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ABSTRACT

Reverberation time is an important parameter for characterizing
acoustic environments. It is useful in many applications including
acoustic scene analysis, robust automatic speech recognition and
dereverberation. Given knowledge of the acoustic impulse response,
reverberation time can be measured using Schroeder’s backward in-
tegration method. Since it is not always practical to obtain impulse
responses, blind estimation algorithms are sometimes desirable. In
this work, the reverberation problem is viewed as an image blurring
problem. The blur kernel is estimated through spectral analysis
in the modulation domain and the T60 is subsequently estimated
from the blur kernel’s parameters. It is shown through experimental
results that the proposed approach is able to improve robustness to
higher T60s especially with increasing levels of additive noise up to
an signal-to-noise ratio (SNR) of 10 dB.

Index Terms— blind reverberation time estimation

1. INTRODUCTION

In enclosed spaces, sound propagation from a source to a distant
receiver may follow multiple paths due to reflections off surfaces
within the room, resulting in a persistence of sound that is known as
reverberation. The level of reverberation can be quantified by the re-
verberation time, or T60, defined as the time taken for the energy of a
steady-state sound field to decay by 60 dB after the excitation source
signal has been switched off [1]. T60 is a function of room geom-
etry and reflectivity of surfaces within the room [2], and therefore
can be used to characterize the acoustic space. It is an interesting
parameter for many applications including speech intelligibility esti-
mates, robust automatic speech recognition, acoustic scene analysis,
dereverberation and more.

The most commonly used method for measuring T60, given
knowledge of a room’s acoustic impulse response (AIR), is through
the use of Schroeder’s backward integration method [3]. This
method calculates the energy decay curve (EDC) [4] of the AIR and
applies a linear fit to the region of free decay, typically selected to
be between −5 and −35 dB, depending on the noise floor.

Since it is not always practical to obtain measured AIRs, blind
methods for T60 estimation are desirable. In [5, 6], neural net-
work approaches were developed using samples of the time-domain
reverberant signal and speech envelope power spectral densities
respectively. Another approach attempts to identify gaps in the
speech signal to track the decay curve [7]. In [8], a maximum
likelihood (ML) approach was developed and improved upon in
[9] to reduce computational complexity and increase robustness
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to moderate background noise. More recently, the spectral decay
distribution (SDD) method was proposed in [10] using frequency-
dependent decay rates of reverberant speech in the short time Fourier
transform (STFT) domain, and in [11], the reverberant-to-speech
modulation ratio (RSMR) method is proposed based on the smear-
ing of reverberant energy in the modulation domain. An evaluation
of the latter three methods was conducted in [12], where it can be
seen that, even in the noise-free case, there is room for improvement
in estimation accuracies, especially at higher T60s.

In this paper, the acoustic reverberation problem is viewed as
an image blurring problem and a blind T60 estimator is proposed
based on estimation of the blur kernel’s parameters in the modulation
domain. The performance is evaluated against the improved ML
algorithm, SDD and RSMR.

The remainder of the paper is organized as follows. In Section 2,
the reverberation problem is introduced as an image blurring prob-
lem. The proposed method for blind T60 estimation through blur
kernel estimation is given in Section 3, followed by details for prac-
tical implementation in Section 4. Evaluation through experimental
studies are given in Section 5 and conclusions are drawn in Section 6.

2. ACOUSTIC BLUR KERNEL

A reverberant signal is obtained as the linear convolution between a
source signal s[n] and an AIR h[n],

x[n] = s[n] ∗ h[n], (1)

where n ≥ 0 is the discrete time with an incremental step 1/fs and
fs is the sampling frequency. The late reverberant tail of the AIR
can be modelled as a non-stationary stochastic process [13]

h[n] = b[n]e−αn, (2)

where b[n] is a zero-mean stationary Gaussian noise and the decay
rate is related to the T60 by

α = 3 log 10/T60. (3)

