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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

X ho=g-vr | O 7T< Yi=<X(O.(UT-n)>

Acquisition Device

Natural questions:
» When is there a one-to-one mapping between x(t) and y,?
> What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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Problem Statement

Lens Sensor array

Real world

Digital image

(a) Camera image acquisition

(Sampling step size is normalized)

flz,y)—  PSFy(-a,~y) — glm.n]

(b) Equivalent formulation

» The lens blurs the image.
» The image is sampled (‘pixelized’) by the sensor array.

» You want sharper and higher resolution images given the available pixels

Pier Luigi gotti
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Motivation: Image Resolution Enhancement

enhancement with sparsity priors
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Motivation: Application in Neuroscience

Time resolution enhancement and calcium transient detection in multi-photon
calcium imaging.
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Motivation: Brain Machine Interface

Applications in Neuroscience: Spike Sorting at sub-Nyquist rates

Neuroprosthesis

ADC
20KHz < fs < 30KH?2|
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Motivation: Sensor Networks

SMARR (0N .

& NUGLEAR FALLOUT MAP =S
0/RADS, 2 . o
0/RADS'

'SO0RADS

» Can we localise diffusion sources and estimate their activation time
using sensor networks?
» Application:
1. Check whether your government is lying ;-)
2. Monitor dispersion in factories producing bio-chemicals

Pier Luigi Dragotti
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Motivation: MRI

“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that
this will reach 20% by 2015." Goal: Individualized treatments based on
low-cost and effective medical devices.
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Pulse Based Communication

Wide-Band Communications:

010010, Tx

S 4 RX

» Current A-to-D converters in UWB communications operate at several
gigaherz.

» This is a sparse parametric estimation problem, only the location and
amplitude of the pulses need to be estimated.
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.
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» This is a multi-dimensional sampling and interpolation problem.
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Classical Sampling Formulation

> Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{p(t/T — n)}rez.

> If x(t) € V, perfect reconstruction is possible.
> Reconstruction process is linear: X(t) = > yap(t/T — n).
> For bandlimited signals ¢(t) = sinc(t).

T A
W) 0 -y — o) | X(0)
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Sampling as Projecting into Shift-Invariant
Sub-Spaces
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Classical Sampling Formulation

The Shannon sampling theorem provides sufficient but not necessary conditions
for perfect reconstruction.

Moreover: How many real signals are bandlimited? How many realizable filters
are ideal low-pass filters?

By the way, who discovered the sampling theorem? The list is long ;-)

>
>
>
>
>
>
>

Whittaker 1915, 1935
Kotelnikov 1933
Nyquist 1928

Raabe 1938

Gabor 1946

Shannon 1948
Someya 1948
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Key elements in the novel sampling approaches

Classical Sampling Formulation:
» In classical sampling formulation, the reconstruction process is linear.
» Innovation is uniform.

New formulation:
» The reconstruction process can be non-linear.

» Innovation can be non-uniform.
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Compressed Sensing Case: Notation

Recall that:
» The lp ‘norm’ of a N-dimensional vector x is ||x|lo = the number of i such that
x; #0
» The /inorm of a N-dimensional vector x is: ||x||1 = Z,N:1 [xi]
» The Mutual Coherence of a given N X M matrix A is the largest absolute
normalized inner product between different columns of A:

aTa'
u(A) = 2, 2

= max ==
1<k <Mk [|a]|2 - [|aj]l2

» In the sparse representation case we were assuming that y was sparse in a
redundant dictionary D and we were solving the following problem:

min [ly — Dall2 + Alle|lx

t 2: Sparse Sampling
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Sparsity in Redundant Dictionaries

Extensions [Tropp-04, GribonvalN:03, Elad-10]

» For a generic over-complete dictionary D, (Py) is equivalent to (Pp)
when

1 1
K<—(1+—).
2 1%

So K < 3+/N. This is pretty bad...




Imperial College
London

Compressed Sensing Formulation

X ho=g-vr |V 7T< Yi=<X(0.(UT-n)>

Acquisition Device

» In compressed sensing you discretize the sampling problem and assume x is a
long vector of size M.

> For the time being call it o and assume it is K-sparse.

