
STATISTICAL MODELLING OF MULTICHANNEL BLIND SYSTEM IDENTIFICATION
ERRORS

Felicia Lim, Patrick A. Naylor

Dept. of Electrical and Electronic Engineering, Imperial College London, UK
{felicia.lim06, p.naylor}@imperial.ac.uk

ABSTRACT

It is well known that blind system identification (BSI) algo-
rithms misconverge in the presence of noise and that applica-
tions relying on such channel estimates must be designed to
be robust to these blind system identification errors (BSIEs).
However, there is currently no generalized model of BSIEs
in the literature and instead, white Gaussian noise (WGN) is
commonly assumed. This paper investigates the statistics of
BSIEs based on a robust state-of-the-art BSI algorithm using
both simulated and real impulse responses. A BSIE model
is proposed based on Gaussian mixture models (GMMs) and
a method for generating artificial BSIEs based on this model
for simulations is given. Comparisons against alternative as-
sumptions used in the literature are given and it is shown
through experimental results that the proposed model gives
BSIEs that are most statistically similar to the ground truth.

Index Terms— blind system identification, modelling
acoustic channel errors

1. INTRODUCTION

Channel estimates provided by blind system identifica-
tion (BSI) algorithms are important for a range of applications
[1], including speech dereverberation [2] and automatic cam-
era steering for teleconferencing [3]. In the presence of noise,
the accuracy of the BSI algorithms suffers and therefore
downstream algorithms must be designed to be robust to the
resulting blind system identification errors (BSIEs) [4]. An
accurate model of the BSIEs would therefore be useful for
development of such algorithms, and further enable realistic
simulations as a convenient means of performance evaluation.

To the best knowledge of the authors, there is currently
no established systematic model for BSIEs. In the literature,
a commonly used model is white Gaussian noise (WGN), for
example in [4, 5, 6, 7]. In [8], the BSIEs are modelled as
WGN with an exponential damping factor governed by the
room’s reverberation time.

This paper investigates the statistics of BSIEs associated
with a robust BSI algorithm from the literature for both sim-
ulated and real acoustic impulse responses (AIRs). It will
be shown that the BSIEs are related to the AIR coefficients’

amplitudes and a model based on a trained Gaussian mixture
model (GMM) is proposed. A method to subsequently gener-
ate artificial BSIEs based on the proposed model will be de-
scribed and shown to be statistically more similar to the true
BSIEs when compared against alternative models.

2. OVERVIEW OF BSI ALGORITHMS

Consider an M ≥ 2 channel acoustic single-input multiple-
output (SIMO) finite impulse response (FIR) system, where
the m-th channel AIR is denoted hm. The noisy and rever-
berant signal captured at the m-th microphone is given as

xm(n) = hm ∗ s(n) + vm(n), (1)

where s(n) is the source signal, vm(n) is an additive noise
and ∗ denotes linear convolution. The additive noise in the
different channels are assumed to be WGN that are uncorre-
lated with each other and with the source signal.

BSI algorithms aim to blindly estimate the AIRs from
the noisy and reverberant microphone signals and can be
classified into two categories, higher-order statistics (HOS)
and second-order statistics (SOS) methods [9]. In partic-
ular, the normalized multichannel frequency domain least
mean squares (NMCFLMS) algorithm proposed in [10] has
attracted significant interest as an adaptive algorithm that is
computationally efficient and converges relatively quickly to
the true filter coefficients. It is based on the cross-relation
property

xm ∗ hm′ = s ∗ hm ∗ hm′ = xm′ ∗ hm (2)

that can be deduced from (1) for the noiseless case. In the
presence of noise, an error signal can be derived as

emm′(n) = xT
m(n)ĥm′ − xT

m′(n)ĥm, m 6= m′ (3)

for m,m′ = 1, 2, . . . ,M , where xm(n) = [xm(n) xm(n −
1) . . . xm(n − L + 1)]T and hm = [hm,0 . . . hm,L−1]