The STFT of s[n] is given as

S[m, k] =

∞∑
n=−∞

s[n]wa[n− na(m)]e−2πikn/Na , (4)

where m ∈ Z is the discrete time index in the STFT domain, k is
the frequency bin, wa[n] is a window function of support La sam-
ples, the time at the mid-point of block m is na(m) = mLa(1 −
1/r)/fs+(La−1)/(2fs) with r as the overlap factor, andNa is the



number of discrete Fourier transform (DFT) points. The STFT of re-
verberant speech,X[m, k], can be obtained in a similar manner. This
work is concerned only with the magnitude spectra of S[m, k] and
X[m, k] and therefore the signals of interest are real. Their log mag-
nitudes are plotted in Fig. 1, where it can be seen that the exponential
damping due to reverberation has the effect of smearing energy into
subsequent time frames. This effect is analogous to motion blur in
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Fig. 1: Spectrograms of clean and reverberant speech signals, where
the T60 of the reverberant signal is 620 ms.

images, which may be modelled in a similar way to (1), where s[n]
would denote the original high resolution image and h[n] is usually
termed the blur kernel, or point spread function, in 2D. In image
processing, the topic of blur kernel estimation is well-studied for de-
blurring [14, 15, 16]. In acoustic signal processing, and particularly
for blind T60 estimation, such an estimated blur kernel is interesting
as an estimated T60 can be derived from it as T60 = 3 log(10)/α. In
this work, one method of blur kernel estimation is explored for blind
T60 estimation.

3. BLUR KERNEL ESTIMATION

A common method of blur kernel estimation in image processing is
through inspection of the blur kernel’s Fourier transform to deter-
mine its direction and magnitude. In acoustic reverberation, the di-
rection is known to always be along the time axis towards n = +∞.
Therefore, spectral analysis can be applied by simply taking the
STFT of a reverberant signal in one direction across time.

Consider a simplified model of the AIR as e−αn and the case
when s[n] is an impulse δ[n], i.e. x[n] = δ[n] ∗ e−αn. The STFT
magnitude spectra of x[n] can be approximated as

|X[m, k]| ≈ e−αna(m), (5)

since the DFT of δ[n] is unity at each frequency.
To conduct spectral analysis, a second STFT is applied to

|X[m, k]| in the direction of reverberation, i.e. across time frames
and along each frequency bin, effectively transforming x[n] into the

modulation domain as

X̃[m′, k′, k] =

∞∑
m=−∞

|X[m, k]|wmod[m−m′]e−2πik′m/Nmod ,

(6)
where m′ ∈ Z is the discrete time index in the modulation domain,
k′ is the modulation frequency, wmod is the window function of sup-
port Lmod samples and Nmod is the number of DFT points.

It is expected that the spectral analysis will yield the DFT of
e−αna(m) with respect to the STFT time index m, denoted H[k′].
This can be shown by considering the case where Lmod ≥ T60fs
such that the signal decay in the region of interest for T60 estimation
is captured within the first frame m′ = 0. Therefore, (6) can be
simplified to

X̃[0, k′, k] =

∞∑
m=−∞

|X[m, k]|wmod[m]e−2πik′m/Nmod

'
Lmod−1∑
m=0

e−αna(m)e−2πik′m/Nmod = H[k′], (7)

which is the DFT of e−αna(m). The decay rate α can then be esti-
mated by finding an α that results in the best fit of the magnitudes
|H[k′]| to |X̃[m′, k′, k]| in the mean squared error (MSE) sense
as follows. As this work is concerned with broadband T60 estima-
tion, |X̃[m′, k′, k]| is first averaged over all acoustic frequencies k
to yield |X̃[m′, k′]|. Then, the α that minimizes

e[m′] =
1

Nmod

Nmod−1∑
k′=0

∣∣∣H[k′]− X̃[m′, k′]
∣∣∣2 (8)

is used to derive the T60 estimate for block m′.

4. PRACTICAL IMPLEMENTATION

In order to ensure successful practical T60 estimation by fitting
|H[k′]| to |X̃[m′, k′]|, several issues must be addressed.

Firstly, realistic AIRs and source signals contain significantly
more spectral components that cause deviation from the idealH[k′].
To mitigate this, signal pre-selection is performed as [9] such that
only time frames containing possible signal decay are used for T60

estimation. Further details are given in Section 4.1. Additionally,
a histogram is constructed from the T60s estimated in all selected
time frames and the modal histogram bin is selected as the final T60

estimate, T̂60.
Secondly, the choice of the two window lengths, La and Lmod,

crucially affects the accuracy of T60 estimations. Selection of these
window lengths is discussed in Section 4.2.

