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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to reconstruct x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels ϕ(t) can be used?

I What reconstruction algorithm?
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Problem Statement

Observed
scene

Samples

Acquisition
System

Lens CCD
Array

I The low-quality lens blurs the images.

I The images are under-sampled by the low resolution CCD array.

I You need a good post-processing algorithm to undo the blurring and
upsample the images.

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



Classical Sampling Formulation

I Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{ϕ(t/T − n)}n∈Z.

I If x(t) ∈ V , perfect reconstruction is possible.

I Reconstruction process is linear: x̂(t) =
P

n ynϕ(t/T − n).

I For bandlimited signals ϕ(t) = sinc(t).

φ(t)~
~

x(t) y
T

n φ(t)
x(t)^
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Signals with Finite Rate of Innovation

I The signal x(t) =
P

n ynϕ(t/T − n) is exactly specified by one parameter
yn every T seconds, x(t) has a finite number ρ = 1/T of degrees of
freedom per unit of time.

I In the classical formulation, innovation is uniform. How about signals
where the rate of innovation is finite but non-uniform? E.g.

I Piecewise sinusoidal signals (Frequency Hopping modulation)
I Pulse position modulation (UWB)
I Edges in images
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) =
X
k∈Z

γkϕ(t − tk). (1)

The rate of innovation of x(t) is then defined as

ρ = lim
τ→∞

1

τ
Cx

“
−τ

2
,
τ

2

”
, (2)

where Cx(−τ/2, τ/2) is a function counting the number of free parameters in
the interval τ .

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal

whose parametric representation is given in (1) and with a finite ρ as defined

in (2).
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Signals with Finite Rate of Innovation

FRI signals include:

I Bandlimited signals and signals belonging to shift-invariant
subspaces.

I K-sparse discrete signals (like in Compressed Sensing).

I Signals with point-like innovation, (point source phenomena),
piecewise sinusoidal signals (OFDM, FH), filtered Diracs (UWB,
Neuronal signals).
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Signals with Finite Rate of Innovation

Here, x1(t) and x2(t) have the same rate of innovation. However, one discontinuity
and no sampling theorems ;-)

x1(t)

t t

X1(!)

x2(t)

t t

X2(!)
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Examples of Signals with Finite Rate of Innovation
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The Sampling Kernel

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I Given by nature

I Diffusion equation, Green function. Ex: sensor networks.

I Given by the set-up

I Designed by somebody else. Ex: Hubble telescope, digital cameras.

I Given by design

I Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel ϕ(t) that can reproduce exponentials:X
n

cm,nϕ(t − n) = eαmt , αm = α0 + mλ and m = 0, 1, ..., L.

This includes any composite kernel of the form γ(t) ∗ β~α(t) where
β~α(t) = βα0 (t) ∗ βα1 (t) ∗ ... ∗ βαL (t) and βαi (t) is an Exponential Spline of first order
[UnserB:05].

eα t 

E−Spline βα(t) 

βα(t)⇔ β̂(ω) =
1− eα−jω

jω − α
Notice:

I α can be complex.

I E-Spline is of compact support.

I E-Spline reduces to the classical polynomial
spline when α = 0.
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Kernels Reproducing Exponentials
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The E-spline of first order βα0 (t) reproduces the exponential eα0t :X
n

c0,nβα0 (t − n) = eα0t .

In this case c0,n = eα0n. In general, cm,n = cm,0eαmn.
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Kernels Reproducing Exponentials
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Here the E-spline is of second order and reproduces the exponential eα0t , eα1t : with

α0 = −0.06 and α1 = 0.5.
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Examples of E-Splines Kernels
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E-Splines and B-splines

When αm = 0, m = 0, 1, ..., L. The E-spline reduce to the classical B-spline and is
then able to reproduce polynomials up to degree L. Notice that any scaling function in
wavelet theory is given by γ(t) ∗ βL(t) and is therefore included in this definition.
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E-Splines and B-splines

The E-spline reduces to the classical cubic B-spline when αm = 0, m = 0, 1, ..., L and
L = 3. In this case it can reproduce polynomials up to degree L = 3.
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Kernel Reproducing Exponential

Any functions with rational Fourier transform:

ϕ̂(ω) =

Q
i (jω − bi )Q

m(jω − am)
m = 0, 1, ..., L.

is a generalized E-splines. This includes practical devices as common as an RC circuit:

x(t)   y(t) 

R 

     C 

+ 

- 

+ 

- 
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Sparse Sampling: Basic Set-up

I Assume the sampling period T = 1.

I Consider any x(t) with t ∈ [0,N).

I Assume the sampling kernel ϕ(t) is any function that can reproduce
exponentials of the formX

n

cm,nϕ(t − n) = eαmt m = 0, 1, ..., L,

I We want to retrieve x(t), from the samples yn = 〈x(t), ϕ(t − n)〉,
n = 0, 1, ...,N − 1.
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Sparse Sampling: Basic Set-up

We have that

sm =
∑N−1

n=0 cm,nyn

= 〈x(t),
∑N−1

n=0 cm,nϕ(t − n)〉

=
∫∞
−∞ x(t)eαmtdt, m = 0, 1, ..., L.

I sm is the bilateral Laplace transform of x(t) evaluated at αm.

I When αm = jωm then sm = x̂(ωm) where x̂(ω) is the Fourier
transform of x(t).

