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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to reconstruct x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels ϕ(t) can be used?

I What reconstruction algorithm?
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Problem Statement
STEP LINE-EDGE ESTIMATION BY OPTIMIZATION BASED ON SAMPLING THEORY FOR FRI SIGNALS, VOL. X, NO. XX, XXXXXXX 200X 3

Real world (a) Camera image acquisition

Lens Sensor array
Digital image

(Sampling step size is normalized)

(b) Equivalent formulation

PSF ψ(−x,−y)f(x, y) - - g[m,n]

Fig. 1. Image acquisition setup

We therefore note that these coefficients are discrete-time
exponentials. From this observation, we realize immediately
that choosing E-splines with purely imaginary exponents leads
to coefficients c(αp)

n whose absolute values stay constant with
n. This is in contrast to the behaviour seen in (6) for the
coefficients used to reproduce polynomials and the stable
behaviour of this E-spline coefficients is a key fact exploited
in this paper. In particular, we will mostly use trigonometric E-
spline of first order (P = 1), which are obtained by choosing
α⃗ = (iω0,−iω0) with ω0 ∈ IR. The trigonometric E-spline of
first order can be written as follows

βα⃗(t) =





sinω0(1 + t)/ω0 (−1 ≤ t < 0),
sinω0(1− t)/ω0 (0 ≤ t < 1),

0 (t ≤ −1, t > 1).
(11)

Also note that the B-spline basis function of the same order
is given by

β1(t) =





1 + t (−1 ≤ t < 0),
1− t (0 ≤ t < 1),

0 (t ≤ −1, t > 1).
(12)

When ω0 tends to zero, the trigonometric E-spline uniformly
converges to the B-spline of the first order.

III. IMAGE ACQUISITION SETUP

The main components of a digital camera are lenses and
image sensors as shown in Fig. 1. An ideal lens maps a point
in 3D space to another point on the focal plane. Since an
actual lens is never perfect, blur always occurs. The other main
component, the image sensor, is normally a charge coupled
device (CCD) or complementary metal oxide semiconductor
(CMOS) array. This also causes blur because of the spatial
extent of each sensor. Blur is also introduced by motion
or atmospheric conditions. The overall blur caused by these
many factors can be approximately characterised using a linear
spatial invariant function called the point spread function
(PSF). Hence, if we denote with f(x, y) the original 2-D signal

and with g[m,n] the resulting pixels in the digital image, the
image acquisition process can be modelled as follows:

g[m,n] = ⟨f(x, y), ψ(x−m)ψ(y − n)⟩+ ϵ[n,m],

where ψ(x)ψ(y) is the 2-D point spread function and ϵ[n,m]
is additive noise.

The PSF is usually modeled using a Gaussian function [19],
[20]. Recently, B-spline functions have also been proposed
[21], [3], [14]. B-splines have a shape similar to a Gaussian
function [22], but have the advantage of being compactly
supported. Moreover, as discussed in the previous section,
B-splines are able to reproduce polynomials. This second
characteristic has been exploited in [3], [14] in order to devise
methods for the exact estimation of continuous step edges
in an image from the pixels. The methods use the fact that
a continuous step edge is completely determined by three
parameters: the angle, the offset and the amplitude of the edge.
These parameters can be estimated exactly from the image
pixels using the fact that B-splines reproduce polynomials [3],
[14]. The drawback of using B-splines is that, as mentioned in
Section II, the coefficients used in the polynomial reproduction
formula behave like discrete-time polynomials and this makes
the edge estimation methods often unstable. To avoid this
problem, we model the PSF using the trigonometric E-spline
function of Eq. (11). E-spline can well approximate both
Gaussians or B-splines. Further, by restricting the exponents
to be purely imaginary, as discussed before, we are guaranteed
that the coefficients c

(αp)
n have absolute values that stay

constant and this helps improving stability.

IV. LINE-EDGE ESTIMATION BY OPTIMIZATION

In this section, we first demonstrate that in noiseless settings
we can estimate exactly a continuous edge from its ‘pixelised’
version when we model the PSF with an E-splines. In this way
we extend the results first presented in [3] for B-splines to
the E-spline case. We then present an algorithm that achieves
reliable estimation of edges when images are corrupted by
noise or when edges are not exactly straight.

I The lens blurs the image.

I The image is sampled (‘pixelized’) by the sensor array.

I You want sharper and higher resolution images given the available pixels
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Motivation: Image Resolution Enhancement

pixels interpolation enhancement with sparsity priors
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Motivation: Application in Neuroscience

Time resolution enhancement and calcium transient detection in multi-photon
calcium imaging.
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Motivation: Brain Machine Interface

Applications in Neuroscience: Spike Sorting at sub-Nyquist ratesNeural	  acquisi)on	  and	  sor)ng	  

•  The	  energy	  budget	  of	  implanted	  devices	  is	  limited.	  
•  High	  sampling	  rates	  impose	  wired	  data	  transmission	  and	  

limits	  the	  quality	  and	  diversity	  of	  experiments.	  

Neuroprosthesis	  

Processing	  unit	  

8	  

ADC	  

Spike	  sor)ng	  

Wireless brain-machine interface place extreme limits on sampling.
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Motivation: Sensor Networks

I Can we localise diffusion sources and estimate their activation time
using sensor networks?

I Application:

1. Check whether your government is lying ;-)
2. Monitor dispersion in factories producing bio-chemicals
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Motivation: MRI

“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that
this will reach 20% by 2015.” Goal: Individualized treatments based on
low-cost and effective medical devices.

End!Users
Image

Formation
Image

Processing
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Pulse Based Communication

Wide-Band Communications:

RX

t

TX...0110010...

t

I Current A-to-D converters in UWB communications operate at several
gigaherz.

I This is a sparse parametric estimation problem, only the location and
amplitude of the pulses need to be estimated.
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.

I This is a multi-dimensional sampling and interpolation problem.
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Classical Sampling Formulation

I Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{ϕ(t/T − n)}n∈Z.

I If x(t) ∈ V , perfect reconstruction is possible.

I Reconstruction process is linear: x̂(t) =
P

n ynϕ(t/T − n).

I For bandlimited signals ϕ(t) = sinc(t).

φ(t)~
~

x(t) y
T

n φ(t)
x(t)^
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Sampling as Projecting into Shift-Invariant
Sub-Spaces

1

!2 !1 0 1 4 5!3!4 320
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Classical Sampling Formulation

The Shannon sampling theorem provides sufficient but not necessary conditions
for perfect reconstruction.
Moreover: How many real signals are bandlimited? How many realizable filters
are ideal low-pass filters?
By the way, who discovered the sampling theorem? The list is long ;-)

I Whittaker 1915, 1935

I Kotelnikov 1933

I Nyquist 1928

I Raabe 1938

I Gabor 1946

I Shannon 1948

I Someya 1948
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Key elements in the novel sampling approaches

Classical Sampling Formulation:

I In classical sampling formulation, the reconstruction process is linear.

I Innovation is uniform.

New formulation:

I The reconstruction process can be non-linear.

I Innovation can be non-uniform.
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Compressed Sensing Case: Notation

Recall that:

I The l0 ‘norm’ of a N-dimensional vector x is ‖x‖0 = the number of i such that
xi 6= 0

I The l1norm of a N-dimensional vector x is: ‖x‖1 =
PN

i=1 |xi |
I The Mutual Coherence of a given N ×M matrix A is the largest absolute

normalized inner product between different columns of A:

µ(A) = max
1≤k,j≤M;k 6=j

|aT
k aj|

‖ak‖2 · ‖aj‖2

I In the sparse representation case we were assuming that y was sparse in a
redundant dictionary D and we were solving the following problem:

min
α
‖y −Dα‖2 + λ‖α‖1
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Sparsity in Redundant Dictionaries

Extensions [Tropp-04, GribonvalN:03, Elad-10]

I For a generic over-complete dictionary D, (P1) is equivalent to (P0)
when

K <
1

2

(
1 +

1

µ

)
.

So K < 1
2

√
N. This is pretty bad...
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Compressed Sensing Formulation

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I In compressed sensing you discretize the sampling problem and assume x is a
long vector of size M.

I For the time being call it α and assume it is K -sparse.

I The acquisition process stays linear and is modelled with a fat matrix leading to
the samples y. (short vector of size N)
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Compressed Sensing Formulation

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I The ‘fat’ matrix D now plays the role of the acquisition device and we denote it
with Φ. The entries of y = Φα are the samples.

I Based on the previous analysis, we want to reconstruct the signal α from the
samples y using l1 minimization.

I We want maximum incoherence of the columns of Φ.

I We consider large M,N.
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Compressed Sensing Formulation

Key Insights

I Since Φ is the ‘acquisition device’, you can choose the Φ you like

I Relax the condition of a ‘deterministic’ perfect reconstruction and
accept that, with an extremely small probability, there might be an
error in the reconstruction.

