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« Part 1: Sparse Signal Representation ~90min

« Part 2: Sparse Sampling ~90min
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Signal Representation Problem and Notion of Sparsity
Mathematical Background:

« Bases and Frames

* Analysis and Synthesis Models

« Wavelet Theory Revisited

Sparsity in Union of Bases:

* |, and |, optimizations

» Sparse Representation Key Bounds

Sparsity according to Prony

Approximate sparsity and iterative shrinkage algorithms
Applications

Beyond Traditional Sparsity
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The Signal Representation Problem

Signal Processing aims to
decompose complex signals
using elementary functions which
are then easier to manipulate

x(1)= Y @)

j=—00
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WAV T

Any signal defined on a finite interval is represented by a sum of sinusoids
at different frequencies.
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N/ b

Any function of finite energy is given by the sum of the Haar function and
its translated and scaled versions.

Haar function is the first example of a wavelet!
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« Given two competing signal representations, which one is better?

« Signal Processing uses Occam’s razor to answer this question:
“among competing representations that predict equally well,
the one with the fewest number of components should be selected.”

« Wavelets are better because they provide sparse representations of
most natural signals

« This is why wavelets are used successfully in many signal processing
applications (e.g., image compression)
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Why Sparsity?

Image Compression

Original Lena Image JPEG (Compression Ratio  JPEG2000 (Compression
(256 x 256 pixels) 43:1) Ratio 43:1)

Note: images courtesy of dspworx.com
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Why Sparsity?

In signal processing we often have to solve ill-conditioned inverse
problems

Approach: given partial and noisy knowledge of your signal, amongst all
possible valid solutions, pick the sparsest one

This sparsity-driven principle has lead to state-of-the-art algorithms in
denoising, inpainting, deconvolution, sampling etc.

10
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Why Sparsity? Inpainting

The usual suspect
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Why Sparsity? Inpainting

Inpainting based on Scholefield-Dragotti. IEEE Trans. Image Processing 2014
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x(t) = E o, (1)

i=—w

Key Ingredients:

a set of ‘atoms’: {gpz}
a inner product: (T, ©;) = /w(t)wi(t)dt

a synthesis formula: x(7) = E o, (1)

i=—00

Many choices of {Sﬁz}

orthonormal bases (e.g., Fourier series, Haar wavelet, Daubechies wavelets)
biorthogonal bases (e.g., splines)
overcomplete expansions or frames

13
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Definition 1: The set of ‘atoms’ {¢: }iex € Vis called a basis of V when it is
complete meaning that for any signal x there exists a sequence &¢; such that

x(1) =Y ap, 1)

[=—00

and the sequence is unique.

Definition 2: The set of ‘atoms’ 1¢i fick € V' is called an orthogonal basis of the
subspace V when

a) itis a basis of V

b) Itis orthogonal: <90i, gok> — 0;_k

Note that in the case of orthogonal bases we have that (¢; = <x(t), D; (t)>

Consequently x(t) = Z (x(t), pi(t))pi(?)

¢ 14
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Definition 3: The set of ‘atoms’ {¥i}ick € Vis called a biorthogonal basis of the
subspace V when

a) itis a basis of V
b) itis not orthogonal:<907;, SOk> 7& 5i—k

In this case we have that @i = (Z(%), @i (%))
where the dual basis {Q; }icxc € V' issuchthat: (@;, or) = d;_k

Definition 4 (informal): The set of atoms’ 1¥i tiek € V' is called a frame
of V when it is overcomplete meaning that for any signal x
there exists a sequence ¢/; such that

x(1) =Y o)

but the sequence is not unique.
15
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A l:\
® \ P, 2y
U P,
P g
a) Orthogonal Basis b) Biorthogonal Basis ¢) Frame

16
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Assume the ‘atoms’{gﬁi} are finite dimensional column vectors of size N

Stack them one next to the other to form the synthesis matrix M:

T
M=1|¢1 - @
Lo ]

If M is square and invertible then{gpi} is a basis (of RNor CN)
If the inverse of M satisfies /1 — MH the basis is orthogonal

In the case of frames, M is invertible but is Tat’

17
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Remember the synthesis formula  X(?) = 2 o, (1)

i=—OO

In the finite dimensional case the inverse of M is the analysis matrix and
we have: oy = M_laj

AN AR

Expanded: : — —
(z, Pq) % — @ -

The synthesis formulais 7 = Mo <> x()= E o.@;(t)

[=—00

18
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Analysis and Synthesis Formulas: Frames Gase

« In the frame case the synthesis matrix M, in the the synthesis
formula & = M v, is “fat”

« The ‘pseudo-inverse’ matrix, M1, is the analysis matrix and is “tall”

19
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Analysis and Synthesis Formulas

« Sparse Signal Representation is mostly about the synthesis formula
- Sparse Sampling is mostly about the analysis formula

« We have been moving freely between continuous-time (infinite
dimensional) case and discrete-time (finite-dimensional) case.This is
usually legitimate, however, some frameworks (e.g. compressed sensing)
are limited to the finite dimensional case.