T .
NMCFLMS aims to minimize a normalized error signal
derived from (3) in the frequency domain. Unfortunately,
in the presence of noise it suffers from misconvergence as
the adaptation process progresses. In [11], the robust nor-
malized multichannel frequency-domain least mean squares



(RNMCFLMS) algorithm was proposed and addresses the
misconvergence issue by introducing a flat spectral constraint
on the filter coefficients. The RNMCFLMS cost function is
then defined for the b-th processing block as [11]

J (b) = Jf (b)− βR(b)Jp(b), (4)

where βR(b) is the Lagrange multiplier addressed later,

Jf (b) =
M−1∑
m=1

M∑
m′=m+1

eHmm′(b)emm′(b), (5)

where emm′(b) is the frequency-domain error signal between
channels m and m′, {·}H is the Hermitian transpose,

Jp(b) =
ML∑
i=1

ln
(
|ĥ(b, i)|2

)
(6)

is the spectral constraint where ĥ(b, i) is the i-th element of

ĥ(b), ĥ(b) = [ĥ
T

1 (b) . . . ĥ
T

M (b)]T and ĥm(b) is the discrete
Fourier transform (DFT) of ĥm at block b. The gradient of (5)
is ∇Jf (b) = [∇JT

f,1(b) . . . ∇JT
f,M (b)]T , where

∇Jf,m(b) = P−1m (b)×
M∑

m′=1

D∗m′(b)e01m′m(b), (7)

in which ∗ is the complex conjugate, e01m′m(b) is the length
2L DFTs of em′m at block b, Dm(b) is the diagonal matrix of
DFT coefficients for block b of xm and

Pm(b) = γPm(b− 1) + (1− γ)
M∑

m′=1
m′ 6=m

D∗m′(b)Dm′(b), (8)

where γ = [1− 1/(3L)]L. The gradient of (6) is obtained as
∇Jp(b) = [∇JT

p,1(b) . . . ∇JT
p,M (b)]T , where

∇Jp,m(b) = Qm(b)ĥm(b), (9)

and Qm(b) is the diagonal matrix of 2/|ĥm(b, i)|2, i =
1, . . . , L. The Lagrange multiplier can now be given as

βR(b) =

∣∣∣∣∣∇JH
p (b)∇Jf (b)
‖∇Jp(b)‖2

∣∣∣∣∣ (10)

and the RNMCFLMS update equation summarized as

ĥ
10

m (b+ 1) = ĥ
10

m (b)− ρ∇Jf,m(b) + ρβR(b)∇Jp,m(b), (11)

where ĥ
10

m (b) is the length 2L DFT of ĥm at block b and 0 <
ρ < 2 is the step-size. In this work, the BSIEs resulting from
RNMCFLMS will be investigated and modelled.
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Fig. 1: Example of coefficients in the first channel of (a) a true
AIR, (b) the normalized AIR estimated using RNMCFLMS,
(c) the resultant BSIEs and (d) the corresponding BSIE ratios.

3. A STUDY OF THE BSIE COEFFICIENTS

Estimated AIRs obtained using cross-correlation based BSI
algorithms contain an inherent scale factor, which can be
ignored, deduced or assumed in some applications such as
speech dereverberation [12]. Therefore it is desirable to inves-
tigate ĥ = [ĥT

1 . . . ĥT
M ]T independently of the scaling fac-

tor. A widely used measure of BSIE levels is the normalized
projection misalignment (NPM) measure [13], where ĥ is
normalized by applying a gain factor βNPM = (hT ĥ)/(ĥT ĥ),
with h = [hT

1 . . . hT
M ]T . Following this method, the nor-

malized BSIEs are calculated as

em = βNPMĥm − hm. (12)

An example of em obtained using RNMCFLMS is given
in Fig 1. While it may appear that the BSIEs can be mod-
elled by WGN with an exponential decay as proposed in [8],
the behaviour exhibited by BSIE coefficients in the region of
early reflections suggests that a better model might be found
by investigating the relationship between the BSIEs and their
corresponding h amplitudes. Let the BSIE ratios be defined
as ξ = [ξT1 . . . ξTM ]T , where

ξm = [em,0 . . . em,L−1]� [
1

hm,0
. . .

