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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

X ho=g-vr | O 7T< Yi=<X(O.(UT-n)>

Acquisition Device

Natural questions:
» When is there a one-to-one mapping between x(t) and y,?
> What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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Problem Statement

i

Observed
scene

Samples

Acquisition
System
» The low-quality lens blurs the images.
> The images are under-sampled by the low resolution CCD array.

> You need a good post-processing algorithm to undo the blurring and
upsample the images.
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Classical Sampling Formulation

> Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{p(t/T — n)}rez.

> If x(t) € V, perfect reconstruction is possible.
> Reconstruction process is linear: X(t) = > yap(t/T — n).
> For bandlimited signals ¢(t) = sinc(t).

T A
W) 0 My — o) | X(0)
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Signals with Finite Rate of Innovation

> The signal x(t) =", ya(t/T — n) is exactly specified by one parameter
yn every T seconds, x(t) has a finite number p = 1/T of degrees of
freedom per unit of time.

» In the classical formulation, innovation is uniform. How about signals

where the rate of innovation is finite but non-uniform? E.g.

> Piecewise sinusoidal signals (Frequency Hopping modulation)
> Pulse position modulation (UWB)
> Edges in images
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) = 3 yep(t — ). (1)

keZ

The rate of innovation of x(t) is then defined as
1 T T
~im e (1), )
P07 22 )
where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal
whose parametric representation is given in (1) and with a finite p as defined

in (2).
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Signals with Finite Rate of Innovation

FRI signals include:

» Bandlimited signals and signals belonging to shift-invariant
subspaces.

> K-sparse discrete signals (like in Compressed Sensing).

» Signals with point-like innovation, (point source phenomena),

piecewise sinusoidal signals (OFDM, FH), filtered Diracs (UWB,
Neuronal signals).

Pier Luigi Dragotti
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Signals with Finite Rate of Innovation

Here, x1(t) and x2(t) have the same rate of innovation. However, one discontinuity
and no sampling theorems ;-)

X,(@)
™~
t
XY e Xy(w)
N N
t t
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Examples of Signals with Finite Rate of Innovation

Filtered Streams of Diracs  Piecewise Polynomial Signals

Piecewise Sinusoidal Signals Mondrian paintings ;-)
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The Sampling Kernel

2O ] = gevn) y® 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ————
Jjw —
Notice:
» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eselne b, spline when a = 0.
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Kernels Reproducing Exponentials

The E-spline of first order Bq,(t) reproduces the exponential e®0t:
Z €0,nfBaq (t — n) = e0F.
n

In this case cp,, = €*0". In general, cm n = cm,0€*™".

Models: Theory and Applications
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Kernels Reproducing Exponentials

i
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Here the E-spline is of second order and reproduces the exponential et e®1t: with
ag = —0.06 and a1 = 0.5.
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Examples of E-Splines Kernels
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E-Splines and B-splines

When am =0, m=0,1,...,L. The E-spline reduce to the classical B-spline and is
then able to reproduce polynomials up to degree L. Notice that any scaling function in
wavelet theory is given by y(t) * B.(t) and is therefore included in this definition.

Bozt) ﬂlEt)

Ba(2) Ba(t)

Pier Luig i
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E-Splines and B-splines

The E-spline reduces to the classical cubic B-spline when ap;, =0, m=0,1,...,L and
L = 3. In this case it can reproduce polynomials up to degree L = 3.

c,n=(-3,-2,-1,0,1,2,3)

Pier Luigi Dragotti
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Kernel Reproducing Exponential

Any functions with rational Fourier transform:

~ _ [1;(w — b;) _
P(w) = m m=0,1,...,L.

is a generalized E-splines. This includes practical devices as common as an RC circuit:

R

+o—m S\ /\/\—m——a———o+

x(t)y I [¢]

=
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Sparse Sampling: Basic Set-up

» Assume the sampling period T = 1.
> Consider any x(t) with t € [0, N).

> Assume the sampling kernel ¢(t) is any function that can reproduce
exponentials of the form

Zcm,nga(tfn):ea’"t m=0,1,..., L,

> We want to retrieve x(t), from the samples y, = (x(t), o(t — n)),
n=0,1,..,N—1.
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Sparse Sampling: Basic Set-up
We have that

N—1
Sm = 2in—o Cmn¥n

= (x(t), 00 Cmn(t — n))
= [T _x(t)e*ntdt, m=0,1,..,L

> sp is the bilateral Laplace transform of x(t) evaluated at ap,.

» When ap, = jwn, then s, = %(wm) where %(w) is the Fourier
transform of x(t).

» When ap, =0, the s,,'s are the polynomial moments of x(t).