I When αm = 0, the sm’s are the polynomial moments of x(t).
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Sampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
∑K−1

k=0 xkδ(t − tk), tk ∈ [0,N).

I We restrict αm = α0 + mλ m = 0, 1, ..., L and L ≥ 2K − 1.

I We have N samples: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, ...N − 1:

I We obtain

sm =
∑N−1

n=0 cm,nyn

=
∫∞
−∞ x(t)eαmtdt,

=
∑K−1

k=0 xke
αmtk

=
∑K−1

k=0 x̂ke
λmtk =

∑K−1
k=0 x̂ku

m
k , m = 0, 1, ..., L.
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The Annihilating Filter Method

I The quantity

sm =
K−1∑

k=0

x̂ku
m
k , m = 0, 1, ..., L

is a sum of exponentials.

I We can retrieve the locations uk and the amplitudes x̂k with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

I Given the pairs {uk , x̂k}, then tk = (ln uk)/λ and xk = x̂k/e
α0tk .
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The Annihilating Filter Method

1. Call hm the filter with z-transform H(z) =
PK

i=0 hiz
−i =

QK−1
k=0 (1− ukz

−1).
We have that

hm ∗ sm =
KX

i=0

hi sm−i =
KX

i=0

K−1X
k=0

x̂khiu
m−i
k =

K−1X
k=0

x̂ku
m
k

KX
i=0

hiu
−i
k| {z }

0

= 0.

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that h0 = 1, we obtain26666666664

sK−1 sK−2 · · · s0

sK sK−1 · · · s1

...
...

. . .
...

sL−1 sL−2 · · · sL−K

37777777775

0BBBBBBBBB@

h1

h2

...

hK

1CCCCCCCCCA
= −

0BBBBBBBBB@

sK

sK+1

...

sL

1CCCCCCCCCA
.

Solve the above system to find the coefficients of the annihilating filter.
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The Annihilating Filter Method

2. Given the coefficients {1, h1, h2, ..., hk}, we get the locations uk by finding
the roots of H(z).
3. Solve the first K equations in sm =

PK−1
k=0 x̂ku

m
k to find the amplitudes x̂k .

In matrix/vector form26666666664

1 1 · · · 1

u0 u1 · · · uK−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

37777777775

0BBBBBBBBB@

x̂0

x̂1

...

x̂K−1

1CCCCCCCCCA
=

0BBBBBBBBB@

s0

s1

...

sK−1

1CCCCCCCCCA
. (3)

Classic Vandermonde system. Unique solution for distinct uks.
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Sampling Streams of Diracs: Numerical Example
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Sampling Streams of Diracs: Sequential
Reconstruction
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Note on the proof

Linear vs Non-linear

I Problem is Non-linear in tk , but linear in xk given tk
I The key to the solution is the separability of the non-linear from the linear

problem using the annihilating filter.

The proof is based on a constructive algorithm:

1. Given the N samples yn, compute the moments sm using the exponential
reproduction formula. In matrix vector form S = CY .

2. Solve a K × K Toeplitz system to find H(z)

3. Find the roots of H(z)

4. Solve a K × K Vandermonde system to find the ak

Complexity

1. O(KN)

2. O(K2)

3. O(K3)

4. O(K2)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sparse Sampling: Extensions

Using variations of the annihilating filter methods other signals can be sampled
such as filtered streams of Diracs, multi-dimensional signals and piecewise
sinusoidal signals.
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Sampling Piecewise Sinusoidal Signals
[BerentDB:10]

We consider signals of the type:

x(t) =
DX

d=1

NX
n=1

Ad,n cos(ωd,nt + ϕd,n)ξd(t),

where
ξd(t) = u(t − td)− u(t − td+1) and −∞ < t1 < ... < td < ... < tD+1 <∞.
Why is it difficult to sample them?

I Piecewise sinusoidal signals contain innovation in both spectral and
temporal domains.

I They are not bandlimited.

I They are not sparse in time nor in a basis or a frame.

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



Sampling Piecewise Sinusoidal Signals

From the samples we can obtain the Laplace transform of x(t) at
αm = α0 + mλ, m = 0, 1, ..., L:

sm =
DX

d=1

2NX
n=1

Ād,n
[etd+1(jωd,n+αm) − etd (jωd,n+αm)]

(jωd,n + αm)
,

where Ād,n = Ad,ne
jϕd,n . We define the polynomial

Q(αm) =
DY

d=1

2NY
n=1

(jωd,n + αm) =
JX

j=0

rjα
j
m.
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Sampling Piecewise Sinusoidal Signals

Multiplying both side of the equation by Q(αm) we obtain:

Q(αm)sm =
DX

d=1

2NX
n=1

Ād,nP(αm)[etd+1(jωd,n+αm) − etd (jωd,n+αm)], (4)

where P(αm) is a polynomial. Since αm = α0 + λm the right-hand side of (4)
can be annihilated:

Q(αm)sm ∗ hm = 0.
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Sampling Piecewise Sinusoidal Signals

In matrix/vector form (assuming h0 = 1), we have:

266666666664

sK · · · αJ
K sK · · · s0 · · · αJ

0s0

sK+1 · · · αJ
K+1sK+1 · · · s0 · · · αJ

1s1

...
...

. . .
...

sL · · · αJ
LsL · · · s0 · · · αJ

(L−K)
s(L−K)

377777777775

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

r0

...

rJ

h1r0

h1r1

...

hK rJ

...hK rK

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

= 0.
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Sampling Piecewise Sinusoidal Signals

I From the coefficients rj , j = 0, 1, ...J, we obtain Q(αm).

