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Abstract—This paper focuses on speaker tracking in robot audition for
human-robot interaction. Using only acoustic signals, speaker tracking
in enclosed spaces is subject to missing detections and spurious clutter
measurements due to speech inactivity, reverberation and interference.
Furthermore, many acoustic localization approaches estimate speaker
direction, hence providing bearing-only measurements without range
information. This paper presents a probability hypothesis density (PHD)
tracker that augments the bearing-only speaker directions of arrival with
a cloud of range hypotheses at speaker initiation and propagates the
random variates through time. Furthermore, due to their formulation
PHD filters explicitly model, and hence provide robustness against, clutter
and missing detections. The approach is verified using experimental
results.

Index Terms—Acoustic signal processing; Speaker tracking; Acoustic
tracking; Bearing-only tracking; Clutter; Missing detections.

I. INTRODUCTION

The increasing availability of humanoid robots, such as NAO
by Aldebaran Robotics, is driving demand for robots capable of
interacting with humans in intuitive ways. However, Human-Robot
Interaction (HRI) is a complex and largely unsolved problem, par-
ticularly when faced with multiple people who may simultaneously
require the robots attention. Whilst vision-based HRI has received
widespread attention in the literature, robot audition [1] is mainly
used to facilitate a natural communication channel between the human
user and robot, with a focus on speech recognition and enhancement.
Nonetheless, beyond the user request dialogue, speech signals contain
information that should be exploited constructively to infer additional
information about the environment. Furthermore, audio signals often
facilitate detectability of events that may be occluded for other
sensors. For example, humans outside of the Field of View (FoV)
of cameras or occluded by other objects produce speech signals that
can be used for acoustic scene analysis. Thus, robust audio processing
systems are required for meaningful audio-visual fusion.

In order to adjust its position and sensor to interact with humans,
the robot needs to localize and track humans within the surrounding
environment. Localization can be used to estimate instantaneous
source directions from the speech signals [2], [3], [4], [5], [6]. How-
ever, localization does not account for the evolution of directions over
time. Furthermore, localization estimates are subject to estimation
errors due to reverberation and noise. Speaker tracking is used to
smooth the noisy measurements and estimate speaker trajectories.
Traditional tracking systems [7] often utilise variants of the Kalman
filter in order to estimate the unknown speaker positions [8]. A
particle filter extension was presented in [9]. A track-before-detect
system was proposed in [10], estimating the tracks directly form the
microphone measurements without the need for localization. Multi-
speaker tracking using Probability Hypothesis Density (PHD) filters
and Time-Difference-of-Arrival measurements was presented in [11].

PHD filters [12], [13] track multiple objects without the need for
data association by explicitly accounting for missing measurements,
clutter, track initiation and termination. PHD filters are therefore
particularly attractive for speaker tracking in the presence of clutter
and missing measurements and are hence utilized in this paper.

This paper focuses on three challenges affecting speaker tracking,
namely 1) bearing-only measurements, 2) missing detections, and
3) clutter. Speech radiated in enclosed environments is subject to
reverberant reflections from surrounding walls and objects. Whilst
localization often reduces the measurements to dominant path signals
[14], [6], strong reflections can lead to spurious detections. Robust-
ness against clutter measurements is therefore required for tracking.
Furthermore, speakers cannot be localized during periods of speech
inactivity. Tracking hence needs to ensure track propagation through
silent periods to avoid false track termination.

Furthermore, localization algorithms for acoustic data often esti-
mate Directions-of-Arrival (DoAs), such that the measurements are
bearing-only. However, in order to map from the angular directions to
Cartesian positions, range estimates are required to solve a system of
determined equations. Range estimates can be periodically obtained
either by means of fusion with other sensors or by kinematic ranging
where robot maneuvers are used to triangulate a speaker position [15].
Nonetheless, confirming range on every estimated DoA of a possible
sound source is computationally unfeasible, especially in the presence
of clutter. In order to initiate and propagate speaker tracks with
missing range measurements, this paper proposes to initiate speakers
with an appended range estimate which is extrapolated in time whilst
the angular component is updated by the measurements. A similar
approach was proposed in [16], [17], where the angular components
of newborn states are sampled over the entire surveillance volume
independent of the measurements.

A more efficient speaker initiation scheme is a measurement-driven
birth process as proposed in [18]. This paper proposes a modified
measurement-driven birth process for bearing-only measurements.
Rather than sampling uniformly over the state space, the angular
birth components are sampled from the DoA measurements. Range
estimates can be augmented in the birth states by drawing random
variates along the birth components’ directions.