1

hm,L−1
], (13)

and � denotes the Hadamard (element-wise) multiplication.
Fig. 1 shows, for an arbitrarily chosen example, the rela-

tionship between ξm and the amplitudes of hm, with (d)
in Fig. 1 showing the BSIE ratios (13). Let their joint
observations be defined as O = [oT

1 . . .oT
M ]T , where

om =
[
[hm,0, ξm,0]

T . . . [hm,L−1, ξm,L−1]
T
]T

, with an
example plot given in Fig. 2. It can be observed that h
coefficients with larger magnitudes (e.g. in the direct path
and strong early reflections) are associated with ξ that have
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Fig. 2: An example of the joint distribution between the AIR
coefficient amplitudes and their BSIE ratios.

smaller variances, while h coefficients with smaller magni-
tudes, such as those found in the later part of the AIR, are
associated with ξ that have larger variances. The mean of ξ is
approximately 0 for all h amplitudes. These characteristics
suggest that RNMCFLMS performs better in estimating AIR
coefficients with magnitudes in the higher part of the ampli-
tude probability density function (PDF) than for the smaller
amplitudes.

4. PROPOSED BSIE MODEL

It is desirable to find a parameterizable model for O from
which statistically realistic BSIEs can be generated. A GMM
is used to model the distribution [14]. ForK number of Gaus-
sians, the joint probability distribution of O can be approxi-
mated as

p(O) =

K∑
k=1

πkN (O|µk,Σk) , (14)

where each N (O|µk,Σk) is a component of the GMM with
its own mean µk and covariance Σk, and πk is the mixing co-
efficient, with

∑K
k=1 πk = 1, 0 ≤ πk ≤ 1. A best-fit GMM

for a given O can be found using the method of expectation-
maximization (EM) [14]. A more complex GMM with larger
K will almost always result in a better fit to the data; however
this runs the risk of overfitting to the specific data consid-
ered. In this work, the trade-off between model complexity
and goodness-of-fit is evaluated using Bayesian information
criterion (BIC) [15], given as

BIC = K ln(Nobs)− 2 lnL(θGMM), (15)

where Nobs is the number of observations in O and L(θGMM)
is the maximized likelihood function of the best-fit GMM
with parameters {πk,µk,Σk}∀k∈{1 ... K}. The optimum K,
Kopt can then be found as the K that gives the minimum BIC.

In the remainder of this section, the GMM parameters and
their BICs are computed to describe BSIE models for various
acoustic scenarios using both simulated and real AIRs.

The simulated AIRs were obtained using the image
method [16, 17] with the following acoustic setup. A 5-
channel endfire uniform linear array (ULA) with an inter-
microphone spacing of 4 cm was placed in the middle of a
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Fig. 3: BICs over a range of K GMM components for (a)
image method AIRs, and (b) MARDY AIRs

room. A source was stepped around the centre of the ULA
at a 1 m radius for P = 5 angles from 0◦ to 180◦ on the
horizontal plane. At each angle, the AIRs were simulated
with sampling frequency fs = 8 kHz, reverberation time
T60 = 250 ms and length L = T60fs = 2000 coefficients.
A total of 30 AIRs were obtained for each angle, each corre-
sponding to a randomly generated room between 3× 3× 2 m
and 4× 5× 3 m.

Additionally, real AIRs were taken from the MARDY
database [18], which comprises 8-channel impulse responses
for 3 source-to-microphone distances at {1, 2, 3} m and 3
different source locations, giving a total of 9 different acous-
tic setups. To maintain consistency with the image method
experiments, the number of channels were limited to M = 5
by generating 4 subsets from each 8-channel acoustic setup,
where the i-th subset is formed as {mi . . . mi+4}. There-
fore, in total, 36 experiments were formed from 4 subsets× 9
acoustic setups.