The proposed algorithm is finally summarized in Section 4.3.

4.1. Signal pre-selection

It is desirable to find frames where the contribution of speech is
impulse-like, for example a hard plosive before a pause. To find such
suitable frames, each frame of reverberant signal is passed through
a sound decay detection stage to identify suitability for use in the
T60 estimation stage. The criteria used for decay detection is similar
to that proposed in [9] and is summarized as follows. Each frame
X̃[m′, k′] is divided into Q sub-frames, where the q-th subframe is
denoted as X̃[m′, k′, q] for q = {1, . . . , Q}. The variance, maxi-
mum and minimum values in x[n] corresponding to the time frame



of the q-th subframe, denoted x[n, q] is then compared with the same
in the (q + 1)-th subframe. The frame X̃[m′, k′] is marked as con-
taining possible sound decay and valid for use in T60 estimation if
the following holds for all q:

var{x[n, q]} > kv · var{x[n, q + 1]}, (9a)

max{x[n, q]} > kmod ·max{x[n, q + 1]}, (9b)

min{x[n, q]} < kmod ·min{x[n, q + 1]}, (9c)

where kv and kmod denote constant weighting factors.

4.2. Window lengths selection

Two important parameters affecting the accuracy of the proposed
method are the two window lengths for transforming the time do-
main signal into the acoustic frequency domain (La) and for subse-
quent transformation into the modulation domain (Lmod). In the re-
mainder of this paper, a combination of the two windows is denoted
as L = {La, Lmod}. For higher T60s, an L consisting of longer
La and Lmod provides better estimates as more of the reverberant
tail is captured within the longer time frames. For smaller T60s, a
combination of shorter window lengths is desirable since this limits
the capture of noise floor remaining after the signal decay. It was
found empirically that for T60s in the approximate range of 400 to
900 ms, a combination ofLa = {0.016, 0.032, 0.064, 0.128}fs and
Lmod = {0.25, 0.35}fs were more suitable for estimating T60s to
within±0.1 s. For T60s in the approximate range of 100 to 600 ms, a
combination ofLa = {0.008, 0.016}fs andLmod = {0.15, 0.25}fs
were found to be more suitable.

In order to handle the different window lengths required for good
estimation of different T60s, a ‘cascade’ approach is adopted where
up to two iterations of the algorithm are run; the first iteration uses
combinations of longerL to estimate the higher T60s. If the final T̂60

is smaller than the lower threshold for the window length combina-
tions used, the second iteration of the algorithm is run with shorter
L. Details are given in Section 4.3.

4.3. Proposed algorithm summary

In this work, several parameters were chosen empirically, as follows.
The window length combinations used for estimating higher T60s are
L = {0.064, 0.25}fs and L = {0.064, 0.35}fs, while the combi-
nation used for estimating lower T60 values is L = {0.016, 0.15}fs.
The threshold value between these two T60 segements, used for
switching to the second iteration in the ‘cascade’ approach, was
set at 650 ms. For both wa[n] and wmod[m], the window function
used was the square-root of a periodic Hann window and an overlap
factor of r = 2 was used. In the decay detection algorithm, the
following values were chosen: N = 3 when Lm = 0.15fs, N = 4
when Lmod = {0.25, 0.35}fs, kv = 0.9 and kmod = 0.85.

A summary of the proposed blur kernel algorithm is provided in
Algorithm 1.

5. EVALUATION

A total of 16 clean speech signals were taken from the TIMIT
database, with different speakers and content, and 16 measured
AIRs taken from the AACHEN database. The ground truth T60s
were measured using Schroeder’s backward integral, where the re-
gion of free decay was fitted manually. Reverberant signals were
obtained by convolving the clean speech signals and AIRs, giving a
total of 256 reverberant signals. Noise was added as white Gaussian

Algorithm 1 Proposed algorithm
1: L1 = {0.064, 0.25}fs, L2 = {0.064, 0.35}fs, J = 2
2: completed = false, iteration2 = false

3: while completed is false do
4: for j = 1:J do
5: Compute X̃[m′, k′] using Lj
6: for all frames in X̃[m′, k′] do
7: Detect possible sound decay.
8: if current frame contains decay then
9: Find α that minimizes (8).

