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Outline 

 
•  Part 1: Sparse Signal Representation ~90min 

•  Part 2: Sparse Sampling ~90min 
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Outline 

 
•  Signal Representation Problem and Notion of Sparsity  
•  Mathematical Background: 

•  Bases and Frames 
•  Analysis and Synthesis Models 
•  Wavelet Theory Revisited 

•  Sparsity in Union of Bases: 
•  l0 and l1 optimizations 
•  Sparse Representation Key Bounds 

•  Sparsity according to Prony 
•  Approximate sparsity and iterative shrinkage algorithms 
•  Applications 
•  Beyond Traditional Sparsity 
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The Signal Representation Problem 

Signal Processing aims to 
decompose complex signals 
using elementary functions which 
are then easier to manipulate 

x(t) = αi
i=−∞

∞

∑ ϕi (t)
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Signal Representation: Fourier Series 

Any signal defined on a finite interval is represented by a sum of sinusoids  
at different frequencies. 

= + + 
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Signal Representation: Haar Wavelet 

= + + 

Any function of finite energy is given by the sum of the Haar function and  
its translated and scaled versions.  

Haar function is the first example of a wavelet! 
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Sparse Signal Representations  

•  Given two competing signal representations, which one is better? 

•  Signal Processing uses Occam’s razor to answer this question:  
     “among competing representations that predict equally well,  
      the one with the fewest number of components should be selected.” 
 
•  Wavelets are better because they provide sparse representations of  
     most natural signals  
 
•  This is why wavelets are used successfully in many signal processing  
     applications (e.g., image compression) 
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Wavelets vs Fourier 

Wavelets  Fourier 

Coefficients used: 2% 
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Why Sparsity? 
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Why Sparsity? 

•  In signal processing we often have to solve ill-conditioned inverse 
problems 

•  Approach: given partial and noisy knowledge of your signal, amongst all 
possible valid solutions, pick the sparsest one 

•  This sparsity-driven principle has lead to state-of-the-art algorithms in 
denoising, inpainting, deconvolution, sampling  etc.  
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Why Sparsity? Inpainting 

The usual suspect  
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Why Sparsity? Inpainting 

 Inpainting based on Scholefield-Dragotti. IEEE Trans. Image Processing 2014  
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Signal Representations  

 
 
Key Ingredients: 
 
•  a set of ‘atoms’:  

•  a inner product: 

•  a synthesis formula:   

Many choices of   

•  orthonormal bases (e.g., Fourier series, Haar wavelet, Daubechies wavelets) 
•  biorthogonal bases (e.g., splines) 
•  overcomplete expansions or frames  
 
 

x(t) = αi
i=−∞

∞

∑ ϕi (t)

x(t) = αi
i=−∞

∞

∑ ϕi (t)

hx,'ii =
Z

x(t)'i(t)dt

{'i}

{'i}
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Signal Representation: Bases and Frames  

Definition 1: The set of ‘atoms’                          is called a basis of V when it is  
complete meaning that for any signal x there exists a sequence       such that  
  

and the sequence is unique. 
 

↵i

x(t) = αi
i=−∞

∞

∑ ϕi (t)

{'i}i2K 2 V

Definition 2: The set of ‘atoms’                          is called an orthogonal basis of the  
subspace V when  
a)  it is a basis of V 
b)  It is orthogonal: 
  
Note that in the case of orthogonal bases we have that  
 
Consequently 

{'i}i2K 2 V

h'i, 'ki = �i�k

↵i = hx(t), 'i(t)i
x(t) =

X

i

hx(t), 'i(t)i'i(t)



15 

Signal Representation: Bases and Frames  

Definition 3: The set of ‘atoms’                          is called a biorthogonal basis of the  
subspace V when 
a)  it is a basis of V 
b)  it is not orthogonal: 

In this case we have that    
where the dual basis                                is such that: 
 
 

{'i}i2K 2 V

Definition 4 (informal): The set of ‘atoms’                          is called a frame  
of V when it is overcomplete meaning that for any signal x  
there exists a sequence       such that  
  

but the sequence is not unique. 
 