I From deterministic bounds to average case bounds
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The power of randomness

I Key theorem due to Candès et al.[Candes:06-08]: if Φ is a proper random matrix
(e.g., a matrix with normalized Gaussian entries), then with overwhelming
probability the signal can be reconstructed from the samples y when
N ≥ C · K log(M/K) for some constant C .

I Assume that the measured signal x is not sparse but has a sparse representation:
x = Dα. We have that y = Φx = ΦDα. The new matrix ΦD is essentially as
random as the original one. Therefore the theorem is still valid. Thus random
matrices provides universality. However, very redundant dictionaries implies
larger M and therefore larger N.
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Restricted Isometry Property (RIP)

In order to have perfect reconstruction, Φ must satisfy the so called Restricted
Isometry Property:

(1− δS )‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δS )‖x‖2
2

for some 0 < δS < 1 and for any S-sparse vector x .
Candes et al.:

I If x is K-sparse and δ2K + δ3K < 1 then the l1 minimization finds x exactly.

I if Φ is a random Gaussian matrix, the above condition is satisfied with
probability 1− O(e−γM) for some γ > 0, when N ≥ C · K log(M/K).

I if Φ is obtained by extracting at random N rows from the Fourier matrix, then
perfect reconstruction is satisfied with high probability when:

N ≥ C · K(log M)4.

NB: When the signal x is not exactly sparse, solve:

‖y − Φx̂‖2 + λ‖x̂‖1

It is proved that linear programming achieve the best solution up to a constant factor.
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Compressed Sensing. Simulation Results

Image ‘Boat’. (a) Recovered from 20000 random projections using Compressed

Sensing. PSNR=31.8dB. (b) Optimal 7207-approximation using the wavelet transform

with the same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b). Images courtesy of

Prof. J. Romberg.
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Application in MRI

Image taken from Lustig, Donoho, Santos, Pauly-08.
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Toward Sampling Continuous Sparse Signals

I In compressed sensing, we discretise a problem which is inherently
‘analogue’

I Once the size M of x is decided, this dictates resolution and complexity

I Complexity should be related to the sparsity of the problem (at least in
the ideal case), not to M

Key ingredients to overcome the above limitations

I Introduce ‘analogue’ sparsity: sparsity for continuous-time signals

I Use wavelet theory and shift-invariant subspaces for hybrid
analogue/digital processing

I Replace Basis Pursuit with Prony-like methods which can handle
continuous-time problems
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Sparsity in Parametric Spaces

Consider a continuous-time stream of pulses or a piecewise sinusoidal signal.

0 100 200 300 400 500 600
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

−1.5

−1

−0.5

0

0.5

1

1.5

These signals

I are not bandlimited.

I are not sparse in a basis or a frame.

However:

I they are completely determine by a finite number of free parameters.
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) =
X
k∈Z

γkg(t − tk). (1)

The rate of innovation of x(t) is then defined as

ρ = lim
τ→∞

1

τ
Cx

“
−τ

2
,
τ

2

”
, (2)

where Cx(−τ/2, τ/2) is a function counting the number of free parameters in
the interval τ .

Definition A signal with a finite rate of innovation is a signal whose

parametric representation is given in (1) and with a finite ρ as defined in (2).
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The Sampling Kernel

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I We now have a good model for sparse continuous-time signals

I The samples however are discrete

I We need to map the discrete samples to some information of the
continuous-time signal (e.g. Fourier transform)

I Key Intuition: Use the knowledge of the acquisition process to map the
discrete samples to some information about x(t)
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The Sampling Kernel

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I Given by nature

I Diffusion equation, Green function. Ex: sensor networks.

I Given by the set-up

I Designed by somebody else. Ex: Hubble telescope, digital cameras.

I Given by design

I Pick the best kernel. Ex: engineered systems.
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The Sampling Kernel

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

It is reasonable to assume that the acquisition process is approximately linear
and invariant. Therefore, the samples can be written as follows:

yn = 〈x(t), ϕ(t/T − n)〉.

Compute a linear combination of the samples: sm =
P

n cm,nyn for some choice

of coefficients cm,n
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From Samples to Signals

Because of linearity of inner product, we have that

sm =
∑

n cm,nyn

= 〈x(t),
∑N−1

n=0 cm,nϕ(t/T − n)〉 m = 0, 1, ..., L.

Assume that
∑

n cm,nϕ(t/T − n) ' e jωmt/T for some frequencies ωm

m = 0, 1, ..., L

Pier Luigi Dragotti
Sparse Signal Processing Part 2: Sparse Sampling



From Samples to Signals

Then
sm =

∑
n cm,nyn

= 〈x(t),
∑

n cm,nϕ(t/T − n)〉

'
∫∞
−∞ x(t)e jωmtdt, m = 0, 1, ..., L.

Note that sm is the Fourier transform of x(t) evaluated at jωm.

Pier Luigi Dragotti
Sparse Signal Processing Part 2: Sparse Sampling



Approximation of Exponentials

We want to find coefficients cm,n that give us a good approximation of
the exponentials:

∑

n

cm,nϕ(t/T − n) ' e jωmt/T

I Key Insight: leverage from the theory of approximation in
shift-invariant sub-spaces to find cm,n and to pick the best ϕ(t).

I Remark we now use that theory for analysis and not for synthesis.
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Approximation of Exponentials

For best approximation, we need to compute (orthogonal projection):

cm,n = 〈e jωmt/T , ϕ̃(t/T − n)〉.

Since the kernel is shift-invariant, we have close-form expressions for the
coefficients and the error.

I Coefficients

cm,n =
ϕ̂(−jωm)

âϕ(ejωm )
ejωn,

where âϕ(ejωm ) =
∑

l∈Z aϕ[l ]e−jωm l with aϕ[l ] = 〈ϕ(t − l), ϕ(t)〉.
I Approximation error

ε(t) = f (t)− e jωmt = ejωmt

[
1− c0

∑

l∈Z
ϕ̂(jωm + j2πl)ej2πlt

]
.
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Generalised Strang-Fix Conditions

A function ϕ(t) can reproduce the exponential:

e jωmt =
X

n

cm,nϕ(t − n)

if and only if

ϕ̂(jωm) 6= 0 and ϕ̂(jωm + j2πl) = 0 l ∈ Z \ {0}

where ϕ̂(·) is the Fourier transform of ϕ(t).

Also note that cm,n = cm,0e
jωmn with cm,0 = ϕ̂(jωm)−1. (from now on we use

this expression also for the approximate case).
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Approximate Strang-Fix

I Strang-Fix conditions are not restrictive

I Any low-pass or band-pass filter approximately satisfies them.
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Approximate Strang-Fix

I Assume ϕ(t) cannot reproduce exponentials, however, we still use the
coefficients cn = 1

ϕ̂(jωm)
e jωmn such that:X

n∈Z
cnϕ(t − n) u ejωmt .

I Approximation error

ε(t) = f (t)− e jωmt = ejωmt

"
1− 1

ϕ̂(jωm)

X
l∈Z

ϕ̂(jωm + j2πl)ej2πlt

#
.

I We only need ϕ̂(jωm + j2πl) u 0 l ∈ Z \ {0}, which is satisfied when
ϕ(t) has an essential bandwidth of size 2π.
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Reproduction of Exponentials (exact)

X
n∈Z

cm,nϕ(t − n) = e−jωmt ∀m ∈ {1, 2, ...M}

φ(t) is an E-spline
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Approximate Strang-Fix

X
n∈Z

cm,nϕ(t − n) ' e−jωmt ∀m ∈ {1, 2, ...M}

φ(t) from a real camera
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From Samples to Signals

sm =
∑

n cm,nyn

= 〈x(t),
∑

n cm,nϕ(t/T − n)〉

'
∫∞
−∞ x(t)e jωmtdt, m = 0, 1, ..., L.

Note that sm is the Fourier transform of x(t) evaluated at jωm.
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From Samples to Signals

I We now have partial knowledge of x̂(jω):

yn ⇒ x̂(jωm) m = 1, 2, ..., L

I Given x̂(jωm), use your favourite sparsity model and reconstruction
method to obtain a one-to-one mapping between the signal and its
partial Fourier transform:

x(t)⇔ x̂(jωm) m = 1, 2, ..., L

I For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t)⇔ x̂(jωm) m = 1, 2, ..., L

I The number d of degrees of freedom of the signal must satisfy d ≤ L
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Sampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
∑K−1

k=0 xkδ(t − tk), tk ∈ [0,N).

I We restrict jωm = jω0 + jmλ m = 1, ..., L and L ≥ 2K .

I We have N samples: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, ...N − 1:

I We obtain

sm =
∑N−1

n=0 cm,nyn

=
∫∞
−∞ x(t)e jωmtdt,

=
∑K−1

k=0 xke jωmtk

=
∑K−1

k=0 x̂ke jλmtk =
∑K−1

k=0 x̂kum
k , m = 1, ..., L.
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The Annihilating Filter Method

I The quantity

sm =
K−1∑

k=0

x̂kum
k , m = 0, 1, ..., L

is a sum of exponentials.