I The roots of the filter H(z) and of the polynomial Q(αm) give the
locations of the switching points and the frequencies of the sine
waves respectively.

I To solve the system we need L ≥ 4D3N2 + 4D2N2 + 4D2N + 6DN.
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Numerical Example
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Sampling 2-D domains

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
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obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:
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total number of non-zero pixels in error image

total number of pixels along curve Γ
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N
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Robust Sparse Sampling
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I The measurements are noisy

I The noise is additive and i.i.d. Gaussian
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Robust Sparse Sampling

In the presence of noise, the annihilation equation

SH = 0

is only approximately satisfied.
Minimize: ‖SH‖2 under the constraint ‖H‖2 = 1.
This is achieved by performing an SVD of S:

S = UλVT.

Then H is the last column of V.
Notice: this is similar to Pisarenko’s method in spectral estimation.
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Robust Sparse Sampling: Cadzow’s algorithm

For small SNR use Cadzow’s method to denoise S before applying TLS.
The basic intuition behind this method is that, in the noiseless case, S is
rank deficient (rank K ) and Toeplitz, while in the noisy case S is full rank.
Algorithm:

I SVD of S = UλVT.

I Keep the K largest diagonal coefficients of λ and set the others to
zero.

I Reconstruct S′ = Uλ′VT.

I This matrix is not Toeplitz, make it so by averaging along the
diagonals.

I Iterate.
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Robust Sparse Sampling: Best Kernel

The exponential reproducing kernel has the following form

ϕ(t) = γ(t) ∗ β~α(t).

How should we choose γ(t) and αm, m = 0, 1, ..., L so as to minimize the
effect of noise?
In the noiseless case:

S = CY .

When additive noise is present

Ŝ = CY + Cε.

Here C is the L× N matrix of the exponential reproducing coefficients
cm,n.
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Robust Sparse Sampling: Best Kernel (cont’d)

I When εn is i.i.d., we want the rows of C to be orthonormal.

I Since cm,n = cm,0e
αmn, orthogonality is achieved by choosing

αm = j2πm/N.

I Orthonormality requires |cm,0| = 1, this is achieved by imposing
|γ̂(2πm/N)β̂~α(2πm/N)| = 1, m = 0, 1, ..., L.

I We choose γ(t) to be polynomial in the frequency domain:
γ̂(ω) =

PL−1
i=0 diω

i . Thus the coefficients di are chosen so that the

polynomial γ̂(ω) interpolates the points (j2πm/N, β̂~α(2πm/N)−1).
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Examples of Best E-Splines
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Examples of Best Kernels

for m � 0, 1, . . . , P , where ˆ̃ϕpωq is the Fourier transform of the dual
of ϕptq. Therefore, orthonormality is achieved when���� ˆ̃ϕ

�
2πm

N


���� � 1, m � 0, 1, . . . , P. (15)

Since any exponential reproducing kernel ϕptq can be written as
ϕptq � γptq 
 β~αP ptq, we have that ϕ̂pωq � γ̂pωqβ̂~αP pωq. For the
particular case that we are considering, the Fourier transform of β~αP ptq
is given by

β̂~αP pωq �
P¹

m�0

e�j
ω�ωm

2 sinc
�ω � ωm

2

	
, (16)

where the E-Spline parameters satisfy αm � jωm � j 2πm
N

. More-
over, it is well known (e.g. [9]) that the Fourier transforms of ϕptq and
of its dual ϕ̃ptq are related as follows:

ˆ̃ϕpωq �
ϕ̂pωq°

kPZ |ϕ̂pω � 2πkq|2
, (17)

which reveals that
ˆ̃ϕpωmq �

ϕ̂pωmq

|ϕ̂pωmq|2
. (18)

Here we have used the fact that β̂~αP pωm � 2πkq � 0 for k P Z and
k � 0 (see equation (16)). We thus conclude that it is possible to solve
the original problem in (15) by just imposing

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � 1

ô |γ̂pωmq| � |β̂~αP pωmq|
�1. (19)

Among all the admissible kernels satisfying (19), we are interested
in the kernel with the shortest support. We therefore consider the ker-
nels given by a linear combination of various derivatives of the original
E-Spline β~αP ptq, i.e.:

ϕptq �
P�1̧

i�0

diβ
piq
~αP
ptq, (20)

where βpiq~αP ptq is the ith derivative of β~αP ptq, β
p0q
~αP
ptq � β~αP ptq, and

di is a set of coefficients. This is like saying that γptq is a distribu-
tion. These kernels are clearly still able to reproduce the exponentials
and are a variation of the maximal-order minimal-support kernels in-
troduced in [10, 11]. The advantage of this formulation is twofold:
first the modified kernel ϕptq is of minimum support P � 1, the same
as that of β~αP ptq; second we only need to find the coefficients di to
satisfy (19).