{'i}i2K 2 V

x(t) = αi
i=−∞

∞

∑ ϕi (t)

↵i

h'i, 'ki 6= �i�k

↵i = hx(t), '̃i(t)i
{'̃i}i2K 2 V h'̃i, 'ki = �i�k
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Bases and Frames: Geometric Interpretation  
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Bases and Frames: Matrix Interpretation  

•  Assume the ‘atoms’            are finite dimensional column vectors of size N 

•  Stack them one next to the other to form the synthesis matrix M: 

•  If M is square and invertible then           is a basis (of RN or CN ) 

•  If the inverse of M satisfies                            the basis is orthogonal 

•  In the case of frames, M is invertible but is ‘fat’  

 
 

{'i}

M =

2

4
" · · · " · · ·
'1 · · · 'i · · ·
# · · · # · · ·

3

5

{'i}

M�1 = MH
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Analysis and Synthesis Formulas 

•  Remember the synthesis formula                                 

•  In the finite dimensional case the inverse of M is the analysis matrix and  
     we have: 

•  Expanded: 

 
•  The synthesis formula is                           

 
 

x(t) = αi
i=−∞

∞

∑ ϕi (t)

0

BBBB@

hx, '̃1i
...

hx, '̃ii
...

1

CCCCA
=

0

BBBB@

↵1
...

↵i
...

1

CCCCA
=

2

664

 '̃1 !
· · · · · · · · ·
 '̃i !
· · · · · · · · ·

3

775

| {z }
M�1

0

BBBB@

x1
...
xi
...

1

CCCCA

↵ = M

�1
x

x = M↵ ⇔ x(t) = αi
i=−∞

∞

∑ ϕi (t)
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Analysis and Synthesis Formulas: Frames Case  

•  In the frame case the synthesis matrix M, in the the synthesis 
formula                  , is “fat” 

•  The ‘pseudo-inverse’ matrix, M-1, is the analysis matrix and is “tall”  

x = M↵
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Analysis and Synthesis Formulas 

•  Sparse Signal Representation is mostly about the synthesis formula 

•  Sparse Sampling is mostly about the analysis formula 

•  We have been moving freely between continuous-time  (infinite 
dimensional) case and discrete-time (finite-dimensional) case.This is 
usually legitimate, however, some frameworks (e.g. compressed sensing) 
are limited to the finite dimensional case.  
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Wavelet Representation Revisited  

= + + 

Any function of finite energy is given by the sum of the Haar function and  
its translated and scaled versions:  

x(t) = αm,i
i=−∞

∞

∑ ψm,i (t)
m=−∞

∞

∑ ψm,i (t) = 1
2m
ψ(2−m t − i)with 
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Wavelet Representation Revisited  

α0 = x(t),ψ(t /Tm ) α1 = x(t),ψ(t /Tm −1) α2 = x(t),ψ(t /Tm − 2) α3 = x(t),ψ(t /Tm −3)

xm (t) = αi
i=−∞

∞

∑ ψ(t /Tm − i)

xm (t) = αm,i
i=−∞

∞

∑ ψm,i (t)

At scale m: 

Tm = 2
m
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Wavelet Representation Revisited  

α0 = x(t),ψ(t /Tm+1) α1 = x(t),ψ(t /Tm+1 −1)

xm+1(t) = αi
i=−∞

∞

∑ ψ(t /Tm+1 − i)

xm+1(t) = αm+1,i
i=−∞

∞

∑ ψm+1,i (t)

At scale m+1: 

Tm+1 = 2
m+1
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Wavelet Representation Revisited 

•  At each scale the approximation of x(t) is obtained by using a prototype 
function and its uniform shifts  

•  This fact allows us to use filters to implement the wavelet transform 

 

↵i =
Z

x(⌧)h(iTm � ⌧)d⌧ =
Z

x(⌧)'̃(⌧/Tm � i)d⌧ = hx(t), '̃(t/Tm � i)i
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Wavelet Representation Revisited 

•  The sub-space generated by the prototype function         and its uniform shifts 
is called a shift-invariant sub-space.  

•  The fact that shifts are uniform allows us to mix continuous-time and discrete-
time processing 

•  The discrete-time version of the wavelet transform is implemented with 
iterated filter-banks 

 

'(t)
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Wavelets and Sparsity  

•  Wavelets annihilates polynomials  

•  Wavelets provide sparse representation of piecewise smooth functions 
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Sparse Representation in a union of two bases  
•  Wavelets  provide sparse  representations of piecewise smooth images.   
•  In matrix/vector form y=Wα  
•  Here the  matrix  W  has size N × N  and  models  the  discrete-time wavelet transform of finite 

dimensional  signals. 
 
 

•  How about textures? The DCT is maybe better for textured regions 
•  Key insight: use an overcomplete dictionary (frame) D made of the union of two bases to 

obtain even sparser representations of images 
 

Figure:  Cameraman  is reconstructed using only 8% of the wavelet coefficients  
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Sparse Representation in Fourier and Canonical Bases 

 
The  above  signal, y, is a combination of two spikes and  two complex exponentials of different  
frequency  (real  part  of y plotted). In matrix  vector  form:  

  
 
where I  is the  N × N  identity  matrix  and  F  is the  N × N  Fourier  transform. The matrix  D 
models  the over-complete dictionary  and  has size N × 2N  
 
 

y = [ I F] ↵ = D↵

two spikes 

(real part plotted) 
two complex exponentials 



Applications 
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• Source separation: decompose signals into a smooth part and 
local innovations 

 

• Prototype for the following problem: 

Given	
  two	
  bases	
  (or	
  frames)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  Represent	
  an	
  observed	
  signal	
  as	
  
a	
  superposi9on	
  of	
  a	
  few	
  atoms	
  from	
  	
  	
  	
  	
  	
  	
  and	
  a	
  few	
  atoms	
  from	
  	
  	
  	
  	
  . 