20
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N/ b

Any function of finite energy is given by the sum of the Haar function and
its translated and scaled versions:

0

X(t) = E E am,iwm,i(t) with wm,l(t) = \/;Tn w(z_mt — l)

ni=—0o0 i=—OO

21
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At scale m:

x, ()= a,1,,)

j=—00

T, =2" oty = (0.9 1T,)) o =(x()y(t /T, ~D) @ = (50 (t/T, =2)) et =(x(O),y(t/T, -3)

x (t)= i oayt/T, —i)

i=—w

22
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At scale m+1:

'xm+l (t) = E am+1,il/}m+1,i(t)

i=—oo

ay =(xO Y/ T,.) a, = {x(),p(t 1T, -1)) T, =2""

X ()= Y ap(t 1T, ~i)
j=—o0 23
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« At each scale the approximation of x(t) is obtained by using a prototype
function and its uniform shifts

« This fact allows us to use filters to implement the wavelet transform

p(t/Tm)

24
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The sub-space generated by the prototype function 90(75) and its uniform shifts
is called a shift-invariant sub-space.

The fact that shifts are uniform allows us to mix continuous-time and discrete-
time processing

The discrete-time version of the wavelet transform is implemented with

iterated filter-banks Ho |—(2])—

Stage J

@
Ho |—(2]) i |—])—
H1 __<I}_*

Stage 1

25
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Wavelets and Sparsity

 Wavelets annihilates polynomials

« Wavelets provide sparse representation of piecewise smooth functions

26
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Wavelets provide sparse representations of piecewise smooth images.
* In matrix/vector form y=Wa

Here the matrix W has size N x N and models the discrete-time wavelet transform of finite
dimensional signals.

Figure: Cameraman is reconstructed using only 8% of the wavelet coefficients

How about textures? The DCT is maybe better for textured regions

Key insight: use an overcomplete dictionary (frame) D made of the union of two bases to
obtain even sparser representations of images

27
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Y (real part plotted)

two complex exponentials

The above signal, y, is a combination of two spikes and two complex exponentials of different
frequency (real part of y plotted). In matrix vector form:

y=|1 F|] a=Da

where I is the N x N identity matrix and F isthe N x N Fourier transform. The matrix D
models the over-complete dictionary and has size N x 2N 58



e Source separation: decompose signals into a smooth part and
local innovations

e Prototype for the following problem:

Given two bases (or frames) D = |, ‘I’] . Represent an observed signal as
a superposition of a few atoms from ¥ and a few atoms from® .

Example: ( Curvelets + DCT)

images from [ Elad, Starck, Querre, Donoho, 2005]
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« Given y, you want to find its sparse representation

 l|deally you want to solve
(FPp): min|lallp st. y=Da.
« Alternatively you may consider the following convex relaxation

(P1): min|ally st. y=Da

=9 =1 =1
P s P / p P=)
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Given y, you want to find its sparse representation
|deally you want to solve

(FPp): min|lallp st. y=Da.
Alternatively you may consider the following convex relaxation

(Py): min|lally s.t. y=Da.

The problem (P,) can be solved using convex optimization methods (i.e., linear

programming) or greedy algorithms

31
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Algorithm 5 OMP—Orthogonal Matching Pursuit

Input: Dictionary D = [dy,...,d1] € CNXL  observation y € CV and error threshold 7

loptional argument, maximum number of iterations Ky ax|.

Output: Sparse vector & € CL.

o

10:
11:
12:

Initialise index k£ = 0.

Initialise solution z(®) = 0.
Initialise residual r(© = y — D &
Initialise support S©© = @.

while Hr(k)H; > 7 [optional: k < Kjax| do

0) — 4.

k< k+1
Compute efi] = ||z[i] d; — r(k_l)H; fori € {1,...,L}\S*V where z[i] =

dZH rk—=1)
[EAE

Find index ig = argmin;c ¢y s {eli]}.

Update support S® = S*=1 {4}

Compute solution £(*) = arg ming.cr || D & — yl|5 subject to supp{&} = S*).
Update residual »*) = y — D 2(F).

end while

32
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Given y, you want to find its K-sparse representation

|deally you want to solve
(Fp):  minlallp s.t. y=Da.
Alternatively you may consider the following convex relaxation

(Py): min|lally st. y=Da.

