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ABSTRACT
In the last decade various time- and frequency-domain al-
gorithms were derived to blindly identify acoustic systems.
One of these algorithms is the multichannel Newton (MCN)
algorithm, which is also the basis of the well known nor-
malized multichannel frequency-domain least-mean-square
(NMCFLMS) algorithm. A major drawback of the MCN is
that it requires the computation and inversion of a Hessian
matrix, which involves extensive computation making it un-
suitable for online applications. In this paper, we therefore
derive and investigate an efficient online multichannel quasi-
Newton (MCQN) algorithm that updates the inverse of the
Hessian by analyzing successive gradient vectors. The new
MCQN is shown to exhibit similar performance to MCN but
with much reduced complexity.

Index Terms— blind system identification, Newton
method, quasi-Newton method, multichannel signal pro-
cessing.

1. INTRODUCTION

The idea of blind system identification (BSI) was first intro-
duced to the communications community by Sato with the
intention of designing efficient communication systems that
did not require a training phase [1]. BSI can find a vari-
ety of speech applications such as speech dereverberation [2]
and time delay estimation for sound source localization [3].
In these applications the source signal is unobservable and
the impulse responses of the acoustic channels between the
source and sensors are blindly estimated.

Within the acoustic signal processing community various
batch [4] and adaptive [2, 5, 6] algorithms for BSI have been
developed that are based on minimizing the cross-relation er-
ror between sensor pairs. These algorithms can accurately de-
termine the impulse responses of a multichannel system using
a finite number of samples when additive noise in the sys-
tem outputs is weak and certain identifiability conditions are
met. Adaptive algorithms are able to track the dynamic na-
ture of acoustic impulse responses and are therefore far more
suitable for real-time applications than batch algorithms. In
[2], Huang et al. derived a multichannel least-mean-square
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(MCLMS) algorithm and a multichannel Newton (MCN) al-
gorithm. Their results clearly indicate the that performance of
the MCN is superior to the MCLMS. Because the MCN algo-
rithm requires the computation and inversion of a Hessian ma-
trix that contains the second derivatives of the cost function,
the computational complexity of the MCN algorithm is signif-
icantly larger than that of the MCLMS algorithm. The MCN
algorithm was also used as a basis of the normalized mul-
tichannel frequency-domain least-mean-square (NMCFLMS)
algorithm that was proposed in [5] by the same authors. In the
frequency domain the required correlations and convolutions
can be computed more efficiently than in the time domain,
thereby reducing the computational complexity. In addition,
the derivation of the NMCFLMS requires an approximation
of the nondiagonal Hessian matrix. The NMCFLMS algo-
rithm is one of the most computationally efficient algorithms
but requires several seconds of data to converge.

In this paper we derive and investigate a new multichan-
nel quasi-Newton (MCQN) algorithm for BSI in the time
domain. In Quasi-Newton methods the Hessian matrix of
second derivatives of the cost function to be minimized do
not need to be computed at any stage, and the Hessian is up-
dated by analyzing successive gradient vectors instead. Here
we employ one of the most popular quasi-Newton methods
known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [7], by which we reduce the computation complexity
compared to the MCN algorithm.

This paper is organized as follows. In Section 2 we for-
mulate the BSI problem. In Section 3, we briefly review the
MCN algorithm. We then derive the MCQN algorithm in Sec-
tion 4. Finally, we compare the MCN and MCQN in Sec-
tion 5.

2. PROBLEM FORMULATION

For an M -channel single-input-multiple-output system the
mth impulse response with L coefficients can be denoted as

hm = [hm,0 hm,1 . . . hm,L−1]
T , (1)

for m = 1, 2, . . . ,M , and the mth sensor signal can be ex-
pressed as

xm(n) =
L−1∑

j=0

hm,j s(n− j) + bm(n), (2)
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where s(n) is the source signal and bm(n) is the additive
noise. The additive noise is assumed to be zero-mean and
uncorrelated with the source signal. In vector form, (2) can
be written

xm(n) = Hms(n) + bm(n), (3)

where s(n) = [s(n) s(n − 1) . . . s(n − 2L + 2)]T ,
xm(n) = [xm(n) xm(n − 1) . . . xm(n − L + 1)]T ,
bm(n) = [bm(n) bm(n − 1) . . . bm(n − L + 1)]T , and
Hm is the L × (2L − 1) convolution matrix for the mth
channel such that

Hm =





hm,0 · · · hm,L−1 · · · · · · 0
0 hm,0 · · · hm,L−1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · hm,0 · · · hm,L−1




.

(4)
The problem of BSI is to find h = [hT

1 hT
2 . . . hT

M ]T us-
ing only x(n) = [xT

1 (n)x
T
2 (n) . . . x

T
M (n)]T up to a nonzero

scale factor across all channels. This scale factor is irrelevant
in most of acoustic signal processing applications.