This paper proposes a new approach to bearing-only acoustic
tracking using a Gaussian Mixture PHD (GM-PHD) filter. Section II
summarizes the signal model. PHD filters for tracking in the presence
of clutter and missing detections are discussed in Section III. Sec-
tion IV proposes the measurement-driven birth process for bearing-
only measurements. Experiments are presented in Section V and
conclusions drawn in Section VI.
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II. SIGNAL MODEL

Signal models for the single speaker are now presented and
extended to the multiple speaker case.

A. Single speaker

Consider a speaker n at time t with state xt,n ,
⇥
p

T
t,n v

T
t,n

⇤T ,
where the speaker’s Cartesian coordinates in the room are given by
pt,n ,

⇥
xt,n yt,n zt,n

⇤T and its velocity is denoted as vt,n ,⇥
ẋt,n ẏt,n żt,n

⇤T . The state can be modelled as

xt,n = F t xt�1,n + vt, vt ⇠ N (0q⇥1, Qt) (1)

where F t models the speaker dynamics and the process noise term,
vt, captures subtle deviations of the speaker position from the motion
model with covariance, Qt (see [19] for a review of model choices).

Assuming Mt DoA measurements are obtained from a local-
ization algorithm at time t, the m

th DoA measurement, zt,m ,⇥
✓t,m �t,m

⇤T
, 8m = 1, . . . ,Mt, can be modelled as

zt,m = g(xt,n) +wt,m, wt,m ⇠ N (0, R) , (2)

where wt is the measurement noise with covariance R, and g(x) =⇥
✓ �

⇤T is the Cartesian to spherical tranformation, with inclination
✓ = arccos

⇣
z/

p
x

2
+ y

2
+ z

2
⌘

and azimuth � = arctan (y/x).

B. Multiple speakers

The set of states of Nt speakers in the acoustic scene is given by
Xt , {xt,1, . . . ,xt,Nt}. In multi-speaker tracking, both the number
of speakers as well as their positions are unknown. The multi-speaker
states are hence defined as a point process [20] with realizations

⇠t , (Nt,Xt) . (3)

Similar to (3), the DoA measurement state, �t, at the tracker input
can be expressed as a point process with realizations

�t = (Mt,Zt), (4)

where Mt, is the number of measurements and Zt ,
{zt,1, . . . , zt,Mt} is the set of measurements.

III. TRACKING FRAMEWORK

In a Bayesian framework the multi-speaker states, ⇠t, can be
fully described by the joint posterior Probability Density Function
(pdf), p(⇠t|Z1:t), of the number of speakers and their positions. It is
convenient to assume that Nt is Poisson distributed and the speaker
locations are Independent and Identically Distributed (i.i.d.). Under
these assumptions, (3) is a Poisson Point Processs (PPPs) [21], and
the joint posterior pdf of ⇠t is fully described by the density of Xt,
also known as the intensity function [21]. Therefore, it is sufficient
to derive an estimator of the intensity function in order to estimate
the pdf. The PHD filter [12], summarized in this section, recursively
estimates the first-order moment of the intensity.

A. Speaker prediction

The predicted intensity, �(Xt|Z1:t�1), of a PPP is given by [12]

�(Xt|Z1:t�1) =

Z

X+

ft(Xt|Xt�1)�(Xt�1|Z1:t�1)dXt�1. (5)

where the region of support is defined as X+
= X [ �. Here,

X = R6 defines the region of support of the 6-dimensional states of
real numbers, and � denotes the empty space for which ⇠t = (0, ;),
where ; is the empty set. The definition of X+ is crucial for the
developments in this Section, as the inclusion of � facilitates explicit

modelling of 1) the probability of speaker termination, f(;|xt�1,n),
2) the likelihood of speaker initialization, f(xt,n|;), and 3) clutter
measurements with likelihood p(Zt|;).