I We can retrieve the locations uk and the amplitudes x̂k with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

I Given the pairs {uk , x̂k}, then tk = (ln uk)/λ and xk = x̂k/eα0tk .
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The Annihilating Filter Method

1. Call hm the filter with z-transform H(z) =
PK

i=0 hiz
−i =

QK−1
k=0 (1− ukz

−1).
We have that

hm ∗ sm =
KX

i=0

hi sm−i =
KX

i=0

K−1X
k=0

x̂khiu
m−i
k =

K−1X
k=0

x̂ku
m
k

KX
i=0

hiu
−i
k| {z }

0

= 0.

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that h0 = 1, we obtain26666666664

sK−1 sK−2 · · · s0

sK sK−1 · · · s1

...
...

. . .
...

sL−1 sL−2 · · · sL−K

37777777775

0BBBBBBBBB@

h1

h2

...

hK

1CCCCCCCCCA
= −

0BBBBBBBBB@

sK

sK+1

...

sL

1CCCCCCCCCA
.

Solve the above system to find the coefficients of the annihilating filter.
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The Annihilating Filter Method

2. Given the coefficients {1, h1, h2, ..., hk}, we get the locations uk by finding
the roots of H(z).
3. Solve the first K equations in sm =

PK−1
k=0 x̂ku

m
k to find the amplitudes x̂k .

In matrix/vector form26666666664

1 1 · · · 1

u0 u1 · · · uK−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

37777777775

0BBBBBBBBB@

x̂0

x̂1

...

x̂K−1

1CCCCCCCCCA
=

0BBBBBBBBB@

s0

s1

...

sK−1

1CCCCCCCCCA
. (3)

Classic Vandermonde system. Unique solution for distinct uks.
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Sampling Streams of Diracs: Numerical Example
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(a) Original Signal (b) Sampling Kernel (β7(t))
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(c) Samples (d) Reconstructed Signal
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Note on the proof

Linear vs Non-linear

I Problem is Non-linear in tk , but linear in xk given tk
I The key to the solution is the separability of the non-linear from the linear

problem using the annihilating filter.

The proof is based on a constructive algorithm:

1. Given the N samples yn, compute the new quantities sm using the exponential
reproduction formula. In matrix vector form s = Cy.

2. Solve a K × K Toeplitz system to find H(z)

3. Find the roots of H(z)

4. Solve a K × K Vandermonde system to find the ak

Complexity

1. O(KN)

2. O(K2)

3. O(K3)

4. O(K2)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Stream of Decaying Exponentials

10 Jon Oñativia, Pier Luigi Dragotti

0 0.5 1

0

1

2

3

4

5

t [s]

(a) Input signal, x(t)

0 0.5 1 1.5
0

0.02

0.04

0.06

t [s]

 

 

y(t)
yn
zn

(b) Filtered and sampled signal

0 0.5 1

0

1

2

3

4

5

t [s]

(c) Reconstructed signal

Fig. 9: Sampling of a stream of decaying exponentials and perfect reconstruction. Since x(t) is an infinite duration signal,
samples yn are nonzero for n ≥ n0, for some n0 that depends on the location of the first decaying exponential. However, if
the number of decaying exponentials is finite, the number of nonzero samples zn = yn − yn−1 e−αT is also finite since they are
equivalent to sampling a stream of Diracs with a compact support kernel.

〈x(t) , ϕ(t/T − n)〉 are sufficient to characterise x(t)
uniquely.

Fig. 8 illustrates the entire sampling process. Note
that, since the sampling kernel is of compact support
and the stream of Diracs is localised in time, there are
only a small number of samples yn that are nonzero.
From Fig. 8(e) it is clear that the signal is not bandlim-
ited. Furthermore, in the classical sampling setup, in or-
der to sample a continuous-time signal at rate T−1 Hz,
an antialiasing filter that sets to zero x̂(ω) for |ω| ≥ π/T
has to be applied before acquisition. The FRI frame-
work does not impose this stringent condition since the
sampling kernel is not necessarily equal to zero for all
|ω| ≥ π/T .

3.2.2 Perfect reconstruction of a stream of decaying
exponentials

Streams of Diracs are an idealization of streams of pulses.
Although this example may seem limited, the frame-
work presented to reconstruct them can be applied to
other classes of functions that model a variety of sig-
nals. For instance, calcium concentration measurements
obtained from two-photon imaging to track the activ-
ity of individual neurons can be modeled with a stream
of decaying exponentials. In this model, the time delays
correspond to the activation time of the tracked neuron,
that is, the action potentials (AP).

Let x(t) be a stream of K decaying exponentials,
that is

x(t) =
K∑

k=1

ak e
−α(t−tk) 1t≥tk =

K∑

k=1

ak ρα(t− tk), (28)

where ρα(t) := e−αt 1t≥0. See Fig. 9(a) for an example
of such signal. This is also an FRI signal since x(t) is

perfectly determined by a finite number of parameters:
{(tk, ak)}Kk=1. Let us assume that x(t) is sampled with
the acquisition device described in 3.2.1, that is, an ex-
ponential reproducing kernel h(t) = ϕ(−t/T ), followed
by a sampling stage. We thus have that ϕ(t) satisfies
(9) and the resulting samples yn can be expressed as
the inner product between x(t) and ϕ(t/T − n) as in
(8).

The reproduced exponentials eiωmt also satisfy the
same conditions as in 3.2.1. It can be shown that sam-
pling the signal in (28) with ϕ(−t/T ) and computing
the following finite differences

zn = yn − yn−1 e
−αT , (29)

is equivalent to the sequence that results from sampling
the stream of Diracs s(t) =

∑K
k=1 ak δ(t− tk) with the

following kernel

ψ(t) = βαT (−t) ∗ ϕ(t) (30)

where βαT (−t) is a zero order E-spline with parameter
αT (Oñativia et al, 2013a). We thus have that

zn = 〈s(t) , ψ(t/T − n)〉 . (31)

Since convolution preserves the exponential repro-
ducing property, ψ(t) reproduces the same exponentials
as ϕ(t). Thus, we can find the coefficients dm,n such that

∑

n∈Z
dm,n ψ(t− n) = eiωmt, m = 0, 1, . . . , P. (32)

We now have all the elements to perfectly recon-
truct the stream of decaying exponentials x(t) from
samples yn, that is, estimate the set of pairs of param-
eters {(tk, ak)}Kk=1. By combining the sequence zn with
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Sampling 2-D domains

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
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well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
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column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
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control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)
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column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
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noise is ubiquitous in signal processing, which may arise from
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a result of numerical integration in (7), or model mismatch dis-
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In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.
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Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:
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total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:

f (x , y) =
KX

k=1

IX
i=1

bk,ie
−j2πxk/Me−j2πyi/N = 0.

The coefficients bk,i are the only free parameters in the model.

This is a non-separable 2-D sparsity model.
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Sampling 2-D domains

samples interpolation inter+ curve constraint
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Robust and Universal Sparse Sampling

nx(t)
!

Acquisition Device

h(t)=   (!t/T)
y(t)

T +

"n

n !y =<x(t),   (t/T!n)>+"

I The acquisition device is arbitrary

I The measurements are noisy

I The noise is additive and i.i.d. Gaussian

I Many robust versions of Prony’s method exist (e.g., Cadzow, matrix
pencil)
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Robust Sparse Sampling

I Samples are corrupted by additive noise.

I This is a parametric estimation problem.

I Unbiased algorithms have a covariance matrix lower bounded by CRB.

I The proposed algorithm reaches CRB down to SNR of 5dB.
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Robust Sparse Sampling

I Phase-transition

I The ‘cut-off’ SNR can be predicted precisely [Wei-Dragotti-15]
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Approximate FRI recovery: Numerical Example

Gaussian Kernel
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Retrieving 1000 Diracs with Strang-Fix Kernels
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Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220 yn samples. Only a small section of the
stream is shown. Rate K “ 5 Diracs per τ “ 3.125 s. N “ 50,
T “ 1{16 and P “ 9.

retrieve K Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window by T and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; and the
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate of K Diracs per τ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure 6
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Fig. 6: Noisy samples with a SNR “ 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
The temporal locations are very accurately estimated.

shows one realisation of the procedure explained before.
To further analyse the performance variation for different

levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and 10220 samples, T “ 1{16 s, N “ 50, P ` 1 “ 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process 10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups of K Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process 10K sam-
ples in about 100 seconds and can retrieve with high accu-
racy 1000 Diracs even in very low SNR regimes. We are not
aware of any current FRI algorithm able to achieve such per-
formance for the same type of data.

I K = 1000 Diracs in an interval of 630 seconds, N = 105 samples,
T = 0.06 and SNR = 10dB

I 9997 Diracs retrieved with an error ε < T/2

I Average accuracy ∆t = 0.005, execution time 105 seconds.

Pier Luigi Dragotti
Sparse Signal Processing Part 2: Sparse Sampling



Overview of Super-Resolution
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Registration from Fourier information
Translation in space is a phase shift in frequency:

f2(x , y) = f1(x − sx , y − sy ) ⇔ F2(ωx , ωy ) = e−j(ωx sx +ωy sy )F1(ωx , ωy ).