According to [8], two conditions are necessary and suffi-
cient for blind identifiability of a single-input-multiple-output
(SIMO) system using BSI algorithms:

1. The channel transfer functions do not share any com-
mon zeros, i.e., the polynomials formed by hm

(1 ≤ m ≤ M ) are co-prime;

2. The autocorrelation matrix of the input signal Rss =
E{s(n)sT (n)} is of full rank, where E{·} denotes the
mathematical expectation, such that SIMO system can
be fully excited.

Minimization of the cross-relation [8] based on second or-
der statistics of the observed signals has served as the basis of
many BSI algorithms. In the absence of noise,

xT
m(n)hl = xT

l (n)hm, m, l = 1, 2, . . . ,M, m $= l, (5)

where hl and hm denote the lth and mth acoustic impulse
responses, respectively. The a priori error at discrete time
n, which is associated with the lth and mth acoustic impulse
responses, is given by

eml(n) = xT
m(n)ĥl(n− 1)− xT

l (n)ĥm(n− 1). (6)

Subsequently, we can define the total a priori squared-error
as

ξ(n) =
M−1∑

m=1

M∑

l=m+1

e2ml(n), (7)

where we excluded the cases where emm = 0 for m ∈
{1, 2, . . . ,M} and count the pairs eml = −elm only once.
The cost function to be minimized is defined as

J(n) =
ξ(n)

‖ĥ(n− 1)‖22
. (8)

3. REVIEW MULTICHANNEL NEWTON

In general, there is a tradeoff between the excess mean-
square-error, the rate of convergence, and the ability of an
adaptive algorithm to track changes in the unknown system.
A good balance of these competing design objectives results
from the unit-norm-constrained multichannel Newton algo-
rithm [2], in which estimated impulse responses are updated
by:

ĥ(n) =
ĥ(n− 1) + ρp(n)

‖ĥ(n− 1) + ρp(n)‖2
, (9)

where ρ (0 < ρ < 1) denotes the step-size that is commonly
chosen close to 1, and

p(n) = −E
{
∇2J(n)

}−1 ∇J(n), (10)

where ∇2J(n) and ∇J(n) are respectively the Hessian ma-
trix and the gradient vector of J(n) with respect to ĥ(n− 1).
Existence of p(n) requires that the Hessian can be approxi-
mated by a quadratic approximation of the Taylor series and is
nonsingular. With the unit-norm constraint ‖ĥ(n− 1)‖2 = 1,
the gradient vector and an approximation of the Hessian ma-
trix are given by [2]

∇J(n) = R̃(n)ĥ(n− 1)− ξ(n)ĥ(n− 1) (11)

and

V(n) ! E{∇2J(n)} (12)

≈ 2R̂(n)− 4ĥ(n− 1)ĥT (n− 1)R̂(n)−
4R̂(n)ĥ(n− 1)ĥT (n− 1), (13)

where R̃(n) is an instantaneous estimate of

R =





∑

m "=1

Rxmxm −Rx2x1 · · · −RxMx1

−Rx1x2

∑

m "=2

Rxmxm · · · −RxMx2

...
...

. . .
...

−Rx1xM −Rx2xM · · ·
∑

m "=M

Rxmxm





(14)
where R = E{x(n)xT (n)}, Rxmxl = E{xm(n)xT

l (n)},
and R̂(n) is given by

R̂(n) = η R̂(n− 1) + R̃(n), (15)

where η (0 < η < 1) is an exponential forgetting factor.
In practice the Hessian matrix might contain very small

eigenvalues. In order to ensure that the inverse of the Hessian
exists the regularization term λ I (0 ≤ λ ) 1) can be added
to (12), where I denotes an identity matrix of size ML×ML.

One of the main drawbacks of the MCN algorithm is the
computational complexity required to compute and invert the
Hessian matrix.
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4. ONLINE MULTICHANNEL QUASI-NEWTON

Quasi-Newton methods were developed to reduce the compu-
tational complexity of the Newton method. In quasi-Newton
algorithms the Hessian is updated by analyzing successive
gradient vectors. Here we propose a quasi-Newton algorithm
for BSI that is based on the BFGS optimization method [7].