Example: (Curvelets + DCT) 

images from [Elad, Starck, Querre, Donoho, 2005] 
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Sparse Representation in Fourier and Canonical Bases 

 
•  Given y,  you want to find its sparse representation  

•  Ideally you want to solve 

 
•  Alternatively you may consider the following convex relaxation 

(P1) : min k↵k1 s.t. y = D↵.

(P0) : min k↵k0 s.t. y = D↵.

32 SPARSE REPRESENTATION OF 1-D AND 2-D FUNCTIONS 2.2

1

�✓�p

✓
1 2−1−2

p = 1
10

p = 1
2p = 1p = 2

Figure 2.2.: The lp-norms in 1-D for various values of p.

meet the requirements of a norm for all 0 ≤ p ≤ 21. To gain an intuition for the solution of (2.2) for

di↵erent values of p consider the graphical illustration given in Fig. 2.1. The figure shows various

lp-balls (level sets of an lp-norm) touching the a�ne subspace of solutions to y =B✓. For each value

of p, the smallest lp-ball that touches the a�ne subspace has been plotted and this point of contact

is the solution to (2.2). For the l 1
2
and l1 balls, these intersections occur on an axis suggesting that

these norms promote sparse solutions.

To further examine the properties of these norms, Fig. 2.2 shows a plot of �✓�p in 1-D for various

values of p. It is clear that as p→ 0, �✓�p approaches the indicator function

1{R�{0}}(✓) =
�����������

1 if ✓ ≠ 0
0 if ✓ = 0 .

This natural extension leads to the l0-norm (again this is not strictly a norm), which is defined to

be the number of non-zero entries of ✓:

�✓�0 = �{i � ✓[i] ≠ 0}� ,
1A norm, � �, is a function from a vector space V to [0,∞) that satisfies the following three properties for all ✓ ∈ V :

1. �✓� = 0 i↵ ✓ = 0
2. �✓1 + ✓2� ≤ �✓1� + �✓2� (triangle inequality)

3. �k✓� = �k� �✓� ∀k ∈ C (scalability)
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Sparse Representation in Fourier and Canonical Bases 

 
•  Given y,  you want to find its sparse representation  

•  Ideally you want to solve 

 
•  Alternatively you may consider the following convex relaxation 

•  The problem (P1) can be solved using convex optimization methods (i.e., linear 
programming) or greedy algorithms 

(P1) : min k↵k1 s.t. y = D↵.

(P0) : min k↵k0 s.t. y = D↵.
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Sparse Representation via OMP 

 

6.1. Introduction

Algorithm 5 OMP—Orthogonal Matching Pursuit [16, 48, 66]

Input: Dictionary D = [d

1

, . . . ,dL] 2 CN⇥L, observation y 2 CN and error threshold ⌘
[optional argument, maximum number of iterations K

max

].
Output: Sparse vector x 2 CL.
1: Initialise index k = 0.
2: Initialise solution x

(0)

= 0.
3: Initialise residual r(0) = y �Dx

(0)

= y.
4: Initialise support S(0)

= ;.
5: while

�

�

r

(k)
�

�

2

2

> ⌘ [optional: k < K
max

] do
6: k  k + 1

7: Compute e[i] =
�

�z[i]di � r

(k�1)

�

�

2

2

for i 2 {1, . . . , L}\S(k�1), where z[i] =
d

H
i r

(k�1)

kdik2
2

.

8: Find index i
0

= argmini2{1,...,L}\S(k�1)

{e[i]}.
9: Update support S(k)

= S(k�1) [ {i
0

}.
10: Compute solution x

(k)
= argmin

x̃2CL kD x̃� yk2
2

subject to supp{x̃} = S(k).
11: Update residual r(k) = y �Dx

(k).
12: end while

of normal equations:

D

H
S(k) DS(k) x̃S(k) = D

H
S(k) y , D

H
S(k) (DS(k) x̃S(k) � y)

| {z }

=�r

(k)

= 0. (6.6)

We thus have that the residual at iteration k is orthogonal to the elements of the dictionary
that have been selected up to this iteration, that is, the elements in DS(k) . This is the
reason why the OMP algorithm has the word orthogonal in its name. The tolerance
parameter imposes a maximum to the norm of this residual.