» The acquisition process stays linear and is modelled with a fat matrix leading to
the samples y. (short vector of size N)
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Compressed Sensing Formulation

2O ] = gevn) y® 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

» The ‘fat’ matrix D now plays the role of the acquisition device and we denote it
with ®. The entries of y = ®« are the samples.

» Based on the previous analysis, we want to reconstruct the signal a from the
samples y using /i minimization.

» We want maximum incoherence of the columns of ®.

» We consider large M, N.

art 2: Sparse Sampling
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Compressed Sensing Formulation

Key Insights
» Since ® is the ‘acquisition device', you can choose the ® you like

» Relax the condition of a ‘deterministic’ perfect reconstruction and
accept that, with an extremely small probability, there might be an
error in the reconstruction.

» From deterministic bounds to average case bounds
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The power of randomness

> Key theorem due to Candes et al.[Candes:06-08]: if ® is a proper random matrix
(e.g., a matrix with normalized Gaussian entries), then with overwhelming
probability the signal can be reconstructed from the samples y when
N > C - Klog(M/K) for some constant C.

» Assume that the measured signal x is not sparse but has a sparse representation:
x = Da. We have that y = &x = ®Da. The new matrix ®D is essentially as
random as the original one. Therefore the theorem is still valid. Thus random
matrices provides universality. However, very redundant dictionaries implies
larger M and therefore larger N.

sing Part 2: Sparse Sampling




Imperial College
London

Restricted Isometry Property (RIP)

In order to have perfect reconstruction, ® must satisfy the so called Restricted
Isometry Property:
2 2 2
(1= 65)lIx]lz < x|z < (1+ ds)lIxll

for some 0 < §s < 1 and for any S-sparse vector x.
Candes et al.:

» If x is K-sparse and dx + d3x < 1 then the /; minimization finds x exactly.

» if & is a random Gaussian matrix, the above condition is satisfied with
probability 1 — O(e~"M) for some v > 0, when N > C - K log(M/K).

> if ® is obtained by extracting at random N rows from the Fourier matrix, then
perfect reconstruction is satisfied with high probability when:

N> C - K(log M)*.
NB: When the signal x is not exactly sparse, solve:
lly — ®%ll2 + All%]lx

It is proved that linear programming achieve the best solution up to a constant_factor.
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Compressed Sensing. Simulation Results

© @

Image ‘Boat’. (a) Recovered from 20000 random projections using Compressed
Sensing. PSNR=31.8dB. (b) Optimal 7207-approximation using the wavelet transform
with the same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b). Images courtesy of
Prof. J. Romberg.
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Application in MRI
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Toward Sampling Continuous Sparse Signals

» In compressed sensing, we discretise a problem which is inherently
‘analogue’

> Once the size M of x is decided, this dictates resolution and complexity

> Complexity should be related to the sparsity of the problem (at least in
the ideal case), not to M

Key ingredients to overcome the above limitations
» Introduce ‘analogue’ sparsity: sparsity for continuous-time signals

» Use wavelet theory and shift-invariant subspaces for hybrid
analogue/digital processing

» Replace Basis Pursuit with Prony-like methods which can handle
continuous-time problems

ssing Part 2: Sparse Sampling
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Sparsity in Parametric Spaces

Consider a continuous-time stream of pulses or a piecewise sinusoidal signal.

These signals

» are not bandlimited.

> are not sparse in a basis or a frame.
However:

» they are completely determine by a finite number of free parameters.
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) = 3 et - t). (1)

kEZ

The rate of innovation of x(t) is then defined as

p= lim 1CX( 202 ) (2)

fm sz
where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.

Definition A signal with a finite rate of innovation is a signal whose
parametric representation is given in (1) and with a finite p as defined in (2).
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The Sampling Kernel

2O ] = gevn) y® 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

» We now have a good model for sparse continuous-time signals
» The samples however are discrete

» We need to map the discrete samples to some information of the
continuous-time signal (e.g. Fourier transform)

» Key Intuition: Use the knowledge of the acquisition process to map the
discrete samples to some information about x(t)

art 2: Sparse Sampling
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The Sampling Kernel

2O ] = gevn) y® 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.
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The Sampling Kernel

X h(t)= ¢(~t/T) y® 7< Yi=<x(1),(t/T-n)>

|

Acquisition Device

It is reasonable to assume that the acquisition process is approximately linear
and invariant. Therefore, the samples can be written as follows:

yn = (x(2),¢(t/T = n)).