The BFGS algorithm requires the difference vectors

∆ĥ(n) = ĥ(n)− ĥ(n− 1) (16)

and
gBFGS(n) = ∇J(n+ 1)−∇J(n). (17)

It is important to note that the cost function J of the on-
line algorithm is time-variant, while it is time-invariant in the
original BFGS method that is developed for batch processing.
Therefore, we replace ∇J(n + 1) by the gradient of the cost
function J̃(n) = ξ̃(n)/‖h(n)‖22 that is based on the total a
posteriori (rather than the a priori) squared-error given by

ξ̃(n) =
M−1∑

m=1

M∑

l=m+1

[
xT
m(n)ĥl(n)− xT

l (n)ĥm(n)
]2

. (18)

By replacing ∇J(n+ 1) in (17) by ∇J̃(n) and by using (11)
and (16) we obtain

g(n) = R̂(n)∆ĥ(n) + ξ̃(n)ĥ(n)− ξ(n)ĥ(n− 1). (19)

To avoid gradient noise entering into the recursion, we used
the expected value rather than the instantaneous value of the
cross-correlation matrix R in (19).

As shown in [7], the Hessian can be updated recursively
using (20). Rather than updating the Hessian it is compu-
tationally more efficient to update the inverse of the Hes-
sian directly. The update for the inverse of the Hessian can
be found by applying Woodbury matrix identity [9] to (20),
which yields (21), where ν(n) = ∆ĥT (n)g(n).

We have found, through our experiments, that adding a
regularization term λ∆ĥ(n) (0 ≤ λ ) 1) to g(n) increases
the robustness of the MCQN algorithm in a similar way the
term λ I increases the robustness of the MCN algorithm.

5. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of the developed
MCQN algorithm by simulations. Similar to other studies [2,

5,6], we used the normalized projection misalignment (NPM)
in dB as the performance measure, which is given by

NPM(n) = 20 log10

(∥∥∥∥∥ĥ(n)−
ĥT (n)h

hTh

∥∥∥∥∥
2

/
∥∥∥ĥ(n)

∥∥∥
2

)
.

(22)
For the first experiment we used three sensors (M = 3),

the source signal is an uncorrelated binary phase-shift-keying
(BPSK) sequence of 8000 samples, and the additive noise is
i.i.d. zero-mean Gaussian. We have used two types of chan-
nel both of length L = 64: i) with random coefficients drawn
from a Gaussian distribution with zero-mean and unit vari-
ance, and ii) with random coefficients drawn from the same
distribution but weighted by exp(−αn) (α ≥ 0), such that
the envelope of each channel approximates that found in an
acoustic channel. We determined the average NPM over the
last 50 iterations and over 50 Monte-Carlo trials for various
signal-to-noise ratios (SNRs) that are given by

SNR = 10 log10

(
σ2
s‖h‖22
Mσ2

b

)
, (23)

where σ2
s and σ2

b denote the variance of the source signal s(n)
and additive noise bm(n) that is assumed to be channel inde-
pendent. The step-size was ρ = 0.8, the decay-rate α = 0.05,
η = 0.98 and λ = 10−5. As shown in Fig. 1, the proposed
MCQN algorithm performs similar or slightly better than the
MCN algorithm for all SNRs, which might be attributed to
the fact that the MCN algorithm uses an approximation of the
Hessian matrix [given by (12)] while the MCQN recursively
estimates the exact Hessian matrix. Although not shown here,
we have noticed that the initial convergence of the MCQN al-
gorithm is slightly slower (i.e., in the order of 50 − 200 ms)
compared to the MCN algorithm.

For the second experiment we used six sensors (M = 6),
and a speech source signal of 10 seconds (sampling frequency
is 8 kHz). The impulse responses are generated using the well
known source-image method and are truncated to a length of
L = 256. In Fig. 2 we show part of the source signal, the
impulse responses, and the NPM as a function of time for
the MCQN and NMCFLMS algorithm [5]. With an SNR
of 60 dB, ρMNQN = 0.8, ρNMCFLMS = 0.5, η = 0.95, and
λ = 10−5 the MCQN algorithm was able to converge to ap-
proximately −40 dB within 500 milliseconds of speech data.
The NMCFLMS converges to -15 dB in 10 seconds. Similar
to the findings in [5], the MCN algorithm did not converge.

V(n+ 1) = V(n) +
g(n)gT (n)

gT (n)∆ĥ(n)
− V(n)∆ĥ(n)∆ĥT (n)VT (n)

∆ĥT (n)V(n)∆ĥ(n)
(20)

V−1(n+ 1) =

(
I − g(n)∆ĥT (n)

ν(n)

)T

V−1(n)

(
I − g(n)∆ĥT (n)

ν(n)

)
+

∆ĥ(n)∆ĥT (n)

ν(n)
(21)
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(a) Random channels.
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(b) Random channels with an exponentially decaying envelope.

Fig. 1. Average NPM for different SNRs and two types of
channels after processing 8000 samples.

6. CONCLUSIONS

In this paper, an online quasi-Newton algorithm for blind
system identification was developed. Because the developed
MCQN algorithm computes the inverse of the Hessian recur-
sively its computational complexity is lower than that of the
MCN algorithm. The performance of the MCQN algorithm
is comparable to that of the MCN algorithm but offers online
processing capability.
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