The microphone signals were then generated from the
AIRs as (1) using WGN for vm(n) with a signal-to-noise
ratio (SNR) of 15 dB and RNMCFLMS was used to estimate
ĥ. BSI algorithms are known to misconverge in the presence
of noise and in this work, the ĥ that gives the minimum NPM
over 300 s of xm was used. In practice, this could potentially
be achieved using algorithm control techniques [19].

For each set of the P image method AIRs and the collec-
tive MARDY AIRs, ξ was computed using (13) and aggre-
gated over all AIRs within the set. Outliers were avoided by
removing the top and bottom 5-th percentiles in amplitude,
along with their corresponding h coefficients. The best-fit
GMMs were then found for the remaining joint observations
O for K ∈ {1, 2, . . . , 20} and their BICs were computed.

The BIC results for the simulated AIRs are given in
Fig. 3a with an example of the best-fit GMM with Kopt = 20
in Fig. 4a for p = 5 (180◦). The BIC results for the real AIRs
are given in Fig. 3b and Fig. 4b shows the best-fit GMM with
Kopt = 20.
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Fig. 4: Best-fit GMMs obtained with Kopt for (a) image
method AIRs with p = 5 (180◦), and (b) MARDY AIRs

5. VALIDATION OF PROPOSED MODEL

Given knowledge of h and the trained GMM parameters, ar-
tificial BSIEs can be generated from the proposed model as
follows. For each h coefficient, hm,i, the conditional prob-
ability distribution of the BSIE ratio, P (ξm,i|hm,i,θGMM) is
computed [20] and a corresponding artificial BSIE ratio, ξA

m,i,
is generated by drawing randomly from P (ξm,i|hm,i,θGMM).
The artificial BSIE coefficients are then obtained as eA

m =
hm�ξA

m, where ξA
m = [ξA

m,0 . . . ξ
A
m,L−1]

T , and the artificial
estimated AIRs given as ĥA

m = hm + eA
m. In applications

of artificial BSIE models, it may be desirable to subsequently
adjust the NPM, which can be achieved as described in [21].

The statistics of the proposed proportional BSIE model
can now be compared against the true BSIEs and two alter-
native models, 1) WGN and 2) Damp [8]. In all cases, the
BSIEs were first scaled to NPM = −30 dB and the cumula-
tive distribution functions (CDFs) of eA then computed and
compared against the CDFs of e. The differences can be
quantitatively evaluated with the Kolmogorov-Smirnov (K-S)
statistic, κ, which is a distance measure between two CDFs
[22], where a smaller κ indicates that the sample is more sim-
ilar to the desired distribution. The comparison CDFs plots
and their corresponding κ values are given in Fig. 5a where it
can be seen that κ for the proposed BSIE model is the min-
imum amongst all models considered. The BSIE histograms
and coefficients are given in Fig. 5b and Fig. 6 for qualitative
comparison, where it can be seen that the proposed model is
most similar to the true BSIEs. Results given here are for
an example set of true BSIEs obtained with simulated AIRs.
Similar trends were observed for additional experiments that
we have performed with real AIRs.

6. CONCLUSIONS

The statistics of BSIEs was investigated for a robust BSI algo-
rithm, RNMCFLMS. A model was subsequently developed
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Fig. 5: (a) CDF comparison plots with their associated K-S
statistics. (b) Histograms of the true and artificial BSIEs.
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based on GMMs that can be used to generate realistic BSIEs
for simulation purposes when investigating related applica-
tions, such as channel equalization. It was shown both quan-
titatively (using the K-S statistic) and qualitatively (through
the histograms and time-domain plots) that BSIEs artificially
generated from the proposed model are statistically more sim-
ilar to the true BSIEs than alternative models. This model
is therefore highly suitable for use in simulation experiments
to evaluate the performance of, for example, dereverberation
algorithms based on inverse of estimated AIRs with known
levels of estimation error.
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