Translation parameters can be found from the NCPS:

e j(ωx sx +ωy sy ) =
F1(ωx , ωy )F ∗2 (ωx , ωy )

|F1(ωx , ωy )F ∗2 (ωx , ωy )| .

Construct an over-complete set of equations:

ωmx sx + ωmy sy = arg

 
F1(ωmx , ωmy )F ∗2 (ωmx , ωmy )˛̨
F1(ωmx , ωmy )F ∗2 (ωmx , ωmy )

˛̨! ,
∀(ωmx , ωmy ) s.t.

1˛̨
Φ(ωmx , ωmy )

˛̨ X
l∈Z\{0}

X
k∈Z\{0}

˛̨
Φ(ωmx + 2πl , ωmy + 2πk)

˛̨
≤ γ.
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Results: Image registration

LR image from a particular viewpoint. LR image from a different viewpoint.

100 shifts registered: RMSE is 0.012 pixels (DFT unable to distinguish the
shift).

Sampling kernel - Canon EOS 40D.
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Image super-resolution: Post registration

Deconvolution

Super-resolved image

Set of low-resolution images

Registration and interpolation

. . .

Set of LR images
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Image super-resolution: Post registration

Deconvolution

Super-resolved image

Set of low-resolution images

Registration and interpolation

. . .

Interpolated HR image
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Results: Image super-resolution

One of 100 LR images (40× 40). Interpolated image (400× 400).

Deconvolution achieved using a sparse quad-tree based decomposition model

[ScholefieldD:14]
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Results: Image super-resolution

One of 100 LR images (40× 40). SR image (400× 400).

Deconvolution achieved using a sparse quad-tree based decomposition model

[ScholefieldD:14].
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Application: Image Super-Resolution

Acquisition with Nikon D70

(a)Original (2014× 3040) (b) ROI (128× 128) (b) Super-res (1024× 1024)

For more details [Baboulaz:D:09, ScholefieldD:14]
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Application: Image Super-Resolution

(a)Original (48× 48) (b) Super-res (480× 480)

For more details [Baboulaz:D:09, ScholefieldD:14]
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Neural Activity Detection [OnativiaSD:13]
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Calcium Transient Detection

Figure 6: Double consistency spike search. (i) and (ii) show the detected locations in red and the locations of the
original spikes in green for two different window sizes. In (i) the algorithm runs estimating the number of spikes
within the sliding window. In (ii) the algorithm runs assuming a fixed number of spikes equal to one for each position
of the sliding window. (iii) shows the joint histogram of the detected locations. (iv) shows the fluorescence signal in
blue with the original spikes in green and the detected spikes in red.

2.4 Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to investigate the

changes in performance of the spike detection algorithm in terms of parameters such as data signal to noise

ratio and the sampling frequency. We assume that the spike occurrence follows a Poisson distribution with

parameter λ spikes/s. Experimental data presents occurrences between 0.45 and 0.5 spikes per second. The

probability of having k spikes in the interval considered in parameter λ (one second) is given by the probability

mass function of the Poisson distribution:

fλpkq “
λke´λ

k!
. (17)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot corresponds to

a time interval of ∆t “ L
N seconds. The λ1 parameter that corresponds to this new time interval is λ1 “ λ ¨∆t.

We then generate a vector k “ pk1, . . . , kN q of size 1 ˆN where each ki „ Poispλ1q are independent random

variables. The i-th element of this vector, ki, gives the number of spikes that occurred during the i-th time

slot. We then have to generate the precise instant of time when the spike occured. For a given time slot, we

generate the ki spike instants according to a uniform distribution. The total number of spikes in the time

interval L is K “
řN

i“1 ki. Once we have generated the locations of the K spikes ptkqK
k“1 the waveform given
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

I The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

I The phenomenon is sampled in space and time using a sensor network.

I Sources often localised in space. Can we retrieve their location and the time of
activation?
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Localisation of Diffusion Sources using Sensor
Networks

I The diffusion equation is

∂

∂t
u(x, t) = µ∇2u(x, t) + f (x, t),

where f (x, t) is the source.

I When sources are localised in space and
time:

f (x, t) =
MX

m=1

cmδ(x− ξm, t− τm),

this field inversion problem is sparse.

I Goal: Estimate {cm}m, {ξm}m, {τm}m from
the spatio-temporal sensor measurements.
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Fig. 1. An arbitrary sensor placement and the monitored domain Ω.

(P2) Given spatiotemporal samples ϕn(tl) = u(xn, tl)
of the field u, induced by M instantaneous sources, at
times tl for l = 0, 1, . . . , L and at arbitrary spatial
locations xn ∈ Ω for n = 1, 2, . . . , N , we intend
to estimate {αm, cm, ξm, tm : m = 1, . . . ,M} from
{ϕn(tl) : n = 1, . . . , N ; l = 0, . . . , L}.

III. CLOSED-FORM INVERSION FORMULAS

In this section, we derive novel exact inversion formulas for
diffusion fields induced by spatially localized sources; both
the instantaneous and non-instantaneous source distributions
are considered respectively. For both cases, we start out by
first relating the continuous field u(x, t), within the domain
Ω to the locations and intensities of the sources inside Ω,
using Green’s Green’s second identity. We then demonstrate
how this relation allows the source estimation problem to be
transformed into the usual Prony set up encountered in the
finite rate of innovation (FRI) framework.

A. Diffusion Fields of Multiple Instantaneous Sources

1) Exact Recovery of Locations and Intensities: We begin
by relating the continuous field u(x, t) in Ω to the source
parameters. Let ψ and u be twice differentiable functions in
Ω, then Green’s second identity relates the boundary integral
and the integral over the bounded region as follows:∮

∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS =
∫

Ω

(
ψ∇2u− u∇2ψ

)
dV,

(5)
where n̂∂Ω is the outward pointing unit normal vector to the
boundary ∂Ω of Ω. Moreover, if ψ satisfies ∂ψ

∂t + µ∇2ψ =
0 in Ω, and u(x, t) satisfies (1), then (5) is such that∮
∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS = 1
µ

∫
Ω
ψ
(
∂u
∂t − f

)
+u∂ψ∂t dV =

1
µ

∫
Ω

∂
∂t (uψ) − ψf dV . Furthermore, multiplying through by

µ and time-integrating over t ∈ [0, T ] yields:
∫

Ω

(ψu)(x, T ) dV − µ
∮

∂Ω

(ψ∇U − U∇ψ) · n̂∂Ω dS

=
∫ T

0

∫

Ω

ψf dV dt,
(6)

where U(x) =
∫ T

0
u(x, t)dt. For convenience, we will denote

the left-hand side of (6) by R(ψ). Hence,

R(ψ) =
∫ T

0

∫

Ω

ψf dV dt. (7)

Proposition 1: Setting ψ → Ψk(x) = e−k(x1+jx2), where
k ∈ Z and given the instantaneous source parameterization of
(3), (7) results in the following Vandermonde system:

R(k) =
M∑

m=1

cme
−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K (8)

where R(k) = R(Ψk).
Proof: Begin by putting ψ → Ψk(x) into (6) then:

∫

Ω

(Ψku)(x, T ) dV − µ
∮

∂Ω

(Ψk∇U − U∇Ψk) · n̂∂Ω dS

=
∫ T

0

∫

Ω

Ψkf dV dt

(9)

Denoting the left hand side of (9) by R(k), and substituting
instantaneous source parameterization f , we obtain:

R(k) =
∫ T

0

∫

Ω

Ψk(x)
M∑

m=1

cmδ(t− tm,x− ξm) dV dt

=
M∑

m=1

cm

∫

Ω

Ψk(x)δ(x− ξm) dV
∫ T

0

δ(t− tm)dt

=
M∑

m=1

cmΨk(ξm), (10)

thus R(k) =
M∑

m=1

cme
−k(ξ1,m+jξ2,m) as required.

The sequence {R(k)}Kk=0 is a weighted sum of a finite number
of complex exponentials, and as such has a finite rate of
innovation (FRI) [30]–[32]. This system admits a solution,
using Prony’s method for example, provided K ≥ 2M − 1. A
brief overview of Prony’s method is given in the Appendix.

2) Exact Recovery of Activation Times: We now outline our
proposed method for obtaining an exact closed form expres-
sion for recovering the activation times of active instantaneous
sources from full field measurements.

Proposition 2: For some source parameterization consisting
of M instantaneous sources, providing ψ is analytic and γ is
chosen to be a function of time t then the following equation
holds true:
∫ T

0

γ(t)
∫

Ω

∂

∂t
(uψ) dV − µ

∮

∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS dt

=
M∑

m=1

cmψ(ξm)γ(tm)

(11)
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Localisation of Diffusion Sources using Sensor
Networks

Assume we have access to the following generalised measurements:

Q(k, r)=〈Ψk (x)Γr (t), f 〉=
Z

Ω

Z
t
Ψk (x)Γr (t)f (x, t)dtdV ,

with Ψk = e−k(x+jy), k = 0, 1, , 2M − 1 and Γr (t) = e jrt/T , r = 0, 1. Since

f (x, t) =
MX

m=1

cmδ(x− ξm, t− τm),

we obtain:

Q(k, r) =
MX

m=1

cme−k(ξ1,m+jξ2,m)e−jrtm .