Compute a linear combination of the samples: sy, = >, ¢m,nyn for some choice
of coefficients cm,n
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From Samples to Signals
Because of linearity of inner product, we have that
Sm = Zn Cm,n_yn

= <X(t)7ZnN:_01 Cm,n@(t/T— n)> m=0,1,..., L.

Assume that Y ¢ ap(t/ T — n) =~ e/“nt/T for some frequencies wy,
m=0,1,...,L
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From Samples to Signals

Then

> CmnYn
= (x(t), 22, cmnp(t/ T —n))

75 x(t)elmtdt,  m=0,1,..,L

Sm

R

Note that s, is the Fourier transform of x(t) evaluated at jwy,.
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Approximation of Exponentials

We want to find coefficients ¢, , that give us a good approximation of
the exponentials:

Z Cmnp(t) T = n) o~ fomt/T

» Key Insight: leverage from the theory of approximation in
shift-invariant sub-spaces to find ¢, , and to pick the best o(t).

» Remark we now use that theory for analysis and not for synthesis.
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Approximation of Exponentials

For best approximation, we need to compute (orthogonal projection):
Cm,n = <ejwmt/T, @(t/T - n)>
Since the kernel is shift-invariant, we have close-form expressions for the

coefficients and the error.

» Coefficients o
@(_me) ejz,un
dp(e/om)

where 3, (e/m) =3, a[fle " with a,[l] = (@(t — 1), ¢(t)).
» Approximation error

Cm,n = 3

e(t) = f(t) — &rt = &nt 11— ) > P(jwm + j2ml)e/*™"

1€EZ
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Generalised Strang-Fix Conditions
A function ¢(t) can reproduce the exponential:

eemt = Z Cmnp(t — n)

if and only if
&(jwm) # 0 and @(jwm +j27l) =0 1€ Z\ {0}

where &(-) is the Fourier transform of o(t).

Also note that ¢mp = Cmoe/*™" with cmo = @(jwm) . (from now on we use
this expression also for the approximate case).
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Approximate Strang-Fix

» Strang-Fix conditions are not restrictive

» Any low-pass or band-pass filter approximately satisfies them.
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Approximate Strang-Fix

> Assume ¢(t) cannot reproduce exponentials, however, we still use the
1

coefficients ¢, = mej”’”" such that:
Z cnp(t — n) = &“mt.

neZ
» Approximation error

1 . . iom
_ > Gljwm + j2m )"

t) = f(t) — &t = mt |1 —
e(t) = f(t) Blm) 2

> We only need @$(jwm + j27l) = 0 | € Z\ {0}, which is satisfied when
©(t) has an essential bandwidth of size 2.
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Reproduction of Exponentials (exact)

Z Cmnp(t — n) = e Jomt vm e {1,2,..M}
neZ
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Approximate Strang-Fix

> emap(t —n) = et Yme {1,2,...M}
neZ
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From Samples to Signals

> CmnYn
= (x(t), 22, cmnp(t/ T —n))

75 x(t)elmtdt,  m=0,1,..,L

Sm

R

Note that s, is the Fourier transform of x(t) evaluated at jwy,.
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From Samples to Signals

We now have partial knowledge of X(jw):
Vo= X(jwm) m=1,2,..,L

Given X(jwm), use your favourite sparsity model and reconstruction
method to obtain a one-to-one mapping between the signal and its
partial Fourier transform:

x(t) & X(jwm) m=1,2,..,L

For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t) & X(jwm) m=1,2,..,L

The number d of degrees of freedom of the signal must satisfy d < L

g Part 2: Sparse Sampling
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = 5o xid(t — t), t € [0, N),

» We restrict jw, = jwg +jmA m=1..L and L >2K.
» We have N samples: y, = (x(t),¢(t — n)), n=10,1,..N — 1:
» We obtain

N—-1
Sm = Zn:o Cm,nYn

72 x(t)efentdt,

— 00

jwmtk
koxe”"

K—1, _jixmt, _ K—1 A .
o XA =3 Xy, m=1,.., L
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The Annihilating Filter Method

» The quantity

is a sum of exponentials.

» We can retrieve the locations u, and the amplitudes X, with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

» Given the pairs {uk, R}, then tx = (Inuk)/X and xx = X, /e“0t.