Using the Fourier transform of (20), which is given by:

ϕ̂pωq � β̂~αP pωq
P�1̧

i�0

dipjωq
i, (21)

we realise that we can satisfy (19) by choosing the coefficients di so
that the resulting polynomial γ̂pωq �

°
i dipjωq

i interpolates the set
of points (ωm, |β̂~αP pωmq|

�1q for m � 0, 1, . . . , P .
One last consideration is in order here. When jωm � j 2πm

N
, m �

0, 1, . . . , P , the resulting E-Spline and modified kernels are complex-
valued functions. This can be avoided by choosing

jωm �

#
j 2π
N
p2m� P q when P is odd

j 2π
N

2m�P
2

, when P is even
(22)

for m � 0, 1, . . . , P . The conditions derived throughout the section
are still valid for the new choices of parameters αm. To conclude, in
Figure 1 we present some of the kernels obtained by the above proce-
dure.
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Fig. 1. Examples of modified E-Splines. These are four of the 30 pos-
sible functions with support P � 1 (indicated -o-) and N � 31 sam-
ples. The first one is identical to the original E-Spline of order P � 1.
The last one is exactly one period of the Dirichlet kernel of period
P � 1 � N seconds.

4. THE SOS: A MODIFIED E-SPLINE

Following the E-Spline modification presented in the previous section,
we are now going to show that the family of Sum of Sincs (SoS) kernels
introduced in [6] is a particular instance of exponential reproducing
kernels. We restrict our analysis to P being even and the number of
samples equal to N � P � 1. A similar development applies when P
is odd with N � 2pP � 1q.

Let us consider the kernel ϕ1ptq � ϕ
�
t� P�1

2

�
, centred in zero,

with ϕptq � γptq 
 β~αP ptq, where β~αP ptq is defined to have Fourier
transform (16). We relax condition (19) and now we allow

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � bm. (23)

The next step is to use the periodic extension of ϕ1ptq, which can
be written as follows:

bptq �
¸
lPZ
ϕ1pt� lNq �

1

P � 1

¸
kPZ

ϕ̂1
�

2πk

P � 1



e

2πk
P�1 t, (24)

where the last term follows from the application of Poisson summation
formula, and N � P � 1.

Now, note that the Fourier transform of the shifted kernel can be
written using (16) as:

ϕ̂1pωq � γpωq
P¹

m�0

sinc
�ω � ωm

2

	
. (25)

In (24) the Fourier transform ϕ̂1pωq is evaluated at ωk � 2πk
P�1

.
If we use (22) for P even then we have ωk � ωm for K � tk :
k � 2m�P

2
,m � 0, . . . , P u. We have designed the filter γpωq so

that (23) holds. As a consequence, whenever k P K, it follows that
ϕ̂1pωkq � bk. In contrast, for any k R K, we have that ϕ̂1pωkq � 0
because we can find a term in the product of (25) equal to sincp`πq
with ` P Z. Therefore, equation (24) can be reduced to:

bptq �
1

P � 1

P
2̧

k��P2

bke
2πk
P�1 t. (26)

for m � 0, 1, . . . , P , where ˆ̃ϕpωq is the Fourier transform of the dual
of ϕptq. Therefore, orthonormality is achieved when���� ˆ̃ϕ
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2πm

N


���� � 1, m � 0, 1, . . . , P. (15)
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is given by
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. More-
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of its dual ϕ̃ptq are related as follows:
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, (17)

which reveals that
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ϕ̂pωmq

|ϕ̂pωmq|2
. (18)

Here we have used the fact that β̂~αP pωm � 2πkq � 0 for k P Z and
k � 0 (see equation (16)). We thus conclude that it is possible to solve
the original problem in (15) by just imposing

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � 1

ô |γ̂pωmq| � |β̂~αP pωmq|
�1. (19)

Among all the admissible kernels satisfying (19), we are interested
in the kernel with the shortest support. We therefore consider the ker-
nels given by a linear combination of various derivatives of the original
E-Spline β~αP ptq, i.e.:

ϕptq �
P�1̧

i�0

diβ
piq
~αP
ptq, (20)

where βpiq~αP ptq is the ith derivative of β~αP ptq, β
p0q
~αP
ptq � β~αP ptq, and

di is a set of coefficients. This is like saying that γptq is a distribu-
tion. These kernels are clearly still able to reproduce the exponentials
and are a variation of the maximal-order minimal-support kernels in-
troduced in [10, 11]. The advantage of this formulation is twofold:
first the modified kernel ϕptq is of minimum support P � 1, the same
as that of β~αP ptq; second we only need to find the coefficients di to
satisfy (19).

Using the Fourier transform of (20), which is given by:

ϕ̂pωq � β̂~αP pωq
P�1̧

i�0

dipjωq
i, (21)

we realise that we can satisfy (19) by choosing the coefficients di so
that the resulting polynomial γ̂pωq �

°
i dipjωq

i interpolates the set
of points (ωm, |β̂~αP pωmq|

�1q for m � 0, 1, . . . , P .
One last consideration is in order here. When jωm � j 2πm

N
, m �

0, 1, . . . , P , the resulting E-Spline and modified kernels are complex-
valued functions. This can be avoided by choosing

jωm �

#
j 2π
N
p2m� P q when P is odd

j 2π
N

2m�P
2

, when P is even
(22)

for m � 0, 1, . . . , P . The conditions derived throughout the section
are still valid for the new choices of parameters αm. To conclude, in
Figure 1 we present some of the kernels obtained by the above proce-
dure.
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sible functions with support P � 1 (indicated -o-) and N � 31 sam-
ples. The first one is identical to the original E-Spline of order P � 1.
The last one is exactly one period of the Dirichlet kernel of period
P � 1 � N seconds.