Key result due to Donoho-Huo [ IEEE Trans. on Information Theory 2001]

* (Py) is unique when the sparsity K satisfies K<~N

1
-« (Py) and (P,) are equivalent when K < Ex/ﬁ

33
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Sparsity in Pairs of Orthogonal Bases

Key extensions due to Elad-Bruckstein [I[EEE Trans. on Information Theory 2002]
Given an arbitrary pair of orthonormal bases Wy and ®y and the mutual
coherence

dfd;
D) = max :
D)= | I8 s el

(PO) is unique when K < 1/u(D)

(P0O) and (P1) are equivalent when

2u(D)*K, K, + p(D)max{K,,K,} —1 <0, (Tight Bound)

Alternatively (PO) and (P1) are equivalent when

K < (vV2-0.5)/u(D) ~0.9/u(D) (Weak Bound)

34
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Sparsity in Pairs of Orthogonal Bases

« (PO0) is unique when K < 1/M(D)

« (PO) and (P1) are equivalent when

2u(D)*K, K, + p(D)max{K,,K,} —1 <0, (Tight Bound)

« Alternatively (PO) and (P1) are equivalent when

K < (vV2-0.5)/u(D) ~ 0.9/u(D) (Weak Bound)

 Please note:

« K=K, +K
P .q
* In Fourier and Canonical case ,LL(D) = VN

35
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Sparsity Bounds in Pairs of Orthogonal Bases

36
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Sparsity Bounds in Ovecomplete Dictionaries

Extensions [Tropp-04, GribonvalN:03, Elad-10]

» For a generic over-complete dictionary D, (P1) is equivalent to (Pp) when?

1 1
K<—-(1+—-].
2 %
» When D is a concatenation of J orthonormal dictionaries (P1) is equivalent to

(Po) when

K < [\@—1+ﬁ]u‘l

37



Imperial College

The Tyranny of L.: Is there life beyond BP?

* There is still a gap between |, and I,

minimizations. Can we do better than Basis
Pursuit?

* (PO) is NP-Hard for unrestricted dictionary. Can
we say the same for structured dictionaries like
Fourier and Identity?

« What happens when the unicity constraint is
not met?

12

BP exact boun'd ,
E S
, 2
“““““““ %'O
72N
20N\
(o4
%
¢
)
1 1 1 0
0 3 6 9 12
K
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Sparsity according to Prony: Overview of Prony’s Method

Consider the case when the signal y is made only of K Fourier atoms, i.e., y=Fc
for some K-sparse vector ¢

The sparse vector ¢ can be reconstructed from only 2K consecutive entries of y

Sketch of the Proof:

* The nth entry of y is of the form

1 K—1 K—1
_ j2mmgn/N __ n
Un \/—N g Cm,, € wn/ g QUL
k=0 k=0

where m, is the index of the kth nonzero element of ¢

39
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Overview of Prony’s Method

« Consider the polynomial:
K

P(x) = H(:I: —ug) = o 4+ b hox® 2+ 4+ hg_ 12+ hk.
k=1

« ltis easy to verify that hn * Yp — 0

* |n matrix-vector form, we get

[ Yi+K Yi+K-1 T Y 1r 1
Yi+K+1 Y+ K e Yi+1 hy
. . h2 f— TK,lh — O
Yl+2K -2 h:
| Yit2Kk—1 Yi+2K-2 0 Yiek-1 | L KL
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Overview of Prony’s Method

« The vector of polynomial coefficients h=[1, h,, . . .,h,J"is in the null space of T,
Moreover, T, ,has size K x (K+1) and has full rank, therefore, h is unique.

* Prony's method summary:
* Given the input y,, build the Toeplitz matrix T, , and solve for h.

K
« Find the roots P(z) =1+ Z het™ " These roots are exactly the exponentials
n=1
{uk}fz_ol. They give you the locations of the non-zero entries of your vector.

» Given the locations of the non-zero entries find their amplitudes (this is a linear
problem)

41
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ProSparse-Prony’'s hased Sparsity

« Given Y = [F; I] = DT \where xis (K, K,)-sparse

“clean” “clean” “clean”
interva interva interva
* K, Fourier atoms —> need a “clean” interval of length 2K,

 For sufficiently sparse signals, such intervals always exist

« Sequential search and test: polynomial complexity

42
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ProSparse Properties

,( N

Theorem [Dragotti & Lu, IEEE IT. 2014] Let D = [F , I ] and Yy € (CN
an arbitrary signal. There exists an algorithm, with a worst-case complexity
of O( N 3) , that finds all (K, K,)-sparse signals x such that

y=Dm and Kqu<N/2

43
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ProﬁSpa rse
exact bound

44
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ProSparse vs BP (noisy case)

« Support Recovery

I ProSparse I ProSparse
I BPDN I BPDN
0.8+¢ . 0.8}
0.6 . 0.6}
0.4+t - 0.4+t
0.2} - 0.2}
0 - —_ L
4 6 8 10 12 14 16 4 6 8 10 12 14 16
K K

(@) SNR = 10 dB (b) SNR = 5 dB
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Recovery of Approximately Sparse Signals

Assume y is not exactly sparse. You may also observe a corrupted (e.g., noisy
version) of y

Rather than solving (P,)
(P1): minlal; st. y=Da.