Extending the integral over the region of support, X+, defined in
Section II-B, into the space over real numbers, X , and �, and defining
ps = (1�pb) as the probability of survival and pb as the probability
of speaker initiation, the predicted intensity is given by

�(Xt|Z1:t�1) = �

b
(Xt|;) + �

s
(Xt|Z1:t�1), (6)

where

�

b
(Xt|;) , pb ft(Xt|;)�(Xt|;)

�

s
(Xt|Z1:t�1) , ps

Z

X
ft(Xt|Xt�1)�(Xt�1|Z1:t�1)dXt�1.

where �

s
(Xt|Z1:t�1) is the predicted intensity of surviving speak-

ers. The birth process, �b
(Xt|;), proposed in this paper facilitates

bearing-only tracking and is discussed in Section IV.
Vo et al. demonstrated in [13] that the PHD for Gaussian state

spaces such as (1) and (2), the PHD filter takes a closed form solution
as a Gaussian Mixture Model (GMM). The predicted intensity of
surviving speakers is hence given

�

s
(Xt|Z1:t�1) =

Jt�1X

j=1

w

(j)
t|t�1N (x|m(j)

t|t�1,⌃
(j)
t|t�1), (7)

where Jt�1 is the udpated number of Gaussian Mixture (GM) com-
ponents at time t � 1, the predicted weights are w

(j)
t|t�1 = ps w

(j)
t�1,

and where the mean and covariance terms are given by the Extended
Kalman Filter (EKF) prediction:

m

(j)
t|t�1 = F

(j)
t m

(j)
t�1|t�1, (8a)

⌃

(j)
t|t�1 = F

(j)
t ⌃

(j)
t�1|t�1[F

(j)
t ]

T
+Q, (8b)

where F t and Q were defined in Section II-A.

B. Speaker detection and missing detections

To account for missing detections of speakers, a Bernoulli thinning
process [21] is applied to the predictions that accepts Xt with
probability of detection, pd, and rejects the state with probability,
(1� pd), such that

�

s
(Xt|Z1:t�1) = �

d
(Xt|Z1:t�1) + �

u
(Xt|Z1:t�1) (9)

with intensities of detection, �d
(·), and missed detection, �u

(·):

�

d
(Xt|Z1:t�1) , pd �(Xt|Z1:t�1) (10)

�

u
(Xt|Z1:t�1) , (1� pd)�(Xt|Z1:t�1) (11)

The predicted intensity, �(Xt|Z1:t�1), split into four branches as in
(6) and (9), is now updated using knowledge inferred from the DoA
measurements. Note that undetected speakers are not subject to the
information update as �

u
(Xt|Z1:t) = �

u
(Xt|Z1:t�1).

C. Speaker update and clutter

Information can be inferred from the measurements by application
of Bayes’s theorem to the predicted intesnity. However, the resulting
process is not a PPP, such that the intensity recursion is not analyt-
ically tractable [21]. Nonetheless, the process can be approximated
by its first-order moment, resulting in the PHD filter with prediction
in (5) and update [12], [18]:

�(Xt|Z1:t) = �

u
(Xt|Z1:t�1)

+

MtX

m=1

p(zt,m|Xt)�
(b[d)

(Xt|z1:t�1,m)

�

(b[d)
(zt,m)

(12)



where �

(b[d)
(·) , �

b
(·) + �

d
(·) assuming a measurement-driven

speaker birth process [18], and with partition function, �(zt,m):

�(zt,m) = �

c
+

Z

X
p(zt,m|Xt)�

(b[d)
(Xt|z1:t�1,m)dXt (13)

where �

c , p(zt,m|;)�(;) is the clutter intensity. The GM-PHD
update is given by [13], [18]:

�(Xt|Z1:t) = (1� pd)�
s
(Xt|Z1:t�1) (14)

+

MtX

m=1

2

4
Jb,tX

j=1

w

(j)
t,b,m�

b
(Xt|;) +

Jt�1X

j=1

w

(j)
t,m N (x|m(j)

t,m,⌃

(j)
t,m)

3

5

where Jb,t is the number of birth components and the weights are

w

(j)
t,b,m =

w

(j)
t|t�1,b

L(zt,m)

and w

(j)
t,m = pd

p(zt,m|x(j)
t )w

(j)
t|t�1

L(zt,m)

with partition function, L(z), defined as

L(z) = t(z) +

Jb,tX

j=1

w

(j)
t|t�1,b + pd

Jt�1X

j=1

p(z|x(j)
t )w

(j)
t|t�1. (15)

The GM mean and covariance are expressed as

m

(j)
t|t,m = m

(j)
t|t�1 +K

(j)
t,m

⇣
zt,m � g(m

(j)
t|t�1)

⌘
(16)

