid of candidate directions to find that which is “most or-
thogonal” to the noise space, DPD-SS-PIV directly estimates
the source direction from the signal space.

3. EXPERIMENTAL VALIDATION

The performance of the DPD-PIV and DPD-SS-PIV methods
are evaluated using two illustrative simulation setups. In the
first, localisation for a single source with one coherent reflec-
tion is considered. In the second we demonstrate localisation
of three simultaneously active sources in a reverberant room.
Results are compared to localisation using PIVs without DPD
preselection of TF-bins and to DPD-MUSIC as presented in
[8]. To allow a graphical comparison with the DPD-MUSIC
spatial spectrum, PIV DOA estimates are visualised as 2D
histograms.

Acoustic Impulse Responses (AIRs) for a 32-element
rigid spherical microphone array with radius 4.2 cm were
simulated with sampling frequency 8 kHz using a modifica-
tion of the image-source method [14, 15] and convolved with
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Fig. 1. 2D histograms showing number of PIV DOA estimates in each DOA bin for experiment 1 with raw PIVs (left), DPD-
PIVs (middle) and DPD-SS-PIVs (right). The direct path is from (60�, 50�) and single coherent reflection from (90�, 110�).

speech signals from the APLAWD database [16] with level
normalised according to ITU-T P.56 [17]. To focus on the ef-
fect of reverberation the noise-free case was considered. The
microphone signals were transformed to the STFT domain
using Hamming windowed frames of length 128 samples
(16 ms) and frame increment of 32 samples (4 ms). Retaining
frequency bins between 1500 and 3875 Hz, the SFT (up to or-
der N = 3) and mode strength compensation yield anm(⌫, ⌧)
from which Ia(⌫, ⌧) follows directly. To calculate R̃a(⌫, ⌧)
we use J⌫ = 2 and J⌧ = 12. The DPD test criteria was [8]

erank
⇣

R̃a(⌫, ⌧)
⌘

= 1 if
�1(⌫, ⌧)

�2(⌫, ⌧)
> "

where �1(⌫, ⌧) and �2(⌫, ⌧) are the largest and second largest
singular values, respectively, of R̃a(⌫, ⌧). The optimal choice
of " depends on the combination of STFT window parame-
ters, J⌫ and J⌧ and is a trade-off between the number of se-
lected TF-regions and the possibility of erroneously accepting
TF-regions whose signal space is greater than unity. For the
parameter combinations used in this study " = 10 was found
to offer a good compromise.
Experiment 1: To simulate a coherent reflection the same

4-second speech signal was convolved with the anechoic
AIR of a plane wave from (60�, 50�) and (90�, 110�)
with the latter ‘reflection’ delayed by 20 ms and attenu-
ated with gain of 0.6.

Experiment 2: To simulate multiple speakers in a reverber-
ant room, the microphone array was centred at cartesian
co-ordinates (2.5 m, 3.0 m, 1.5 m) in a 4 m⇥5 m⇥3 m
rectangular room with reverberation time (T60) of 0.5 s.
Eight seconds of continuous speech was generated for
three different female speakers by concatenating several
utterances. These were presented from a distance of 1.5 m
with DOAs (80�, 140�), (100�, 180�) and (80�, 220�).

4. RESULTS AND DISCUSSION

Figure 1 shows the localisation results for experiment 1.
Without any preselection of TF-bins the PIV produces esti-
mates which are the vector sum of the direct and reflection

DOAs. Both the DPD-PIV and DPD-SS-PIV methods pro-
duce DOA estimates which are localised to mainly the direct
path DOA and to a lesser extent the reflected path DOA. Note
that the reflected path is only localised because in this arti-
ficial case the reflection is the only signal present at speech
offsets. Under natural reverberation no single reflection path
would dominate in this way.

Figure 2 shows the localisation results for experiment 2
using the three different PIV methods. Without DPD prese-
lection of TF-bins the PIVs form a single broad cluster around
the three direct path DOAs. For the DPD-PIV and DPD-SS-
PIV methods the DOA estimates form three clusters around
the true source directions, with the DPD-SS-PIV producing
tighter clusters. As a comparison, Fig. 3 shows the spatial
spectrum produced by DPD-MUSIC [8] using a 2� grid in
azimuth and inclination (16,200 look directions). The three
clear peaks correspond precisely with the source positions.
The accuracy of the DOA estimates can be quantified by the
number of selected TF-regions which produce DOA estimates
within 5� of a true source. Thus defined, the four methods
achieve 1.5% (PIV), 50% (DPD-PIV), 72% (DPD-SS-PIV)
and 86% (DPD-MUSIC) accuracy. DPD-MUSIC is the most
accurate because it uses information from the 2- and 3-order
spherical harmonics, whereas are limited to 0- and 1-order.
The benefit of DPD-SS-PIV is that, following SVD, it re-
quires only 4 complex multiplications per TF-region making
it a strong candidate for real time implementation.

5. CONCLUSIONS

Two new PIV-based methods for DOA estimation in rever-
berant acoustics have been proposed which exploit the DPD
test proposed in [8]. Experimental results presented for the
challenging case of multiple sources demonstrate signifi-
cantly improved localisation accuracy for DPD-PIV (50%)
and DPD-SS-PIV (72%) over a baseline (1.5%) in which
DOAs are obtained from individual TF-bins without DPD
preselection. It is proposed that computational savings of our
new method significantly outweigh the slight reduction in ac-
curacy compared to DPD-MUSIC (86%) for many resource-
constrained real-world applications, such as robot audition.
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Fig. 2. 2D histograms showing number of PIV DOA estimates in each DOA bin for experiment 2 with raw PIVs (left), DPD-
PIVs (middle) and DPD-SS-PIVs (right). Ground truth DOAs are (80�, 140�), (100�, 180�) and (80�, 220�).
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Fig. 3. DPD-MUSIC spectrum for experiment 2 with ground
truth DOAs: (80�, 140�), (100�, 180�) and (80�, 220�).
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