Pier Lu
Sparse g Part 2: Sparse Sampling
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The Annihilating Filter Method

1. Call hn the filter with z-transform H(z) = Z,K:O hiz7l = ]_[,’5;01(1 —uz™h).
We have that
K K-1

K K—1 K
hm * Sm — E h,'Smf,' = E Akh,-u,'("f' = E )?ku;r(n E h,-u,:' =0.
i=0 k=0 i=0

i=0 0
—_—
0

X

x
Il

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that hy = 1, we obtain

SK—1 SK—2 “-* S0 hy SK

Sk SK—1 - s1 h2 SK+1

SL—1 SL—2 ' SL-K hk st
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The Annihilating Filter Method

2. Given the coefficients {1, h1, ha, ..., he }, we get the locations uy by finding
the roots of H(z).

3. Solve the first K equations in s, = ZkK:_Ol Xkug' to find the amplitudes X«.
In matrix/vector form

M 1 1 e 1 ] )?0 S0
g u cee o UK-1 X1 s1

K K -
L uo ul e UK—l i XK—1 SK—1
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Sampling Streams of Diracs: Numerical Example

02 0

(a) Original Signal (b

Sampling Kernel (87(t

0z o2

(c) Samples (d) Reconstructed Signal

~
~

)
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Note on the proof

Linear vs Non-linear
» Problem is Non-linear in t,, but linear in x, given t,
» The key to the solution is the separability of the non-linear from the linear
problem using the annihilating filter.
The proof is based on a constructive algorithm:
1. Given the N samples y,, compute the new quantities s, using the exponential
reproduction formula. In matrix vector form s = Cy.
2. Solve a K x K Toeplitz system to find H(z)
3. Find the roots of H(z)
4. Solve a K x K Vandermonde system to find the aj
Complexity
1. O(KN)
2. O(K?)
3. O(K?)
4. O(K?)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Stream of Decaying Exponentials

X 0.06 — y(b) X

4 —_ ?ég 4

3 0.04 3

2 2

1 0.02 1

0 0

0 0.5 00 0.5 1.5 0 0.5
t[s] t[s] ts]

(a) Input signal, z(t)

(b) Filtered and sampled signal

(c) Reconstructed signal
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Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:
K 1 '
f(X y _ ZZ by ; —127rxk/l\/l —j27TyI/N —0.
k=1 i=1

The coefficients by, ; are the only free parameters in the model.
This is a non-separable 2-D sparsity model.

Pier Luigi Dragotti
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Sampling 2-D domains

samples interpolation inter+ curve constraint
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Robust and Universal Sparse Sampling
x(t) h(t)= q(~tT) y(t) T>< £<x(t),€p(t/T—n)>+sn
| .
Acquisition Device
» The acquisition device is arbitrary
» The measurements are noisy
» The noise is additive and i.i.d. Gaussian
» Many robust versions of Prony’s method exist (e.g., Cadzow, matrix

pencil)

Pier Lu
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Robust Sparse Sampling

2 Diracs / 21 noisy samples . First Dirac
10
- retrieved locations o
Y 10 pm— =
— Craatrr vt o observed standard deviation
5 — Cramér—Rao bound
210°)
i
-
Wi 0 1 20 30 40 50
o Second Dirac
10 :
L, 107
5
3 10°
4
107
10 20 30 © 50 ~10 [ 10 20 30 7o) 50
input SNR (dB) input SNR (dB)

Samples are corrupted by additive noise.

This is a parametric estimation problem.

Unbiased algorithms have a covariance matrix lower bounded by CRB.
The proposed algorithm reaches CRB down to SNR of 5dB.