This quantity is a sum of exponentials and parameters {cm}m, {ξm}m, {τm}m can be

recovered from it using Prony’s method provided k = 0, 1, 2M − 1.
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since Ψk is analytic, using Green’s theorem, we obtain:Z
t

„Z
Ω

∂

∂t
(uΨk )dV − µ

I
∂Ω

(Ψk∇u − u∇Ψk ) · n̂∂ΩdS

«
dt =

Z
t

Z
Ω

Ψk f dVdt = Q(k, 0).

I The above equation provides a
relationship between the generalised
measurements and the induced field

I We have only discrete spatio-temporal
sensor measurements

I We build a mesh to approximate the full
field integrals

I This is different from FEM because we
use different priors
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Fig. 1. An arbitrary sensor placement and the monitored domain Ω.

(P2) Given spatiotemporal samples ϕn(tl) = u(xn, tl)
of the field u, induced by M instantaneous sources, at
times tl for l = 0, 1, . . . , L and at arbitrary spatial
locations xn ∈ Ω for n = 1, 2, . . . , N , we intend
to estimate {αm, cm, ξm, tm : m = 1, . . . ,M} from
{ϕn(tl) : n = 1, . . . , N ; l = 0, . . . , L}.

III. CLOSED-FORM INVERSION FORMULAS

In this section, we derive novel exact inversion formulas for
diffusion fields induced by spatially localized sources; both
the instantaneous and non-instantaneous source distributions
are considered respectively. For both cases, we start out by
first relating the continuous field u(x, t), within the domain
Ω to the locations and intensities of the sources inside Ω,
using Green’s Green’s second identity. We then demonstrate
how this relation allows the source estimation problem to be
transformed into the usual Prony set up encountered in the
finite rate of innovation (FRI) framework.

A. Diffusion Fields of Multiple Instantaneous Sources

1) Exact Recovery of Locations and Intensities: We begin
by relating the continuous field u(x, t) in Ω to the source
parameters. Let ψ and u be twice differentiable functions in
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1
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∂t (uψ) − ψf dV . Furthermore, multiplying through by
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u(x, t)dt. For convenience, we will denote

the left-hand side of (6) by R(ψ). Hence,

R(ψ) =
∫ T

0
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ψf dV dt. (7)

Proposition 1: Setting ψ → Ψk(x) = e−k(x1+jx2), where
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(3), (7) results in the following Vandermonde system:
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=
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Denoting the left hand side of (9) by R(k), and substituting
instantaneous source parameterization f , we obtain:

R(k) =
∫ T
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∫
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=
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cmΨk(ξm), (10)

thus R(k) =
M∑
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−k(ξ1,m+jξ2,m) as required.

The sequence {R(k)}Kk=0 is a weighted sum of a finite number
of complex exponentials, and as such has a finite rate of
innovation (FRI) [30]–[32]. This system admits a solution,
using Prony’s method for example, provided K ≥ 2M − 1. A
brief overview of Prony’s method is given in the Appendix.

2) Exact Recovery of Activation Times: We now outline our
proposed method for obtaining an exact closed form expres-
sion for recovering the activation times of active instantaneous
sources from full field measurements.

Proposition 2: For some source parameterization consisting
of M instantaneous sources, providing ψ is analytic and γ is
chosen to be a function of time t then the following equation
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∫

Ω

∂

∂t
(uψ) dV − µ
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(P2) Given spatiotemporal samples ϕn(tl) = u(xn, tl)
of the field u, induced by M instantaneous sources, at
times tl for l = 0, 1, . . . , L and at arbitrary spatial
locations xn ∈ Ω for n = 1, 2, . . . , N , we intend
to estimate {αm, cm, ξm, tm : m = 1, . . . ,M} from
{ϕn(tl) : n = 1, . . . , N ; l = 0, . . . , L}.

III. CLOSED-FORM INVERSION FORMULAS

In this section, we derive novel exact inversion formulas for
diffusion fields induced by spatially localized sources; both
the instantaneous and non-instantaneous source distributions
are considered respectively. For both cases, we start out by
first relating the continuous field u(x, t), within the domain
Ω to the locations and intensities of the sources inside Ω,
using Green’s Green’s second identity. We then demonstrate
how this relation allows the source estimation problem to be
transformed into the usual Prony set up encountered in the
finite rate of innovation (FRI) framework.

A. Diffusion Fields of Multiple Instantaneous Sources
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parameters. Let ψ and u be twice differentiable functions in
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dV,
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where n̂∂Ω is the outward pointing unit normal vector to the
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R(ψ) =
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The sequence {R(k)}Kk=0 is a weighted sum of a finite number
of complex exponentials, and as such has a finite rate of
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using Prony’s method for example, provided K ≥ 2M − 1. A
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of the field u, induced by M instantaneous sources, at
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locations xn ∈ Ω for n = 1, 2, . . . , N , we intend
to estimate {αm, cm, ξm, tm : m = 1, . . . ,M} from
{ϕn(tl) : n = 1, . . . , N ; l = 0, . . . , L}.
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In this section, we derive novel exact inversion formulas for
diffusion fields induced by spatially localized sources; both
the instantaneous and non-instantaneous source distributions
are considered respectively. For both cases, we start out by
first relating the continuous field u(x, t), within the domain
Ω to the locations and intensities of the sources inside Ω,
using Green’s Green’s second identity. We then demonstrate
how this relation allows the source estimation problem to be
transformed into the usual Prony set up encountered in the
finite rate of innovation (FRI) framework.
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Denoting the left hand side of (9) by R(k), and substituting
instantaneous source parameterization f , we obtain:

R(k) =
∫ T

0

∫

Ω

Ψk(x)
M∑

m=1

cmδ(t− tm,x− ξm) dV dt

=
M∑

m=1

cm

∫

Ω

Ψk(x)δ(x− ξm) dV
∫ T

0

δ(t− tm)dt

=
M∑

m=1

cmΨk(ξm), (10)

thus R(k) =
M∑

m=1

cme
−k(ξ1,m+jξ2,m) as required.

The sequence {R(k)}Kk=0 is a weighted sum of a finite number
of complex exponentials, and as such has a finite rate of
innovation (FRI) [30]–[32]. This system admits a solution,
using Prony’s method for example, provided K ≥ 2M − 1. A
brief overview of Prony’s method is given in the Appendix.

2) Exact Recovery of Activation Times: We now outline our
proposed method for obtaining an exact closed form expres-
sion for recovering the activation times of active instantaneous
sources from full field measurements.

Proposition 2: For some source parameterization consisting
of M instantaneous sources, providing ψ is analytic and γ is
chosen to be a function of time t then the following equation
holds true:
∫ T

0

γ(t)
∫

Ω

∂

∂t
(uψ) dV − µ

∮

∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS dt

=
M∑

m=1

cmψ(ξm)γ(tm)

(11)
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Assume r = 0, since Ψk is analytic, using Green’s theorem, we obtain:Z
t

„Z
Ω

∂

∂t
(uΨk )dV − µ

I
∂Ω

(Ψk∇u − u∇Ψk ) · n̂∂ΩdS

«
dt =

Z
t

Z
Ω

Ψk f dVdt = Q(k, 0).

I The above equation provides a
relationship between the generalised
measurements and the induced field

I We have only discrete spatio-temporal
sensor measurements

I We build a mesh to approximate the full
field integrals

I This is different from FEM because we
use different priors

MURRAY-BRUCE AND DRAGOTTI: SAMPLING AND RECONSTRUCTION OF DIFFUSION FIELDS 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Locations

 

 

Int. Sensors

Bndry Sensors

Diff. Sources

Boundary (∂Ω)

Domain (Ω)
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(P2) Given spatiotemporal samples ϕn(tl) = u(xn, tl)
of the field u, induced by M instantaneous sources, at
times tl for l = 0, 1, . . . , L and at arbitrary spatial
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∂Ω
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∫

Ω
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(5)
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µ

∫
Ω
ψ
(
∂u
∂t − f

)
+u∂ψ∂t dV =

1
µ

∫
Ω

∂
∂t (uψ) − ψf dV . Furthermore, multiplying through by
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∫

Ω
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∮

∂Ω
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∫ T

0

∫

Ω
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(6)

where U(x) =
∫ T

0
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0

∫

Ω
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∫

Ω

(Ψku)(x, T ) dV − µ
∮

∂Ω

(Ψk∇U − U∇Ψk) · n̂∂Ω dS

=
∫ T

0

∫

Ω

Ψkf dV dt

(9)
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∫

Ω
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=
M∑

m=1

cmΨk(ξm), (10)

thus R(k) =
M∑

m=1
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−k(ξ1,m+jξ2,m) as required.