4. THE SOS: A MODIFIED E-SPLINE

Following the E-Spline modification presented in the previous section,
we are now going to show that the family of Sum of Sincs (SoS) kernels
introduced in [6] is a particular instance of exponential reproducing
kernels. We restrict our analysis to P being even and the number of
samples equal to N � P � 1. A similar development applies when P
is odd with N � 2pP � 1q.

Let us consider the kernel ϕ1ptq � ϕ
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, centred in zero,

with ϕptq � γptq 
 β~αP ptq, where β~αP ptq is defined to have Fourier
transform (16). We relax condition (19) and now we allow

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � bm. (23)

The next step is to use the periodic extension of ϕ1ptq, which can
be written as follows:
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where the last term follows from the application of Poisson summation
formula, and N � P � 1.

Now, note that the Fourier transform of the shifted kernel can be
written using (16) as:

ϕ̂1pωq � γpωq
P¹

m�0

sinc
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. (25)

In (24) the Fourier transform ϕ̂1pωq is evaluated at ωk � 2πk
P�1

.
If we use (22) for P even then we have ωk � ωm for K � tk :
k � 2m�P

2
,m � 0, . . . , P u. We have designed the filter γpωq so

that (23) holds. As a consequence, whenever k P K, it follows that
ϕ̂1pωkq � bk. In contrast, for any k R K, we have that ϕ̂1pωkq � 0
because we can find a term in the product of (25) equal to sincp`πq
with ` P Z. Therefore, equation (24) can be reduced to:
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Since any exponential reproducing kernel ϕptq can be written as
ϕptq � γptq 
 β~αP ptq, we have that ϕ̂pωq � γ̂pωqβ̂~αP pωq. For the
particular case that we are considering, the Fourier transform of β~αP ptq
is given by
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where the E-Spline parameters satisfy αm � jωm � j 2πm
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Here we have used the fact that β̂~αP pωm � 2πkq � 0 for k P Z and
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for m � 0, 1, . . . , P . The conditions derived throughout the section
are still valid for the new choices of parameters αm. To conclude, in
Figure 1 we present some of the kernels obtained by the above proce-
dure.
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Fig. 1. Examples of modified E-Splines. These are four of the 30 pos-
sible functions with support P � 1 (indicated -o-) and N � 31 sam-
ples. The first one is identical to the original E-Spline of order P � 1.
The last one is exactly one period of the Dirichlet kernel of period
P � 1 � N seconds.

4. THE SOS: A MODIFIED E-SPLINE

Following the E-Spline modification presented in the previous section,
we are now going to show that the family of Sum of Sincs (SoS) kernels
introduced in [6] is a particular instance of exponential reproducing
kernels. We restrict our analysis to P being even and the number of
samples equal to N � P � 1. A similar development applies when P
is odd with N � 2pP � 1q.

Let us consider the kernel ϕ1ptq � ϕ
�
t� P�1

2

�
, centred in zero,

with ϕptq � γptq 
 β~αP ptq, where β~αP ptq is defined to have Fourier
transform (16). We relax condition (19) and now we allow

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � bm. (23)

The next step is to use the periodic extension of ϕ1ptq, which can
be written as follows:

bptq �
¸
lPZ
ϕ1pt� lNq �

1

P � 1

¸
kPZ

ϕ̂1
�

2πk

P � 1



e

2πk
P�1 t, (24)

where the last term follows from the application of Poisson summation
formula, and N � P � 1.

Now, note that the Fourier transform of the shifted kernel can be
written using (16) as:

ϕ̂1pωq � γpωq
P¹

m�0

sinc
�ω � ωm

2

	
. (25)

In (24) the Fourier transform ϕ̂1pωq is evaluated at ωk � 2πk
P�1

.
If we use (22) for P even then we have ωk � ωm for K � tk :
k � 2m�P

2
,m � 0, . . . , P u. We have designed the filter γpωq so

that (23) holds. As a consequence, whenever k P K, it follows that
ϕ̂1pωkq � bk. In contrast, for any k R K, we have that ϕ̂1pωkq � 0
because we can find a term in the product of (25) equal to sincp`πq
with ` P Z. Therefore, equation (24) can be reduced to:

bptq �
1

P � 1

P
2̧

k��P2

bke
2πk
P�1 t. (26)

for m � 0, 1, . . . , P , where ˆ̃ϕpωq is the Fourier transform of the dual
of ϕptq. Therefore, orthonormality is achieved when���� ˆ̃ϕ

�
2πm

N


���� � 1, m � 0, 1, . . . , P. (15)

Since any exponential reproducing kernel ϕptq can be written as
ϕptq � γptq 
 β~αP ptq, we have that ϕ̂pωq � γ̂pωqβ̂~αP pωq. For the
particular case that we are considering, the Fourier transform of β~αP ptq
is given by

β̂~αP pωq �
P¹

m�0

e�j
ω�ωm

2 sinc
�ω � ωm

2

	
, (16)

where the E-Spline parameters satisfy αm � jωm � j 2πm
N

. More-
over, it is well known (e.g. [9]) that the Fourier transforms of ϕptq and
of its dual ϕ̃ptq are related as follows:

ˆ̃ϕpωq �
ϕ̂pωq°

kPZ |ϕ̂pω � 2πkq|2
, (17)

which reveals that
ˆ̃ϕpωmq �

ϕ̂pωmq

|ϕ̂pωmq|2
. (18)

Here we have used the fact that β̂~αP pωm � 2πkq � 0 for k P Z and
k � 0 (see equation (16)). We thus conclude that it is possible to solve
the original problem in (15) by just imposing