Pier Luigi gotti
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Robust Sparse Sampling

First Dirac
10 ]

— observed standard deviation
—— Cramér-Rao bound

Positions

=10 ¥ 10 20 30 40 50
Second Dirac

Positions
5
&

10 20 30 50
input SNR (dB)

» Phase-transition
> The ‘cut-off’ SNR can be predicted precisely [Wei-Dragotti-15]

Pier Luigi Dragotti
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Approximate FRI recovery: Numerical Example

Gaussian Kernel

e
0 o s % 4 8 e 0 02 04 0s o8 1 12 14 15 18 2

Approximate FRI with the Gaussian kernel. K =5, N = 61, SNR=25dB.
Recovery using the approximate method with am = j3+54 5 2m — P),
m=0,...,P where P+1=21.

o
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Retrieving 1000 Diracs with Strang-Fix Kernels

— Noiseless samples
— Noise

~A Original Diracs
—* Estimated Diracs

4 6 8 10 12 14 - 4 6 8 10 12 14
Time (s) Time (s)

(a) yn samples (b) Reconstructed stream

> K = 1000 Diracs in an interval of 630 seconds, N = 10° samples,
T = 0.06 and SNR = 10dB

> 9997 Diracs retrieved with an error e < T/2
> Average accuracy At = 0.005, execution time 105 seconds.
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Overview of Super-Resolution

Set of low-resolution images

v

Registration and interpolation
.
0
0
0

EELELELEL

o
o
o
o
0

Super-Resolution Algorithm
Super-Resolved Image
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Registration from Fourier information

Translation in space is a phase shift in frequency:

h(x,y) =flx=scy —s) & Flugw)= e_j(wxsx+wysy)F1(vawy)-

Translation parameters can be found from the NCPS:

ej(stXerysy) _ Fl(wx,wy)F;(wwiy) )
| F1(ws, wy ) F3 (wx; wy)

Construct an over-complete set of equations:
Fo(@ms, Wy )F5 (@, wm, ) )
7

Wmy Sx + Wm, Sy = arg S
g (‘Fl(wmxawmy)FZ (wmwimy)’

1

) s.t. m Z |¢(wmx +4 27r/,wmy +4 27Tk)| S Y-
myy Wmy,

1€Z\{0} k€Z\{0}
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Results: Image registration

LR image from a particular viewpoint. LR image from a different viewpoint.

100 shifts registered: RMSE is 0.012 pixels (DFT unable to distinguish the
shift).
Sampling kernel - Canon EOS 40D.
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Image super-resolution: Post registration

Set of low-resolution images

Py
)
L
@
&
S
o
[nd
o
3
W
>
Q.
-
(=g
@
=
e
o
o
[nd
o
3

EELELELEL
J

EELELELEL
]

7 Set of LR images

Super-resolved image

2: Sparse Sampling
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Image super-resolution: Post registration

Set of low-resolution images

Py
)
L
@
&
S
o
[nd
o
3
W
>
Q.
-
(=g
@
=
e
o
o
[nd
o
3

EELELELEL
J

EELELELEL
]

i Interpolated HR image

Super-resolved image

2: Sparse Sampling
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Results: Image super-resolution

One of 100 LR images (40 x 40). Interpolated image (400 x 400).

Deconvolution achieved using a sparse quad-tree based decomposition model
[ScholefieldD:14]

Sampling
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Results: Image super-resolution

One of 100 LR images (40 x 40). SR image (400 x 400).

Deconvolution achieved using a sparse quad-tree based decomposition model
[ScholefieldD:14].
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Application: Image Super-Resolution

Acquisition with Nikon D70

-

(a)Original (2014 x 3040) (b) ROI (128 x 128)  (b) Super-res (1024 x 1024)

For more details [Baboulaz:D:09, ScholefieldD:14]

Pier Luigi Dragotti
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)

For more details [Baboulaz:D:09, ScholefieldD:14]

Pier Luigi Dragotti
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Neural Activity Detection [OnativiaSD:13]
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Calcium Transient Detection

[ JS A O R == R L) =
pays <=
TIE kR
Peadi ~~

2 s 3 =
H el H =
£ = £ =

" A ~

i=th window

i window
(i) [ ) ) i i "= oraraismies
e togram

1 el s NL:

Time (a1
i o T T . :
(iv) Mindow lengh = 8 - Porescence sinal
ozf Window length = 32 —4 Orinal spies

0 0 A

“ Time (s)

Pier Luigi Dragotti
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Calcium Transient Detection

true positive rate

v
\

vt

v
v

i

A

FRI 7
- - - Fast deconv.

Deriv.&thres..
Filter&thres.

0.01 0.02 0.03 0.04

false positive rate
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

LMARLR (0N Y.

& NUGIEAR FALLOUT MAPS &=
3000/RADS, ‘ .
1500/RADS'

I 750/RADS

» The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

» The phenomenon is sampled in space and time using a sensor network.