10: Compute and store corresponding T̂60.
11: end if
12: end for
13: end for

14: Group all T̂60s into bins of 0.1 : 0.02 : 1 s.
15: Find the final T̂60 as the modal bin.

16: if final T̂60 <= 650 ms and iteration2 is false then
17: Clear all stored T̂60s.
18: L1 = {0.016, 0.15}fs, J = 1
19: iteration2 = true.
20: else
21: completed = true.
22: end if
23: end while

noise (WGN) with SNRs of {∞, 30, 20, 10, 0} dB. The resulting
noisy and reverberant signals were not concatenated to avoid in-
troducing multiple pauses in each speech sample. Evaluation was
carried out by computing the estimation errors as E = T̂60 − T60.

The performance of the proposed algorithm was compared
against the following three state-of-the-art T60 estimators: 1) ML
[9], 2) RSMR [17], and 3) SDD [10]. Boxplots of the estimation
errors computed for each algorithm and SNR considered are given in
Fig. 2. It can be seen that in the noise-free case with SNR =∞ dB,
SDD and the proposed blur kernel algorithm demonstrate approx-
imately equal, or increased robustness over ML and RSMR across
the entire T60 range considered. In the region around 650 ms, the
variance of estimation errors for the blur kernel increases signifi-
cantly, due to the transition between the longerL and shorterL. This
indicates that further investigation into the transition state would be
useful to improve accuracy of the blur kernel estimator. In the pres-
ence of noise up to SNR = 10 dB, the accuracy of blur kernel’s
estimation decreases at lower T60s with increasing variance of es-
timation errors. However, in highly reverberant environments with
T60 ≈> 600 ms, the blur kernel approach achieves improved esti-
mation accuracy out of all algorithms considered. At SNR = 0 dB,
the blur kernel approach is no longer robust at any T60 and instead,
appears to be consistently estimating the T60 as≈ 0.9 s. The ML al-
gorithm is similarly non-robust, as it consistently estimates the T60
as≈ 0.4 s (as it has done for all experimental scenarios considered).
However, RSMR exhibits a sudden increase in estimation accuracy
across all T60s compared to higher SNRs.

6. CONCLUSIONS

Existing blind T60 estimators have been shown to deviate from the
true T60 values especially in highly reverberant and/or noisy envi-
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Fig. 2: Errors in reverberation time estimation from noisy reverberant speech signals. Each group of boxplots show the distribution of
estimation errors for the four algorithms considered, for each T60. The thick vertical lines show the interquartile ranges, the black dots denote
the median and the thin vertical lines indicate the range up to 1.5 times the interquartile range.

ronments. In this work, the blur kernel approach is proposed based
on spectral analysis of the captured microphone signal in the modu-
lation frequency domain. Several algorithm parameters were chosen
empirically here, and further investigation may yield better tuned pa-
rameters. Evaluation was carried out using short segments of clean
speech from the TIMIT database and real AIRs from the AACHEN
database in the presence of WGN of varying SNRs. It was shown
that in the noise-free case, the proposed approach demonstrated im-
proved robustness to higher T60s while maintaining similar levels of

accuracy compared to alternative algorithms considered. In increas-
ingly noisy environments up to SNR = 10 dB, while the proposed
approach exhibits reduced accuracy at lower T60s, it was able to im-
prove robustness at higher T60s.
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1988.

[14] M. M. Chang, A. M. Tekalp, and A. T. Erdem, “Blur identi-
fication using the bispectrum,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 39, pp. 2323–2325, Oct. 1991.

[15] C. Mayntz, T. Aach, and D. Kunz, “Blur identification using a
spectral inertial tensor and spectral zeros,” in Proc. Intl. Conf.
Image Processing, Oct. 1999, pp. 885– 889.

[16] B. Kang, J. Shin, and P. Park, “Piecewise linear motion blur
identification using morphological filtering in frequency do-
main,” in ICROS-SICE International Joint Conference, Aug.
2009, pp. 1928–1930.

[17] T. H. Falk and W.-Y. Chan, “Temporal dynamics for blind
measurement of room acoustical parameters,” IEEE Trans. In-
strum. Meas., vol. 59, no. 4, pp. 978–989, Apr. 2010.