⌃

(j)
t|t,m =

⇣
I �K

(j)
t,m G

(j)
t,m

⌘
⌃

(j)
t|t�1. (17)

The gain, Kt, and innovation covariance, St, are

K
(j)
t,m = ⌃

(j)
t|t�1 [G

(j)
t,m]

T
[S

(j)
t,m]

�1 (18)

S
(j)
t,m = G

(j)
t,m ⌃

(j)
t|t�1[G

(j)
t,m]

T
+R. (19)

where Gt is the Jacobian matrix of the Cartesian to spherical
transformation, and R is the measurement noise covariance in (2).
After the update, the GMM consists of Jt = Jt�1(Mt+1)+Jb,t Mt

components. In order to reduce the exponential growth of compo-
nents, pruning as proposed in [13] is applied for GM reduction.

D. Estimated number of speakers

The partition function ensures that the GM components are
weighted correctly such that the expected value of the number of
speakers, E[Nt], is given by [21]

E[Nt] =

Z

X+
�(Xt|Z1:t)dXt (20)

For the GM-PHD filter, the number of speakers can be estimated
similarly to the states as per Sections III-A to III-C, such that

Nt =

6664
(1� pd)Nt|t�1 +

MtX

m=1

2

4
JtX

j=1

w

(j)
t,m +

Jt,bX

i=1

w

(i)
t,b,m

3

5

7775
, (21)

where Nt|t�1 = ps Nt�1.

E. Point estimate extraction

GM reduction techniques are applied in order to extract extract
Nt point estimates from the GM components in (14). Statistically
unlikely components are first truncated. Clustering as in [22] is
applied to the remaining components with a suitably aggressive
merging threshold [23]. If the number of merged GMs exceeds
the estimated number of speakers, the Nt components with highest
weight are chosen to extract the point estimates, ˆxt, of the speaker
state. Note that the state extraction in this Section does not affect the
GMs in (14) but merely reduces a copy of the GMM.

IV. PROPOSED BIRTH PROCESS FOR BEARING-ONLY TRACKING

The measurements at the tracker input are assumed in this paper to
be DoAs and are hence bearing-only. However, for a commensurate
mapping from spherical to Cartesian coordinates, range is required.

Beard et al. [16], [17] modified the GM-PHD filter for the bearings-
only problem by introducing a diffuse birth model accounting for
the unmeasured range component. The angular component of target
birth states is drawn from a uniform distribution over the surveillance
region, whilst the range component is drawn from a prior.

In practical speech applications, new speakers can start dialogues
at any point within the room. Therefore, sufficiently many birth
components need to be sampled in order to cover the state space X at
a sufficient resolution to capture initiation of new speakers. This paper
proposes to adapt the more efficient measurement-driven birth process
in [18] to the bearing-only problem. Rather than sampling uniformly
over the state space, new speaker processes are drawn from areas
within the room where the likelihood corresponds to high values.

A. Measurement-driven bearing-only birth process

In [18], the positions of birth components are sampled from the
observations, {zt,m}Mt

m=1. In this paper, in order to introduce the
missing range measurements, the observations are augmented with
a range prior, r̂, with variance �

2
r̂ , such that ˜

zt,m ,
⇥
r̂ z

T
t,m

⇤T

and ˜R , diag
⇥
�

2
r R

⇤
. Furthermore, the speaker velocities are

sampled from a velocity prior, v, with covariance ⌃v. Hence for
each observation, Nr positions are sampled form ˜

zt,m, such that

x

(i)
b,m ⇠ N

⇣
h(

˜

zt,m), Ht,m
˜RHT

t,m

⌘
, (22)

for each m = 1, . . . ,Mt and i = 1, . . . , Nr , where h is the spherical
to Cartesian transformation with Jacobian Ht,m. Furthermore, Nv

velocity vectors, ˙

x

(j)
b , are sampled from

˙

x

(j)
b ⇠ N

⇣
v

(j)
, ⌃v

⌘
. (23)

for all j = 1, . . . , Nv . The resulting Jb,t = Mt Nr Nv birth states are
constructed from the sampled positions and velocities as the vector
m

(i,j)
t,b,m ,

h
[x

(i)
b,m]

T
[

˙

x

(j)
b ]

T
iT

. The predicted birth weights are
givenas

w

(j)
t|t�1,b =

Nb

Mt ·Nv ·Nr
, (24)

where Nb is the prior expected number of speaker initiations.