» Sources often localised in space. Can we retrieve their location and the time of
activation?

: Sparse Sampling
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Localisation of Diffusion Sources using Sensor
Networks

» The diffusion equation is
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Localisation of Diffusion Sources using Sensor

Networks

Assume we have access to the following generalised measurements:
Ok, 1) = (W, (x)T (1), f)://wk(x)r,(t)f(x, t)dtdV,
QJt

with W) = e kt) k= 0,1,,2M — 1 and T, (t) = &"*/7, r = 0,1. Since

M
F(x,t) =D cmd(X — &m, t — 7m),

m=1

we obtain:

M
Q(k,r) = Z cme ™ K(61,m+ig2,m) g —irtm
m=1

This quantity is a sum of exponentials and parameters {cm}m, {&m}m, {Tm}m can be
recovered from it using Prony's method provided k =0,1,2M — 1.
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Localisation of Diffusion Sources using Sensor

Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/Q(uwk)dV—uf (WiVu — uV\Uk)~ﬁagdS) dt ://\kadth: Q(k,0).
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Localisation of Diffusion Sources using Sensor
Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (W, )dV — u% (W Vu — uV¥y) - nans) dt = //Q\kadth:Q(k,O).
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Localisation of Diffusion Sources using Sensor

Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:
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Localisation of Diffusion Sources using Sensor

Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/(/ (uW)dV — u% (W Vu — uV¥) - nans) dt = //\kadthfg(k 0).

Locations
!
O Int. Se
0 ., O Bndry Somsors
. . ~ + Diff. S¢
» The above equation provides a w P 0, ® —_ Boundary @%)
. . . D «@
relationship between the generalised N s ORI omen
. - | S —o--o.
measurements and the induced field W ® o 0 o o .
\ =)
. . ) ° o
» We have only discrete spatio-temporal >os © s © L q
o
sensor measurements o ‘l? 0 © o | ot
o
. . 038 + o C )
» We build a mesh to approximate the full " bo "o © o /
o | o ®
field integrals [ o9, ?
g o oo N

t 2: Sparse Sampling




Imperial College
London
Localisation of Diffusion Sources using Sensor

Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/</ —(u\Uk dV o (\lkau — UV\Uk) . ﬁanS) dt Z//kadth = Q(k7 0)
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Localisation of Diffusion Sources using Sensor

Networks

Assume r = 0, since W is analytic, using Green's theorem, we obtain:

/</ —(u\Uk dV o (\lkau — UV\Uk) . ﬁanS) dt Z//kadth = Q(k7 0)
o0 tJQ

Locations

© Int. Sensors
» The above equation provides a os O By Sersor o
relationship between the generalised oo How bomain &
measurements and the induced field o
0s
» We have only discrete spatio-temporal o8
sensor measurements 04

» We build a mesh to approximate the full
field integrals

» This is different from FEM because we 0 T TR TR T ;
use different priors
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Localisation of Diffusion Sources: Numerical Results
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(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).
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Localisation of Diffusion Sources: Real Data
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Localisation of Diffusion Sources: Real Data
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Conclusions and Outlook

Sampling signals using sparsity models:
» New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

» It is a non-linear problem

» Different possible algorithms with various degrees of efficiency and
robustness

Applications:
» Many actual and potential applications:
» But you need to fit the right model!

> Carve the right algorithm for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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Appendix
Orthogonal matching pursuit (OMP) finds the correct sparse representation

when
1 1
K < > (1 + ;) . (4)

Sketch of the Proof (Elad 2010, pages 65-67):
Assume the K non-zero entries are at the beginning of the vector in descending
order with y = Dx. Thus

K
y=>_xD (5)
1=1
First iteration of OMP work properly if |[D{ y| > |D/ y| for any i > K.

Using (5)

K K
|> xD{ D) > > xD/ D)
=1 I=1
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Appendix (cont'd)

Sketch of the Proof (cont'd):

But
K K K
13 3DI D1 > pal = S IxlIDI DIl = bal = 3 ol > (1 = p)(K = 1).
=1 =2 =2
Moreover,

K K K
> xD DI <Y xlIDI DIl <Y il < Paluk
I=1 1=1 I=1

Using these two bounds, we conclude that |D{ y| > | D/ y| is satisfied when
condition (4) is met. O
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