The sequence {R(k)}Kk=0 is a weighted sum of a finite number
of complex exponentials, and as such has a finite rate of
innovation (FRI) [30]–[32]. This system admits a solution,
using Prony’s method for example, provided K ≥ 2M − 1. A
brief overview of Prony’s method is given in the Appendix.

2) Exact Recovery of Activation Times: We now outline our
proposed method for obtaining an exact closed form expres-
sion for recovering the activation times of active instantaneous
sources from full field measurements.

Proposition 2: For some source parameterization consisting
of M instantaneous sources, providing ψ is analytic and γ is
chosen to be a function of time t then the following equation
holds true:
∫ T

0

γ(t)
∫

Ω

∂
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(uψ) dV − µ
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∆T , then:

c′m(T1) =
cm
αm

(
eαm(T1−tm) − 1

)
, (17)

c′m(T2) =
cm
αm

(
eαm(T1+∆T−tm) − 1

)

=
cm
αm

(
eαm(T1−tm)eαm∆T − 1

)
, (18)

c′m(T3) =
cm
αm

(
eαm(T2+∆T−tm) − 1

)

=
cm
αm

(
eαm(T2−tm)eαm∆T − 1

)
. (19)

Subtracting (17) from (18) and analogously (18) from (19),
we obtain:

c′m(T2)− c′m(T1)=
cm
αm

(
eαm(T1−tm)eαm∆T − eαm(T1−tm)

)

=
cm
αm

eαm(T1−tm)
(
eαm∆T − 1

)

=
2cm
αm

eαm
∆T
2 eαm(T1−tm) sinh(αm∆T/2),

(20)

and similarly,

c′m(T3)− c′m(T2)=
2cm
αm

eαm
∆T
2 eαm(T2−tm) sinh(αm∆T/2),

(21)

respectively. Dividing (20) by (21) yields,

c′m(T2)− c′m(T1)
c′m(T3)− c′m(T2)

=
eαm(T1−tm)

eαm(T2−tm)
= eαm(T1−T2). (22)

Therefore,

αm =
1

T1 − T2
ln
(
c′m(T2)− c′m(T1)
c′m(T3)− c′m(T2)

)
. (23)

3) Exact Recovery of Activation Times: Given αm it is
possible to retrieve the activation time of the m-th source using
a closed form expression, which we derive in what follows.

To begin, divide (17) by (18),

c′m(T1)
c′m(T2)

=
cm
αm

(
eαm(T1−tm) − 1

)

cm
αm

(
eαm(T2−tm) − 1

) (24)

and re-arrange to obtain,

e−αmtm
(
c′m(T1)eαmT2−c′m(T2)eαmT1

)
=c′m(T1)− c′m(T2)

therefore,

tm =
1
αm

ln
(
c′m(T1)eαmT2 − c′m(T2)eαmT1

c′m(T1)− c′m(T2)

)
(25)

4) Exact Recovery of Source Intensities: With access to
estimates of αm and tm, it is straightforward to estimate cm
using any of (17), (18), and (19). In particular for i = 1, 2, 3
then

cm =
αmc

′
m(Ti)

eαm(Ti−tm) − 1
, (26)

as required.
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Fig. 2. An arbitrary sensor placement – the (approximate) monitored domain
Ω divided into triangular meshes and the domain boundary divided into
straight line segments (black solid lines).

IV. ROBUST SOURCE ESTIMATION FROM
SPATIOTEMPORAL FIELD SAMPLES

A. Approximating Integrals from Spatiotemporal Samples

With the intuition gained and closed formulas we have
derived in Section III, we now consider the inversion problem
given realistic spatiotemporal sensor measurements. In this
realistic setting, we do not have the luxury of continuous field
measurements. Therefore given only spatiotemporal samples
of the field, it is necessary to approximate the integrals—in
the equations (9), (11) and (14)—using standard quadrature
methods [33]. For the temporal integrals, a straightforward
application of Trapezium rule yields a good approximation.
Whereas for the spatial integrals, we are specifically concerned
with approximating: a) path integrals along a boundary (∂Ω)
of Ω, as well as, b) surface integrals on the bounded region
Ω. As usual approximating these integrals with sums relies
on obtaining non-overlapping subdivisions of the domain over
which the integral is performed. We denote these elements as,
line segments δli with i = 1, . . . , I , and polygonal segments
∆j with j = 1, . . . , J that make up the path (∂Ω) and surface
(Ω) integrals respectively. Hence, for path integrals providing
δli
⋂
δlj = ∅ for i 6= j and that

⋃I
i=1 δli = Ω then a well-

known approximation exits, namely for path integral of some
h : x 7→ R along a boundary ∂Ω:

∮

∂Ω

h(x)dS ≈
I∑

i=1

[
h(lAi ) + h(lBi )

]

2
· |δli|, (27)

where lAi and lBi denote the end points of the line segment δli
and |δli| is its length.

Furthermore when considering surface integrals, if these
non-overlapping subdivisions {∆j}Jj=1 are triangular such that⋃I
i=1 ∆i = Ω and ∆i

⋂
∆j = ∅ for i 6= j, as Georg

demonstrated in [34], the surface integral of some h : x 7→ R
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∆T , then:

c′m(T1) =
cm
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(
eαm(T1−tm) − 1

)
, (17)

c′m(T2) =
cm
αm

(
eαm(T1+∆T−tm) − 1

)

=
cm
αm

(
eαm(T1−tm)eαm∆T − 1

)
, (18)

c′m(T3) =
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αm

(
eαm(T2+∆T−tm) − 1

)

=
cm
αm

(
eαm(T2−tm)eαm∆T − 1

)
. (19)

Subtracting (17) from (18) and analogously (18) from (19),
we obtain:

c′m(T2)− c′m(T1)=
cm
αm

(
eαm(T1−tm)eαm∆T − eαm(T1−tm)

)

=
cm
αm

eαm(T1−tm)
(
eαm∆T − 1

)

=
2cm
αm

eαm
∆T
2 eαm(T1−tm) sinh(αm∆T/2),

(20)

and similarly,

c′m(T3)− c′m(T2)=
2cm
αm

eαm
∆T
2 eαm(T2−tm) sinh(αm∆T/2),

(21)

respectively. Dividing (20) by (21) yields,

c′m(T2)− c′m(T1)
c′m(T3)− c′m(T2)

=
eαm(T1−tm)

eαm(T2−tm)
= eαm(T1−T2). (22)

Therefore,

αm =
1

T1 − T2
ln
(
c′m(T2)− c′m(T1)
c′m(T3)− c′m(T2)

)
. (23)

3) Exact Recovery of Activation Times: Given αm it is
possible to retrieve the activation time of the m-th source using
a closed form expression, which we derive in what follows.

To begin, divide (17) by (18),

c′m(T1)
c′m(T2)

=
cm
αm

(
eαm(T1−tm) − 1

)

cm
αm

(
eαm(T2−tm) − 1

) (24)

and re-arrange to obtain,

e−αmtm
(
c′m(T1)eαmT2−c′m(T2)eαmT1

)
=c′m(T1)− c′m(T2)

therefore,

tm =
1
αm

ln
(
c′m(T1)eαmT2 − c′m(T2)eαmT1

c′m(T1)− c′m(T2)

)
(25)

4) Exact Recovery of Source Intensities: With access to
estimates of αm and tm, it is straightforward to estimate cm
using any of (17), (18), and (19). In particular for i = 1, 2, 3
then

cm =
αmc

′
m(Ti)

eαm(Ti−tm) − 1
, (26)

as required.
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Fig. 2. An arbitrary sensor placement – the (approximate) monitored domain
Ω divided into triangular meshes and the domain boundary divided into
straight line segments (black solid lines).

IV. ROBUST SOURCE ESTIMATION FROM
SPATIOTEMPORAL FIELD SAMPLES

A. Approximating Integrals from Spatiotemporal Samples

With the intuition gained and closed formulas we have
derived in Section III, we now consider the inversion problem
given realistic spatiotemporal sensor measurements. In this
realistic setting, we do not have the luxury of continuous field
measurements. Therefore given only spatiotemporal samples
of the field, it is necessary to approximate the integrals—in
the equations (9), (11) and (14)—using standard quadrature
methods [33]. For the temporal integrals, a straightforward
application of Trapezium rule yields a good approximation.
Whereas for the spatial integrals, we are specifically concerned
with approximating: a) path integrals along a boundary (∂Ω)
of Ω, as well as, b) surface integrals on the bounded region
Ω. As usual approximating these integrals with sums relies
on obtaining non-overlapping subdivisions of the domain over
which the integral is performed. We denote these elements as,
line segments δli with i = 1, . . . , I , and polygonal segments
∆j with j = 1, . . . , J that make up the path (∂Ω) and surface
(Ω) integrals respectively. Hence, for path integrals providing
δli
⋂
δlj = ∅ for i 6= j and that

⋃I
i=1 δli = Ω then a well-

known approximation exits, namely for path integral of some
h : x 7→ R along a boundary ∂Ω:

∮

∂Ω

h(x)dS ≈
I∑

i=1

[
h(lAi ) + h(lBi )

]

2
· |δli|, (27)

where lAi and lBi denote the end points of the line segment δli
and |δli| is its length.