Pier Luigi D
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S5 g xib(t — ti)), ti € [0, N).
We restrict oy =g+ mA  m=0,1,....,L and L>2K —1.

v

» We have N samples: y, = (x(t),¢(t — n)), n=10,1,..N — 1:
> We obtain
Smo = Yoo CmnYn
= [7_ x(t)e*ntdt,
= sz_Ol Xy @m

Pier Luigi D
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The Annihilating Filter Method

» The quantity

is a sum of exponentials.

» We can retrieve the locations u, and the amplitudes X, with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

» Given the pairs {uk, R}, then tx = (Inuk)/X and xx = X, /e“0t.

Pier Luigi D
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The Annihilating Filter Method

1. Call hn the filter with z-transform H(z) = Z,K:O hiz7l = ]_[,’5;01(1 —uz™h).
We have that

K K K-1 K—1 K
hm * Sm — E h,'Smf,' = E Akh,-u,'("f' = E )?ku;r(n E h,-u,:' =0.
i=0 i=0 k=0 k=0 i=0
———
0

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that hy = 1, we obtain

SK—1 SK—2 “-* S0 hy SK
Sk SK—1 - s1 h2 SK+1
SL—1 SL—2 ' SL-K hk st

agotti
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The Annihilating Filter Method

2. Given the coefficients {1, h1, ha, ..., he }, we get the locations uy by finding
the roots of H(z).

3. Solve the first K equations in s, = ZkK:_Ol Xkug' to find the amplitudes X«.
In matrix/vector form

M 1 1 e 1 ] )?0 S0
to ur o UK—1 X1 s1
= 3)
K—-1 K-1 K—1 ~
L Up up e Ug 1 | XK—1 SK—1

agotti
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Sampling Streams of Diracs: Numerical Example

02 0

(a) Original Signal (b

Sampling Kernel (87(t

0z 0a

(c) Samples (d) Reconstructed Signal

~
~

)
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Sampling Streams of Diracs: Sequential

Reconstruction

(a) aridgir;alﬁs{bgngl ” (b) Sampllng Kernel (57(t))

B LR ‘ -
T e

(c) Samples (d) Reconstructed Signal
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Note on the proof

Linear vs Non-linear
» Problem is Non-linear in t,, but linear in x, given t,
» The key to the solution is the separability of the non-linear from the linear
problem using the annihilating filter.
The proof is based on a constructive algorithm:
1. Given the N samples y,, compute the moments sp, using the exponential
reproduction formula. In matrix vector form S = CY.
2. Solve a K x K Toeplitz system to find H(z)
3. Find the roots of H(z)
4. Solve a K x K Vandermonde system to find the aj
Complexity
1. O(KN)
2. O(K?)
3. O(K?)
4. O(K?)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sparse Sampling: Extensions
Using variations of the annihilating filter methods other signals can be sampled

such as filtered streams of Diracs, multi-dimensional signals and piecewise
sinusoidal signals.

struction driven by S| odels: Theory and Applications
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Sampling Piecewise Sinusoidal Signals

[BerentDB:10]

We consider signals of the type:

D N
= Z ZAd 7 €0S(Wa,nt + ©a.n)€a(t),

d=1 n=1
where
Ea(t) =u(t —tg) —u(t —tgy1) and —oco < t; < ... < tg < ... < tpy1 < 0.
Why is it difficult to sample them?
> Piecewise sinusoidal signals contain innovation in both spectral and
temporal domains.
» They are not bandlimited.

> They are not sparse in time nor in a basis or a frame.
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Sampling Piecewise Sinusoidal Signals

From the samples we can obtain the Laplace transform of x(t) at
am=ao+m\ m=0,1,..., L

[etd+1 (jwd,ntom) _ efd(jwd,n"'"‘M)]

D 2N _
=22 Aun (jwd,n + tm) ’

d=1 n=1

where ,Z\d,n = Ad7,,ej“""’". We define the polynomial

D 2N J .
Qlam) = H H(jwd,n +am) = Z rady,.
d=1n=1 j=0

Pier Luigi
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Sampling Piecewise Sinusoidal Signals

Multiplying both side of the equation by Q(am) we obtain:

D 2N

Q(Oém)sm = Z Z ;\d,np(am)[ethrl(j“’d,nJram) _ etd(jwd,nJrDém)L (4)

d=1 n=1

where P(am) is a polynomial. Since am = g + Am the right-hand side of (4)
can be annihilated:
Q(am)sm * hm = 0.

Pier Luigi
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Sampling Piecewise Sinusoidal Signals

In matrix/vector form (assuming hg = 1), we have:

ro

[ sk e ol s e e e als 1
K=K 0 0 ry

Sk .o al s EERT- als h
+1 K+1°K+1 0 151 1
hn
J J

L S| aLsL S0 O‘(L,K)S(L—K) ]

hiry

Pier Luigi
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Sampling Piecewise Sinusoidal Signals

» From the coefficients rj, j = 0,1,...J, we obtain Q(am).
» The roots of the filter H(z) and of the polynomial Q(cm) give the
locations of the switching points and the frequencies of the sine

waves respectively.
» To solve the system we need L > 4D3N? + 4D?N? + 4D?N + 6DN.