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � 1

ô |γ̂pωmq| � |β̂~αP pωmq|
�1. (19)

Among all the admissible kernels satisfying (19), we are interested
in the kernel with the shortest support. We therefore consider the ker-
nels given by a linear combination of various derivatives of the original
E-Spline β~αP ptq, i.e.:

ϕptq �
P�1̧

i�0

diβ
piq
~αP
ptq, (20)

where βpiq~αP ptq is the ith derivative of β~αP ptq, β
p0q
~αP
ptq � β~αP ptq, and

di is a set of coefficients. This is like saying that γptq is a distribu-
tion. These kernels are clearly still able to reproduce the exponentials
and are a variation of the maximal-order minimal-support kernels in-
troduced in [10, 11]. The advantage of this formulation is twofold:
first the modified kernel ϕptq is of minimum support P � 1, the same
as that of β~αP ptq; second we only need to find the coefficients di to
satisfy (19).

Using the Fourier transform of (20), which is given by:

ϕ̂pωq � β̂~αP pωq
P�1̧

i�0

dipjωq
i, (21)

we realise that we can satisfy (19) by choosing the coefficients di so
that the resulting polynomial γ̂pωq �

°
i dipjωq

i interpolates the set
of points (ωm, |β̂~αP pωmq|

�1q for m � 0, 1, . . . , P .
One last consideration is in order here. When jωm � j 2πm

N
, m �

0, 1, . . . , P , the resulting E-Spline and modified kernels are complex-
valued functions. This can be avoided by choosing

jωm �

#
j 2π
N
p2m� P q when P is odd

j 2π
N

2m�P
2

, when P is even
(22)

for m � 0, 1, . . . , P . The conditions derived throughout the section
are still valid for the new choices of parameters αm. To conclude, in
Figure 1 we present some of the kernels obtained by the above proce-
dure.
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Fig. 1. Examples of modified E-Splines. These are four of the 30 pos-
sible functions with support P � 1 (indicated -o-) and N � 31 sam-
ples. The first one is identical to the original E-Spline of order P � 1.
The last one is exactly one period of the Dirichlet kernel of period
P � 1 � N seconds.

4. THE SOS: A MODIFIED E-SPLINE

Following the E-Spline modification presented in the previous section,
we are now going to show that the family of Sum of Sincs (SoS) kernels
introduced in [6] is a particular instance of exponential reproducing
kernels. We restrict our analysis to P being even and the number of
samples equal to N � P � 1. A similar development applies when P
is odd with N � 2pP � 1q.

Let us consider the kernel ϕ1ptq � ϕ
�
t� P�1

2

�
, centred in zero,

with ϕptq � γptq 
 β~αP ptq, where β~αP ptq is defined to have Fourier
transform (16). We relax condition (19) and now we allow

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � bm. (23)

The next step is to use the periodic extension of ϕ1ptq, which can
be written as follows:

bptq �
¸
lPZ
ϕ1pt� lNq �

1

P � 1

¸
kPZ

ϕ̂1
�

2πk

P � 1



e

2πk
P�1 t, (24)

where the last term follows from the application of Poisson summation
formula, and N � P � 1.

Now, note that the Fourier transform of the shifted kernel can be
written using (16) as:

ϕ̂1pωq � γpωq
P¹

m�0

sinc
�ω � ωm

2

	
. (25)

In (24) the Fourier transform ϕ̂1pωq is evaluated at ωk � 2πk
P�1

.
If we use (22) for P even then we have ωk � ωm for K � tk :
k � 2m�P

2
,m � 0, . . . , P u. We have designed the filter γpωq so

that (23) holds. As a consequence, whenever k P K, it follows that
ϕ̂1pωkq � bk. In contrast, for any k R K, we have that ϕ̂1pωkq � 0
because we can find a term in the product of (25) equal to sincp`πq
with ` P Z. Therefore, equation (24) can be reduced to:

bptq �
1

P � 1

P
2̧

k��P2

bke
2πk
P�1 t. (26)

(c) L = 14 (d) L = 31
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Performance of different Kernels

If, now, we consider just one period of (26) and we use t � x
T

, we get
precisely the time domain definition of the SoS kernel:

b
� x
T

	
� gpxq � rect

�x
τ

	 1

N

¸
kPK

bke
2πk
τ
x. (27)

To conclude, note that when the values bk � 1,@k, then equation
(26) reduces to the Dirichlet kernel of period N � P � 1. This is
an example of the modified E-Spline kernels with orthonormal rows of
coefficients, and is therefore the SoS kernel most robust against noise.

5. SIMULATIONS

We have implemented the denoising approaches explained in Section 3
to retrieve K � 2 properly spaced Diracs. The input xptq is a τ -
periodic stream of Diracs, where τ � 1 second. The samples provided
by an exponential reproducing kernel are corrupted by additive white
Gaussian noise (AWGN). We have added the noisy samples to the ideal
measurements, calculating the variance of the noise according to the
desired signal-to-noise ratio (SNR) we want to test1.

The results, shown in Figure 2, are the average over 1000 reali-
sations. The first two curves correspond to an E-spline with αm �
j 2π

50
p2m�P q of order P � 13 using Cadzow algorithm (denoted ‘C’)

and the modified Cadzow (‘MC’)). The last two curves are of a modi-
fied E-spline (‘ME’) with the correct exponents αm � j 2π

N
p2m� P q

and orders P � 13, 30, for which we use Cadzow. Note that the high-
est order modified E-Spline is the Dirichelet function. Here we use
N � 31 samples and m � 0, . . . , P . The kernels are, thus, real.