B. Range propagation with time

The update in (14) infers knowledge from the measurements
through the innovation,

⇣
zt,m � g(m

(j)
t|t�1)

⌘
. Recalling that g

transforms the three-dimensional Cartesian position to the two-
dimensional DoA (see Section II-A), the innovation updates only
the angular components of m(j)

t|t,m. Therefore, the range of surviving
speakers sampled in (22) is extrapolated in time via (7), but is not
corrected using measurements. Naturally, the range component is
therefore expected to be subject to divergence.

V. EXPERIMENTAL RESULTS

Two experiments are presented to investigate the tracking perfor-
mance of the proposed approach. In both experiments a speaker
trajectory is initialized at absolute Cartesian position (7, 3, 1.5) m
in a 15⇥ 15⇥ 3 m room with a stationary sensor at (3, 2, 0.58) m
corresponding to the height of a NAO robot standing on the ground.
The speaker trajectory follows a straight line with vy = 0.5 m/s
towards the North facing wall of the room. To model the effects
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Fig. 1: Experiment 2 – Tracking performance in azimuth and inclination.

of reverberation on localization, clutter measurements as a Poisson
process with clutter rate �, uniformly distributed over the surveillance
region. A spherical microphone array is assumed in order to faciliate
360 ⇥ 180 deg surveillance of the surrounding in azimuth and
inclination. In both experiments, the GM-PHD filter is initialized
with no components. The probability of survival is set to 0.98. The
birth process samples 50 birth components with prior birth weight,
Nb = 10

�3. To reduce the exponential growth of the filter, the
pruning algorithm in [13] is used for GM reduction with a truncation
threshold of T = 10

�9, a merging threshold of M = 0.1, and a
maximum allowance number of 200 components.

1) Experiment 1: In the first experiment, the effects of the range
prior are investigated. For this purpose, the clutter rate is set to � = 0

with pd = 1. The sensor noise is 0.5 rad in azimuth and 10

�6 rad
in inclination. For each realization of the experiment, the range prior
mean is increased between r̂ = 1.0, . . . , 10 m in steps of 1.5 m. The
range estimates over time of the 20 realizations are plotted in Fig. 2.

As expected, the range cannot diverge to the ground truth as
the range estimates are propagated without information update.
The results in Fig. 2 indicate jumps of the range estimates. This
behaviour is due to the fact that a small angle corresponds to small
positional displacement at near-range but large displacement at far-
range. Hence, the innovation term, (zt,m � g(m

(j)
t|t�1), implicitly

accounts for the range estimate, even though zt,m and g(m

(j)
t|t�1)

contain angles only. Consequently, the weight decreases for GM
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Fig. 2: Experiment 1: Range estiamtes for r̂ = 0.5, 1, . . . , 10 m.

components whose range gradually diverges. At the same time, the
weight increases for components resembling the ground truth more
closely. This eventually leads to a “jump” as the point estimates
correspond to the highest weighted GM components as discussed
in Section III-E.

2) Experiment 2: The experiment is repeated for r̂ = 6 m with a
standard deviation of �r̂ = 10

�3 m with a clutter rate of �c = 0.5

(i.e., between 0 and 3 clutter measurements per sample), detection
probability of pd = 0.8 and measurement noise of 3 deg in azimuth
and 1 deg in inclination. The velocity is initialized to the ground truth
with standard deviation �v = 10

�3 m/s in each direction. The cosine
distance, d(g(xt), g(ˆxt)), between the track estimates and ground
truth is evaluated as:

d(g(xt), g(ˆxt)) = 1�
⇢

g(xt) · g(ˆxt)

kg(xt)kkg(ˆxt)k

�
, (25)

where kk denotes the vector norm and · is the dot product. Figures
1a and 1b compare the ground truth, estimates and measurements
over time in azimuth and inclination. The cosine distance of the
estimates to the ground truth is compared to the cosine distance of
the measurements in Fig. 1c. These results illustrate that tracking
performance improves significantly on the measurements with a
maximum cosine distance of 0.043 for the estimates compared to
0.328 for the measurements.

VI. CONCLUSION

This paper proposed a novel approach to bearing-only acoustic
tracking of speakers in the presence of clutter and missing detections.
Experiments evaluated the performance for tracking of a single
moving speaker. The results demonstrate that track estimates are
robust against the spurious clutter measurements and probability of
detection of 80%. The distance between tracks and the ground truth is
significantly improved compared to the bearing-only measurements.
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