Pier Luigi D
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Numerical Example

5 ‘ ‘ ‘
°4W\N—
5 ‘ ‘ ‘
) 0.25 05 0.75 1 [sec]
(a)
2 ‘ ‘ ‘
o 'H 1l w, RN
} [ [l
- ‘ ‘ ‘
0 0.25 05 0.75 1 [sec]
(b)
5 ‘ ‘ ‘
o W/\/\—
s ‘ ‘ ‘
0 0.25 0.5 0.75 1 [sec]
()
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Sampling 2-D domains

Pier Luigi Dragotti
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Robust Sparse Sampling

T

’ €n

Acquisition Device

X0 h(t)= ¢(—t/T) M ﬁ?ﬁ“ﬁ),m(vnn»ﬂn

» The measurements are noisy

» The noise is additive and i.i.d. Gaussian

Pier Luigi
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Robust Sparse Sampling
In the presence of noise, the annihilation equation
SH=0

is only approximately satisfied.
Minimize: ||SH||2 under the constraint ||H]||2 = 1.
This is achieved by performing an SVD of S:

S=UuxvT".

Then H is the last column of V.
Notice: this is similar to Pisarenko’s method in spectral estimation.

Pier Luigi
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Robust Sparse Sampling: Cadzow's algorithm

For small SNR use Cadzow’s method to denoise S before applying TLS.
The basic intuition behind this method is that, in the noiseless case, S is
rank deficient (rank K) and Toeplitz, while in the noisy case S is full rank.
Algorithm:

>

| 4

SVD of S = UAVT.

Keep the K largest diagonal coefficients of A and set the others to
zero.

Reconstruct S’ = UN'VT.

This matrix is not Toeplitz, make it so by averaging along the
diagonals.

Iterate.

Pier Luigi Dragotti
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Robust Sparse Sampling: Best Kernel

The exponential reproducing kernel has the following form

p(t) = (t) * fa(t).

How should we choose ¥(t) and a,, m= 0,1, ..., L so as to minimize the
effect of noise?

In the noiseless case:
S=CY.

When additive noise is present
S=CY +Ce

Here C is the L x N matrix of the exponential reproducing coefficients

Cm,n-

Pier Luigi D
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Robust Sparse Sampling: Best Kernel (cont'd)

» When ¢, is i.i.d., we want the rows of C to be orthonormal.

> Since Cm,n = Cm,0e™™", orthogonality is achieved by choosing
am = j2rm/N.

» Orthonormality requires |cm,0| = 1, this is achieved by imposing
|9(2rm/N)Bz(2mrm/N)| =1, m=0,1,..., L.

> We choose 7(t) to be polynomial in the frequency domain:
A(w) = Z,.Lz_ol diw'. Thus the coefficients d; are chosen so that the
polynomial 4(w) interpolates the points (j2rm/N, Bz(2rm/N)™1).
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Examples of Best E-Splines
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Examples of Best Kernels

(a) L=2 (b) L=4

() L=14 (d) L =31

Pier Luigi D
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Performance of different Kernels

. —e—p=13C
10 : : - e-p=13 MC
-e- P =13 ME

X -x= P =30, ME

0 5 10 15 20 30
SNR(dB)

Here, K = 2 and we measure the error in the retrieval of the location of the
Diracs.
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Robust Sparse Sampling

2 Diracs / 21 noisy samples . First Dirac
10
- retrieved locations o
Y 10 pm— =
— Craatrr vt o observed standard deviation
5 — Cramér—Rao bound
210°)
i
-
Wi 0 1 20 30 40 50
o Second Dirac
10 :
L, 107
5
3 10°
4
107
10 20 30 © 50 ~10 [ 10 20 30 7o) 50
input SNR (dB) input SNR (dB)

Samples are corrupted by additive noise.

This is a parametric estimation problem.

Unbiased algorithms have a covariance matrix lower bounded by CRB.
The proposed algorithm reaches CRB down to SNR of 5dB.

Pier Luigi Dragotti
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Robust Sparse Sampling

Original and estimated Diracs : SNR = 5 dB;

! 121 —= original Diracs
8 . 4o i —* _estimated Diracs
6 i | [Tl o A
" oo " i
4 i [N TR [0 il
in. we "
2 n IR TITRIIT i, 0.8
tu e DL ol
0 02 0.4 06 08 1
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- o . .
[T | 04r
5 N q Lot {
i, i RITI ] i
P L T S I[P T [T IS 021
et 1 L il Tl ity il et
L e o LU T
‘ 1 e | I
! C
0 0.2 . X 08 1 [ 02 0.4 06 0.8 1
Noisy Samples (N=128) t

—
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Robust Sparse Sampling

Piecewise sinusoidal signal

1 10° bserved Standard Deviation|
ramer-Rao Bound

e : ol
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08 |
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: : 107} : Thmmsa :
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01
o 5 25 30 0 5 20 25 30

15 15
Input SNR [dB] Input SNR [dB]

=
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Robust Sparse Sampling

.
o 05 1 [sec]
(@
1
— — — Ground Truth \\
05| Reconstructed Signal \
of
-05

SNR= 8dB, N=128.
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Comparison with Compressed Sensing

Both use a sparsity prior and a non-linear reconstruction.