The results reveal, as expected, that the modified E-Spline kernels
have a better performance than the original E-Splines. Their perfor-
mance improves constantly as the order P increases. The modified
Cadzow algorithm beats the best performance of the original algorithm
(with P � 13), even though more marginally than the modified ker-
nels. For lower orders of P the improvement is even smaller. It is
interesting to see, however, that the difference becomes a bit more sig-
nificant for low SNR levels (under 5dB). In addition, and in contrast to
the modified kernels, if we use pure E-splines there is an optimum or-
der from which the performance declines. In Figure 2 we have plotted
the best order (P � 13) for both denoising methods.
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Fig. 2. Retrieval of K � 2 Diracs in the presence of noise. The
continuous line, dashed line and dash-dotted line are the performances
of the original E-Spline kernel with Cadzow algorithm (d), with the
new Cadzow (dm) and of the modified E-Spline (n) respectively.

1We use SNR �
}y}22
Nσ2 .

6. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed the exponential reproducing kernels
used to sample signals with Finite Rate of Innovation (FRI). We have
also considered the noisy scenario for the same type of kernels. Our
contribution is that we have adapted the denoising methods of [5] to
the case of exponential reproducing kernels. In addition, we have pre-
sented a methodology to design exponential reproducing kernels that
are the most resilient to noise. We have also connected the family of
Sum of Sincs (SoS) kernels presented in [6] with that of exponential
reproducing kernels.

Future work will consider the subspace perspective of the denois-
ing algorithms presented in this paper more in depth. There exist al-
ternatives to the Total Least Squares solution and Cadzow’s iterative
algorithm, as well as other approaches, which are relevant for further
development.
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Here, K = 2 and we measure the error in the retrieval of the location of the

Diracs.
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Robust Sparse Sampling

I Samples are corrupted by additive noise.

I This is a parametric estimation problem.

I Unbiased algorithms have a covariance matrix lower bounded by CRB.

I The proposed algorithm reaches CRB down to SNR of 5dB.
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Robust Sparse Sampling
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Robust Sparse Sampling

Piecewise sinusoidal signal
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Fig. 8. Retrieval of the switching point of a step sine (ω1 = 12.23π [1/sec] and t1 = 0.4907 [sec]) in 128 noisy samples. (a)

Scatter plot of the estimated location. (b) Standard deviation (averages over 1000 iterations) of the location retrieval compared

to the Cramér-Rao bound.

C. Performance evaluation

It is of interest here to evaluate the performance of the reconstruction algorithm in the presence of

different noise levels. Therefore, we consider the Cramér-Rao bound that provides an answer to the

best possible performance of an unbiased estimator. The derivation of the Cramér-Rao bound in the

case of additive white Gaussian noise is presented in Appendix A. In this experiment, the acquisition

device observes 128 noisy samples with T = 1/128 [sec] of a truncated sine wave with frequency

ω1 = 12.23π [rad/sec] and switching points t1 = 0.4907 [sec] and t2 = 1 [sec]. Since we assume

that the switching points are sufficiently far apart, their locations can be estimated independently. We

therefore show the results only for the first discontinuity. The frequency of the sine wave is estimated using

Matlab’s rootmusic function and the location of the switching point is estimated using a four phase

approach and additional hard thresholding. Note that we have also experimented with other frequency

estimation methods as well as using the ground truth frequency. Similar results are obtained in all cases.

Figure 8(a) shows the scatter plot for the reconstruction of the switching point t1 for different SNR

levels. The standard deviation of the error (averages over 1000 iterations) of the location retrieval is

shown in Figure 8(b). These simulations show that the proposed reconstruction algorithm behaves well

down to noise levels of about 7 [dB]. Figure 9 illustrates an example of the recovery of a continuous-
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Robust Sparse Sampling
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Fig. 9. Recovery of a truncated sine wave at SNR = 8 [dB]. (a) The observed noisy samples. (b) The reconstructed signal

along with the ground truth signal (dashed).

time piecewise sinusoidal signal (with t1 = 0.2441 [sec], t2 = 0.7324 [sec] and ω1 = 12.23π [rad/sec])

given 128 noisy samples at an SNR of 8 [dB]. Note that despite the small error in the estimation of the

frequency of the sine wave, the estimation of the switching points are accurate.

VIII. CONCLUSION

We have set out to show that piecewise sinusoids belong to the family of signals with finite rate

of innovation and can be sampled and perfectly reconstructed using sampling kernels that reproduce

exponentials or polynomials. These classes of kernels are physically realizable and are of compact support.

Moreover, combinations of piecewise sinusoids and polynomials also have a finite rate of innovation and

can be dealt with using similar sampling schemes. This combination gives rise to a very general type of

signal.

Since the sampling scheme is limited by the rate of innovation rather than the actual frequency

of the continuous-time signal, we are, in theory, capable of retrieving piecewise sine waves with an

arbitrarily high frequency along with the exact location of the switching points. We believe therefore that

the sampling scheme presented may find applications, for example, in spread spectrum and wide band

communications.