Furthermore when considering surface integrals, if these
non-overlapping subdivisions {∆j}Jj=1 are triangular such that⋃I
i=1 ∆i = Ω and ∆i

⋂
∆j = ∅ for i 6= j, as Georg

demonstrated in [34], the surface integral of some h : x 7→ R
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(a) Ideal (noiseless) measurement samples.
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(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).

Fig. 2. Source Estimation from circular (radius = 0.15m) boundary and uniform (spacing = 0.04m) interior measurements. The
scatter-plots show sensor locations (green ‘◦’), true source locations (blue ‘+’) and estimated locations (red ‘×’).

4. Subtract its contribution from the original measure-
ments to get the “adjusted” measurement and repeat
with a larger time window. We stop when the adjusted
measurement is below a predetermined threshold.

This algorithm is evaluated in Section 5 using synthetic field
measurements.

5. SIMULATION RESULTS

In this section we provide simulation results showing the per-
formance of our multi-source estimation algorithm. We sim-
ulate the 2-D field governed by the diffusion equation, in
particular we consider the setting where the field is induced
by four sources activated at different times. Samples of the
field are then collected, at 1Hz for 28seconds, by sensors ar-
ranged along a circular boundary (∂Ω) and uniformly inside
the bounded region (Ω). The simulation parameters are sum-
marized below:

• M = 4. Intensities cm = 1 for m = 1, . . . , 4. Loca-
tions x1 = (0.113, 0.221),x2 = (0.234, 0.175),x3 =
(0.121, 0.075),x4 = (0.092, 0.113). For activation
times see legend in Figure 2a.

• Field sampled over Tend = 28seconds at sampling fre-
quency 1/∆T = 1Hz.

• K = 3, i.e. k = 0, 1, . . . , 3 for the test function family
Ψk(x) = ek(x1+jx2).

• 43 Interior Sensors and 30 Boundary sensors.

Figure 2 demonstrates the ability of the proposed algorithm
to successfully estimate the location and activation times
of the active sources. In addition, we retrieve the follow-
ing estimates, ĉ1 = 0.9777, ĉ2 = 1.0206, ĉ3 = 0.9838 and
ĉ4 = 0.9988, for the source intensities given ideal mea-
surements. For the noisy measurements (SNR=15dB), the
concentration estimates vary marginally around these esti-
mates for each source (with occasional spikes in the range
0.8 − 1.2). We have also observed that the estimation ac-
curacy is dependent on the number of interior sensors to a
higher degree, more interior sensors increases the estimation
accuracy and also reduces the spread of the estimates in the
noisy setting. The boundary sensors however have little effect
on the estimation accuracy.

6. CONCLUSION AND FUTURE WORKS

In this paper an algorithm for solving the diffusion source es-
timation problem in 2-D using boundary and interior mea-
surements of the induced field is presented. In particular we
solve the estimation problem when the sources are spatially-
localized and instantaneous. Simulations demonstrate that
the estimation algorithm is noise robust even in the multiple
source setting, thanks to the averaging effects from the time
integrated field, as well as the averaging of the multiple acti-
vation time estimates from the nearest sensors to the source.
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Fig. 9. Measurements of two monitoring sensors obtained by two different
sensors. The dotted vertical line in each plot indicates the instant of source
activation.

2) Results: The results of our experimentation with real
thermal data are summarized in what follows. Figure 10(a)
shows the complete temperature distribution of the moni-
tored region immediately after source activation with the hot
(light) region of the map indicating the true source location.
Moreover, the estimated source location is shown as the ‘×’;
this estimate has been obtained by applying our proposed
algorithm on spatiotemporal measurements obtained at the 13
locations marked by black circles ‘◦’. The temporal evolution
of two such sensors are shown in Figure 9. Note that the
sampling frequency f = 1

0.52Hz, of the sensors is much
lower than the frame rate of the camera. This is achieved by
downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13
locations and apply Algorithm 2 on the new spatiotemporal
samples. This experiment is repeated 20 times and a scatterplot
of the estimated source location and the activation time esti-
mates is shown in Figure 10(b). The obtained estimates vary
marginally about the true values. For statistical significance,
we repeat this experiment 1000 times and present the MAE
of the location and activation time estimates in Table III. For
the location estimates the MAEs are small compared to the
dimensions of the monitored region, and also smaller than
the average inter-sensor separation. Similarly, the normalized
MAE of the activation time is around 0.0867, which is almost
an order of magnitude smaller than the temporal sampling
interval (0.52s). Hence on average we observe an absolute
error of around 8.67% on the activation time estimates.

We now consider recordings for different source setups.
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Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a
sequence of thermal images at 25Hz for a duration of 16s. The spatiotemporal
samples are obtained by choosing 13 spatial locations (the circles ‘◦’ in plots
(a) and (b)) at random, and then downsampling in time by a factor of 13; hence
f = 1

0.52
≈ 1.9231Hz and the localization time window Tend = 12s.

The true source location is ξ = (0.0594, 0.0298)m and activation time
τ = 1.7800s. In addition, K = 11 for the test function family. (a): Shows
the thermal image immediately after source activation, the locations of the
13 sensors are indicated by the black circles ‘◦’ and the estimated source
location by the red ‘×’. (b): Summarizes the results of 20 repetitions of the
source estimation algorithm on measurements obtained by a different set of
13 randomly chosen sensor locations; on the left is shown a scatter plot of
the estimated source locations (red ‘×’) and the right is plot of the estimated
activation times.

TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL

DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO

THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH
τ = 1.7800s AND ξ = (0.0594, 0.0298)m AND THE SPATIOTEMPORAL

SAMPLES HAVE A SAMPLING FREQUENCY f = 1
0.52
≈ 1.9231Hz,

DURATION OF WINDOW USED IN ESTIMATION Tend = 12s AND K = 11
FOR THE TEST FUNCTION FAMILY.

Source Parameter
ξ1 ξ2 τ

MAE 0.0036 0.0050 0.1544

Spatiotemporal measurements are taken for different source
activation times and locations; then we attempt to recover
the source parameters for each data set using our method.
The estimates are presented, alongside the true values, in
Table IV, we observe that for each new experiment the
parameter estimates remain close to the true values.

VI. CONCLUSION

In this paper we have presented novel expressions for
simultaneously recovering the source parameters of a multi-
source diffusion field. Specifically we have considered two
types of spatially localized sources: temporally instantaneous
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Fig. 9. Measurements of two monitoring sensors obtained by two different
sensors. The dotted vertical line in each plot indicates the instant of source
activation.

2) Results: The results of our experimentation with real
thermal data are summarized in what follows. Figure 10(a)
shows the complete temperature distribution of the moni-
tored region immediately after source activation with the hot
(light) region of the map indicating the true source location.
Moreover, the estimated source location is shown as the ‘×’;
this estimate has been obtained by applying our proposed
algorithm on spatiotemporal measurements obtained at the 13
locations marked by black circles ‘◦’. The temporal evolution
of two such sensors are shown in Figure 9. Note that the
sampling frequency f = 1

0.52Hz, of the sensors is much
lower than the frame rate of the camera. This is achieved by
downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13
locations and apply Algorithm 2 on the new spatiotemporal
samples. This experiment is repeated 20 times and a scatterplot
of the estimated source location and the activation time esti-
mates is shown in Figure 10(b). The obtained estimates vary
marginally about the true values. For statistical significance,
we repeat this experiment 1000 times and present the MAE
of the location and activation time estimates in Table III. For
the location estimates the MAEs are small compared to the
dimensions of the monitored region, and also smaller than
the average inter-sensor separation. Similarly, the normalized
MAE of the activation time is around 0.0867, which is almost
an order of magnitude smaller than the temporal sampling
interval (0.52s). Hence on average we observe an absolute
error of around 8.67% on the activation time estimates.

We now consider recordings for different source setups.
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Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a
sequence of thermal images at 25Hz for a duration of 16s. The spatiotemporal
samples are obtained by choosing 13 spatial locations (the circles ‘◦’ in plots
(a) and (b)) at random, and then downsampling in time by a factor of 13; hence
f = 1

0.52
≈ 1.9231Hz and the localization time window Tend = 12s.

The true source location is ξ = (0.0594, 0.0298)m and activation time
τ = 1.7800s. In addition, K = 11 for the test function family. (a): Shows
the thermal image immediately after source activation, the locations of the
13 sensors are indicated by the black circles ‘◦’ and the estimated source
location by the red ‘×’. (b): Summarizes the results of 20 repetitions of the
source estimation algorithm on measurements obtained by a different set of
13 randomly chosen sensor locations; on the left is shown a scatter plot of
the estimated source locations (red ‘×’) and the right is plot of the estimated
activation times.

TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL

DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO

THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH
τ = 1.7800s AND ξ = (0.0594, 0.0298)m AND THE SPATIOTEMPORAL

SAMPLES HAVE A SAMPLING FREQUENCY f = 1
0.52
≈ 1.9231Hz,

DURATION OF WINDOW USED IN ESTIMATION Tend = 12s AND K = 11
FOR THE TEST FUNCTION FAMILY.

Source Parameter
ξ1 ξ2 τ

MAE 0.0036 0.0050 0.1544

Spatiotemporal measurements are taken for different source
activation times and locations; then we attempt to recover
the source parameters for each data set using our method.
The estimates are presented, alongside the true values, in
Table IV, we observe that for each new experiment the
parameter estimates remain close to the true values.

VI. CONCLUSION

In this paper we have presented novel expressions for
simultaneously recovering the source parameters of a multi-
source diffusion field. Specifically we have considered two
types of spatially localized sources: temporally instantaneous
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Localisation of Diffusion Sources: Real Data
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Fig. 9. Measurements of two monitoring sensors obtained by two different
sensors. The dotted vertical line in each plot indicates the instant of source
activation.

2) Results: The results of our experimentation with real
thermal data are summarized in what follows. Figure 10(a)
shows the complete temperature distribution of the moni-
tored region immediately after source activation with the hot
(light) region of the map indicating the true source location.
Moreover, the estimated source location is shown as the ‘×’;
this estimate has been obtained by applying our proposed
algorithm on spatiotemporal measurements obtained at the 13
locations marked by black circles ‘◦’. The temporal evolution
of two such sensors are shown in Figure 9. Note that the
sampling frequency f = 1

0.52Hz, of the sensors is much
lower than the frame rate of the camera. This is achieved by
downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13
locations and apply Algorithm 2 on the new spatiotemporal
samples. This experiment is repeated 20 times and a scatterplot
of the estimated source location and the activation time esti-
mates is shown in Figure 10(b). The obtained estimates vary
marginally about the true values. For statistical significance,
we repeat this experiment 1000 times and present the MAE
of the location and activation time estimates in Table III. For
the location estimates the MAEs are small compared to the
dimensions of the monitored region, and also smaller than
the average inter-sensor separation. Similarly, the normalized
MAE of the activation time is around 0.0867, which is almost
an order of magnitude smaller than the temporal sampling
interval (0.52s). Hence on average we observe an absolute
error of around 8.67% on the activation time estimates.

We now consider recordings for different source setups.
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Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a
sequence of thermal images at 25Hz for a duration of 16s. The spatiotemporal
samples are obtained by choosing 13 spatial locations (the circles ‘◦’ in plots
(a) and (b)) at random, and then downsampling in time by a factor of 13; hence
f = 1

0.52
≈ 1.9231Hz and the localization time window Tend = 12s.

The true source location is ξ = (0.0594, 0.0298)m and activation time
τ = 1.7800s. In addition, K = 11 for the test function family. (a): Shows
the thermal image immediately after source activation, the locations of the
13 sensors are indicated by the black circles ‘◦’ and the estimated source
location by the red ‘×’. (b): Summarizes the results of 20 repetitions of the
source estimation algorithm on measurements obtained by a different set of
13 randomly chosen sensor locations; on the left is shown a scatter plot of
the estimated source locations (red ‘×’) and the right is plot of the estimated
activation times.

TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL

DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO

THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH
τ = 1.7800s AND ξ = (0.0594, 0.0298)m AND THE SPATIOTEMPORAL

SAMPLES HAVE A SAMPLING FREQUENCY f = 1
0.52
≈ 1.9231Hz,

DURATION OF WINDOW USED IN ESTIMATION Tend = 12s AND K = 11
FOR THE TEST FUNCTION FAMILY.

Source Parameter
ξ1 ξ2 τ

MAE 0.0036 0.0050 0.1544

Spatiotemporal measurements are taken for different source
activation times and locations; then we attempt to recover
the source parameters for each data set using our method.
The estimates are presented, alongside the true values, in
Table IV, we observe that for each new experiment the
parameter estimates remain close to the true values.

VI. CONCLUSION

In this paper we have presented novel expressions for
simultaneously recovering the source parameters of a multi-
source diffusion field. Specifically we have considered two
types of spatially localized sources: temporally instantaneous
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Fig. 9. Measurements of two monitoring sensors obtained by two different
sensors. The dotted vertical line in each plot indicates the instant of source
activation.

2) Results: The results of our experimentation with real
thermal data are summarized in what follows. Figure 10(a)
shows the complete temperature distribution of the moni-
tored region immediately after source activation with the hot
(light) region of the map indicating the true source location.
Moreover, the estimated source location is shown as the ‘×’;
this estimate has been obtained by applying our proposed
algorithm on spatiotemporal measurements obtained at the 13
locations marked by black circles ‘◦’. The temporal evolution
of two such sensors are shown in Figure 9. Note that the
sampling frequency f = 1

0.52Hz, of the sensors is much
lower than the frame rate of the camera. This is achieved by
downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13
locations and apply Algorithm 2 on the new spatiotemporal
samples. This experiment is repeated 20 times and a scatterplot
of the estimated source location and the activation time esti-
mates is shown in Figure 10(b). The obtained estimates vary
marginally about the true values. For statistical significance,
we repeat this experiment 1000 times and present the MAE
of the location and activation time estimates in Table III. For
the location estimates the MAEs are small compared to the
dimensions of the monitored region, and also smaller than
the average inter-sensor separation. Similarly, the normalized
MAE of the activation time is around 0.0867, which is almost
an order of magnitude smaller than the temporal sampling
interval (0.52s). Hence on average we observe an absolute
error of around 8.67% on the activation time estimates.

We now consider recordings for different source setups.
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Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a
sequence of thermal images at 25Hz for a duration of 16s. The spatiotemporal
samples are obtained by choosing 13 spatial locations (the circles ‘◦’ in plots
(a) and (b)) at random, and then downsampling in time by a factor of 13; hence
f = 1

0.52
≈ 1.9231Hz and the localization time window Tend = 12s.

The true source location is ξ = (0.0594, 0.0298)m and activation time
τ = 1.7800s. In addition, K = 11 for the test function family. (a): Shows
the thermal image immediately after source activation, the locations of the
13 sensors are indicated by the black circles ‘◦’ and the estimated source
location by the red ‘×’. (b): Summarizes the results of 20 repetitions of the
source estimation algorithm on measurements obtained by a different set of
13 randomly chosen sensor locations; on the left is shown a scatter plot of
the estimated source locations (red ‘×’) and the right is plot of the estimated
activation times.

TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL

DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO

THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH
τ = 1.7800s AND ξ = (0.0594, 0.0298)m AND THE SPATIOTEMPORAL

SAMPLES HAVE A SAMPLING FREQUENCY f = 1
0.52
≈ 1.9231Hz,

DURATION OF WINDOW USED IN ESTIMATION Tend = 12s AND K = 11
FOR THE TEST FUNCTION FAMILY.

Source Parameter
ξ1 ξ2 τ

MAE 0.0036 0.0050 0.1544

Spatiotemporal measurements are taken for different source
activation times and locations; then we attempt to recover
the source parameters for each data set using our method.
The estimates are presented, alongside the true values, in
Table IV, we observe that for each new experiment the
parameter estimates remain close to the true values.

VI. CONCLUSION

In this paper we have presented novel expressions for
simultaneously recovering the source parameters of a multi-
source diffusion field. Specifically we have considered two
types of spatially localized sources: temporally instantaneous
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Conclusions and Outlook

Sampling signals using sparsity models:

I New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

I It is a non-linear problem

I Different possible algorithms with various degrees of efficiency and
robustness

Applications:

I Many actual and potential applications:

I But you need to fit the right model!

I Carve the right algorithm for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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Appendix

Orthogonal matching pursuit (OMP) finds the correct sparse representation
when

K <
1

2

„
1 +

1

µ

«
. (4)

Sketch of the Proof (Elad 2010, pages 65-67):
Assume the K non-zero entries are at the beginning of the vector in descending
order with y = Dx . Thus

y =
KX

l=1

xlDl (5)

First iteration of OMP work properly if |DT
1 y | > |DT

i y | for any i > K .
Using (5)

|
KX

l=1

xlD
T
1 Dl | > |

KX
l=1

xlD
T
i Dl |
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Appendix (cont’d)

Sketch of the Proof (cont’d):
But

|
KX

l=1

xlD
T
1 Dl | ≥ |x1| −

KX
l=2

|xl ||DT
1 Dl | ≥ |x1| −

KX
l=2

|xl |µ ≥ |x1|(1− µ)(K − 1).

Moreover,

|
KX

l=1

xlD
T
i Dl | ≤

KX
l=1

|xl ||DT
i Dl | ≤

KX
l=1

|xl |µ ≤ |x1|µK

Using these two bounds, we conclude that |DT
1 y | > |DT

i y | is satisfied when

condition (4) is met.
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