Consider the following relaxed version:

min [y — Dal3 + Ao,

This basic formulation applies to denoising, deconvolution, inpainting (see for
example Elad et al. SPIE 2007)

46
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Recovery of Approximately Sparse Signals

Consider the following relaxed version:

min [}y — Da|3 + ],

This basic formulation applies to denoising, deconvolution, inpainting (see for
example Elad et al. SPIE 2007)

Can be solved iteratively as follows

1

Qi1 = Sx/c EDT(Y — Da;) + «;

Here S is a shrinkage operator (e.g., soft-threshold)

47
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Application: Image Denoising

Original Degraded (PSNR=20dB) State-of-the-Art BM3D-SAPCA
(PSNR = 29.81 dB)

48



Imperial College
London

Spot the difference ;-)

49
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Application: Image Forensic — Recapture Detection
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Application: Image Forensic - Alias Free Recapture

51
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Recapture Footprints: Blurring

Our key footprint: unique blurred patterns introduced by acquisition devices
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Proposed Scheme

\

\

\

.. Camera3 m

, Dictionary Setup
N—
LSF
Camera 1 Estimation
S\ —
Camera 2
o L/

Camera 3
Recapture

Camera 1 - K

A

Camera 2 | --------

Building
Dictionary

Es VAN
f

Thongkamwitoon, Muammar and Dragotti, IEEE Trans. on INFS 2015

Unknown
,  Query image
* with edges

\

Select1 line f

[ Inner product }

[¢; ¢ C3;C,Cs¢5C; Cg |

Maximum Projection

Best
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Beyond Traditional Sparsity Models

» Traditional sparsity models are essentially linear and apply essentially
only to 1-D signals

* Possible 2-D extension: decompose the image with tiles of different size
each being made of two smooth regions separated by a straight edge
(semi-parametric model)

54
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Beyond Traditional Sparsity Models (cont'd)

» The better the sparsity, the better the results ;-)
Scholefield-Dragotti. IEEE Trans. Image Processing 2014

Degraded State-of-the-Art New Sparsity Model
(PSNR=10.6dB) (PSNR = 26.8 dB) (PSNR = 27.1 dB)

55
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Beyond Traditional Sparsity Models (cont'd)

 Inpainting: Scholefield-Dragotti. [IEEE Trans. Image Processing 2014

Original 90% missing pixels Inpainted using
new Sparsity Model

56
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Summary

« “Hey Hey My My the notion of Sparsity will never die” ;-)

« Traditional sparsity is based around two pillars:
« An expansion-based sparsity model
« Reconstruction based on convex programming (e.g., BP)

« Room for more creative solutions both in terms of sparsity and

reconstruction method
« E.g. Reconstruction using ProSparse outperforms Convex

Programming in specific settings
« E.g. Semi-Parametric sparsity models for images outperforms state-

of-the-art image processing algorithms

57
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Key papers and books on Sparse Signal Representation

* M. Elad,'Sparse and Redundant Representations’, Springer, 2010

« D. L.Donoho and P.B. Starck, ‘Uncertainty principles and signal recovery’, SIAM J. Appl. Math., 1989,
pp. 906-931.

« D.L. Donoho and X. Huo, ‘Uncertainty principles and ideal atomic decomposition’, IEEE Trans. on Info..
Theory, vol.47(7, pp.2845-62, November 2001.

« M. Elad et. al, ‘A wide-angle view at iterated shrinkage algorithms’, SPIE 2007

ProSparse:
« P.L. Dragottiand Y. M. Lu, “On Sparse Representation in Fourier and Local Bases,” IEEE Transactions on
Information Theory, vol. 60, no. 12, pp. 7888-7899, 2014.

BM3D:
« K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain
collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, August 2007.

New Image Sparsity Models:
« A. Scholefield and P.L. Dragotti Quadtree Structured Image Approximation for Denoising and Interpolation,
IEEE Transactions on Image Processing, vol. 23, no. 3, March 2014. (Software)

Image Recapture Detection:

« T. Thongkamwitoon, H. Muammar and P. L. Dragotti, An image recapture detection algorithm based on
learning dictionaries of edge profiles, IEEE Trans on Info. Forensics and Security, vol. 10 (5), May 2015. 58