Finally, we studied the effect of noise on the performance of the estimation of the switching points. In

doing so, we derived a polyphase reconstruction algorithm that together with hard thresholding behaves

well with respect to the Cramér-Rao bounds down to SNRs of 7 [dB].
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Comparison with Compressed Sensing

Both use a sparsity prior and a non-linear reconstruction.
Sampling of Signal with Finite Rate of Innovation
+ Continuous or discrete, infinite or finite dimensional
+ Retrieval of the support of x separate from the retrieval of the coefficients.
+ Close to “real” sampling, deterministic
− Not universal, designer matrices
Compressed sensing
+ Universal
± Probabilistic, can be complex

− Discrete, redundant
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Compression

I FRI Signals can be sparsely sampled. Can they also be compressed? What
happens when the samples are quantized?

I Traditional Compression is based on complex encoders and simple
decoders.

I New sampling theories are characterized by a linear acquisition but
non-linear reconstruction.
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Compression

Signals are piecewise smooth, with α-Lipschitz regular pieces. Traditional
compression algorithms use the wavelet transform and compress only the large
wavelet coefficients. They achieve the optimal D(R) performance:

D(R) ∼ R−2α

IEEE TRANSACTIONS ON SIGNAL PROCESSING 6
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Fig. 1. (a) A piecewise smooth function f(t) = fp(t) + fα(t); (b) the piecewise polynomial function fp(t); (c) the smooth

α-Lipschitz function fα(t); (d) coefficients of f(t); (e) coefficients of fp(t); (f) coefficients of fα(t). Note that, the boxes

represent the cone of influence of discontinuities as denoted by the index set Ip.

A. Semi-Parametric Compression Strategy

Consider a piecewise smooth function f(t) given by the signal model in (2). Intuitively, one can recover

f(t) by reconstructing fp(t) and fα(t) separately. Since fα(t) is uniformly α-Lipschitz, a compression

method based on the linear approximation shown in (5) can be used to compress fα(t) with D(R) ∼
R−2α. On the other hand, fp(t) can be uniquely determined by a finite set of parameters. Hence, we can

reconstruct fp(t) by estimating the locations ti and the polynomial coefficients ar,k, which is a parametric

estimation problem.

First, consider the wavelet decomposition of f(t) as shown in (4) where we assume that the wavelet has

at least bα+1c vanishing moments. We denote with Ip a set of indices such that Ip = {(j, n) ∈ Z : |〈fp(t), ψj,n(t)〉| > 0}.

In other words, the coefficients {dj,n}(j,n)∈Ip
are in the cone of influence of discontinuities found in fp(t).

On the other hand, the coefficients in {dj,n}(j,n)/∈Ip
are outside the cone of influence and the wavelet

coefficients decay as dj,n ∼ 2j(α+1/2) This is illustrated in Fig. 1.
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Performance Analysis

I The proposed algorithm compresses and transmits only the low-pass
coefficients of the wavelet transform (linear approximation-based
encoding), but uses FRI techniques to estimate the discontinuities in the
signal from the low-pass coefficients (non-linear decoding).

I Any piecewise smooth signals can be decomposed into a piecewise
polynomial and a globally smooth signal.

I The low-pass coefficients are a sufficient representation of the piecewise
polynomial signal, but quantization and the smooth signal act as noise
and this reduces the reconstruction fidelity.

I We treat both contributions as additive noise and evaluate the CR-bounds
for this estimation problem. The quantization noise depends on the
bit-rate R. This leads to a connection between CR-Bounds and
rate-distortion analysis and leads to this performance bound
[ChaisinthopD:11]:

DFRI (R) ∼ R−2α.
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Simulation Results
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Application: Image Super-Resolution

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512× 512) (b) Low-res. (64× 64) (c) Super-res ( PSNR=24.2dB)

I Forty low-resolution and shifted versions of the original.

I The disparity between images has a finite rate of innovation and can be retrieved.

I Accurate registration is achieved by retrieving the continuous moments of the
‘Tiger’ from the samples.

I The registered images are interpolated to achieve super-resolution.
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Application: Image Super-Resolution

Image super-resolution basic building blocks

Restoration
Super-resolved

image

Set of low-resolution images Image Registration HR grid estimation

LR image 0
...

LR image k
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Application: Image Super-Resolution

I For each blurred image I (x , y):

I A pixel Pm,n in the blurred image is given by

Pm,n = 〈I (x , y), ϕ(x/T − n, y/T −m)〉,
where ϕ(t) represents the point spread function of the lens.

I We assume ϕ(t) is a spline that can reproduce polynomials:X
n

X
m

c (l,j)
m,n ϕ(x − n, y −m) = x ly j l = 0, 1, ...,N; j = 0, 1, ...,N.

I We retrieve the exact moments of I (x , y) from Pm,n:

τl,j =
X

n

X
m

c (l,j)
m,n Pm,n =

Z Z
I (x , y)x ly jdxdy .

I Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.
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Application: Image Super-Resolution
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Application: Image Super-Resolution

(a)Original (128× 128) (b) Super-res (1024× 1024)
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Application: Image Super-Resolution

(a)Original (48× 48) (b) Super-res (480× 480)
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Conclusions

Sampling signals at their rate of innovation:

I New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

I Robust and fast algorithms with complexity proportional to the number of
degrees of freedom.

I Provable optimality (i.e. CRB achieved over wide SNR ranges).

I Intriguing connections with multi-resolution analysis, Fourier theory and
analogue circuit theory.

But also

I There is no such thing as a free lunch. Core application is difficult.

I Still many open questions from theory to practice.
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