Sampling of Signal with Finite Rate of Innovation

+ Continuous or discrete, infinite or finite dimensional

+ Retrieval of the support of x separate from the retrieval of the coefficients.
+ Close to “real” sampling, deterministic

— Not universal, designer matrices

Compressed sensing

+ Universal

+ Probabilistic, can be complex

— Discrete, redundant

Pier Luig
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Compression

> FRI Signals can be sparsely sampled. Can they also be compressed? What
happens when the samples are quantized?

» Traditional Compression is based on complex encoders and simple
decoders.

» New sampling theories are characterized by a linear acquisition but
non-linear reconstruction.
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Compression

Signals are piecewise smooth, with a-Lipschitz regular pieces. Traditional
compression algorithms use the wavelet transform and compress only the large
wavelet coefficients. They achieve the optimal D(R) performance:

D(R) ~ R™*

nstruction driven by S Models: Theory and Applications
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Performance Analysis

» The proposed algorithm compresses and transmits only the low-pass
coefficients of the wavelet transform (linear approximation-based
encoding), but uses FRI techniques to estimate the discontinuities in the
signal from the low-pass coefficients (non-linear decoding).

> Any piecewise smooth signals can be decomposed into a piecewise
polynomial and a globally smooth signal.

» The low-pass coefficients are a sufficient representation of the piecewise
polynomial signal, but quantization and the smooth signal act as noise
and this reduces the reconstruction fidelity.

> We treat both contributions as additive noise and evaluate the CR-bounds
for this estimation problem. The quantization noise depends on the
bit-rate R. This leads to a connection between CR-Bounds and
rate-distortion analysis and leads to this performance bound
[ChaisinthopD:11]:
Drri(R) ~ R™2*,

Pier Luigi Dragotti
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Simulation Results

0 original signal
10 T T 8
5 A\/\/I\—/'/\/*
107 2
o ol »
S o 03 04 05 0.6
" o linear approx. compression, R = 736 bits
10 : 8
a 5 _/\—\N/\_—/\/
10 o Semi-Parametric ?
cR2 "03 0.4 05 0.6
1 ‘semi—parametric compression, R = 544 bits
107 O Linear Approx. 8
—1 5
o CZH : m
-10
103 S . 5 -1
10 10 10 10 0.3 0.4 05 0.6
R (bits)
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Application: Image Super-Resolution

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512 x 512)  (b) Low-res. (64 x 64)  (c) Super-res ( PSNR=24.2dB)

» Forty low-resolution and shifted versions of the original.
» The disparity between images has a finite rate of innovation and can be retrieved.

» Accurate registration is achieved by retrieving the continuous moments of the
‘Tiger' from the samples.
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Application: Image Super-Resolution

Image super-resolution basic building blocks

@) © ©
o O
)
: O!FO
' g . Super-resolved
dk{} —»| Restoration | — image
! O
O
_I o ov
@® LR image 0
O LR image k
Set of low-resolution images Image Registration HR grid estimation
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Application: Image Super-Resolution

» For each blurred image I(x, y):
> A pixel Pp, , in the blurred image is given by

Pmn = (I(X,y),go(x/T—n,y/T—m)),

where o(t) represents the point spread function of the lens.
> We assume ¢(t) is a spline that can reproduce polynomials:

SO el my = m) =Xy 1=0,1,.,N;j=0,1,..,N.

> We retrieve the exact moments of /(x, y) from Pp, s:

T’J:ZZC,&H mn:///(X,y)lejdxdy.

» Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.

Pier Luig
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Application: Image Super-Resolution

sssss (perpendicular)

(a)Original (2014 x 3039) (b) Point Spread function

Pier Luigi D
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Application: Image Super-Resolution

(a)Original (128 x 128) (b) Super-res (1024 x 1024)
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)
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Conclusions

Sampling signals at their rate of innovation:

» New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

> Robust and fast algorithms with complexity proportional to the number of
degrees of freedom.

> Provable optimality (i.e. CRB achieved over wide SNR ranges).

» Intriguing connections with multi-resolution analysis, Fourier theory and
analogue circuit theory.

But also
» There is no such thing as a free lunch. Core application is difficult.

» Still many open questions from theory to practice.
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