The Cadzow signal enhancement algorithm [9] is a generic strategy that seeks to denoise
a signal before applying an actual signal recovery algorithm. The approach is based on
imposing sequentially, at each iteration, a set of properties that the signal is hypothesised
to possess. For the observed signal given as in (6.1) and (6.2), if we assume that the spikes
are also part of the noise, we can apply Cadzow’s algorithm to try to recover the original
Fourier atoms. This is the principle that is applied in the algorithm that is presented in
this chapter.

The rest of the chapter is organised as follows: Section 6.2 presents the Cadzow denoising
algorithm particularised to our setup. Section 6.3 describes the novel noisy sparse recovery
algorithm. Section 6.4 is an analysis of the algorithm from a probabilistic point of view
to establish a guaranteed performance condition for the simple case where there is one
Fourier atom and one spike. Section 6.5 presents simulation results where the algorithm
is compared against state of the art algorithms for sparse recovery. We then conclude in
Section 6.6.

109
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Sparse Representation in Fourier and Canonical Bases 

 
•  Given y,  you want to find its K-sparse representation  

•  Ideally you want to solve 

 
•  Alternatively you may consider the following convex relaxation 

•  Key result due to Donoho-Huo [ IEEE Trans. on Information Theory 2001] 

•  (P0) is unique when the sparsity K satisfies 

•  (P0) and (P1) are equivalent when   

(P1) : min k↵k1 s.t. y = D↵.

(P0) : min k↵k0 s.t. y = D↵.

K < N

K <
1
2

N
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Sparsity in Pairs of Orthogonal Bases 

 
•  Key extensions due to Elad-Bruckstein [IEEE Trans. on Information Theory 2002] 
•  Given an arbitrary pair of orthonormal bases  ΨN  and ΦN   and the mutual 

coherence 

 

•  (P0) is unique when  
 
•  (P0) and (P1) are equivalent when   

 
•  Alternatively  (P0) and (P1) are equivalent when 

µ(D) = max

1k,jN,k 6=j

|dT
k dj |

kdkkkdjk
,

K < 1/µ(D)

2µ(D)

2KpKq + µ(D) max{Kp, Kq}� 1 < 0, (Tight Bound)

K < (
p

2� 0.5)/µ(D) ⇠ 0.9/µ(D) (Weak Bound)
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Sparsity in Pairs of Orthogonal Bases 

 
•  (P0) is unique when  
 

•  (P0) and (P1) are equivalent when   

 
•  Alternatively  (P0) and (P1) are equivalent when 

•  Please note:  
•  K=Kp+Kq 
•  In Fourier and Canonical case 

K < 1/µ(D)

2µ(D)

2KpKq + µ(D) max{Kp, Kq}� 1 < 0, (Tight Bound)

K < (
p

2� 0.5)/µ(D) ⇠ 0.9/µ(D) (Weak Bound)

µ(D) =
p

N
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Sparsity  Bounds in Pairs of Orthogonal Bases 

0 3 6 9 12
0

3

6

9

12

BP#exact#bound

BP#simplified#bound

bound

(P
0 )

Kp

Kq
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Sparsity  Bounds in Ovecomplete Dictionaries 
Sparsity in Redundant Dictionaries (cont’d)

Extensions [Tropp-04, GribonvalN:03, Elad-10]

I For a generic over-complete dictionary D, (P1) is equivalent to (P0) when2

K <
1

2

„
1 +

1

µ

«
.

I When D is a concatenation of J orthonormal dictionaries (P1) is equivalent to
(P0) when

K <

»p
2� 1 +

1

2(J � 1)

–
µ�1

2Proof in Appendix.

Pier Luigi Dragotti
Sparse Sampling
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The Tyranny of l1:  Is there life beyond BP? 

 
 
•  There is still a gap between l0 and l1 

minimizations. Can we do better than Basis 
Pursuit? 

•  (P0) is NP-Hard for unrestricted dictionary. Can 
we say the same for structured dictionaries like 
Fourier and Identity? 

•  What happens when the unicity constraint is 
not met? 0 3 6 9 12

0

3

6

9

12

BP#exact#bound

BP#simplified#bound

bound

(P
0 )

Kp

Kq
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Sparsity  according to Prony: Overview of Prony’s Method 

 
•  Consider the case when the signal y is made only of K Fourier atoms, i.e., y=Fc 

for some K-sparse vector c 
•  The sparse vector c can be  reconstructed from only 2K consecutive entries of y 

•  Sketch of the Proof: 

•  The nth entry of y is of the form 

     where mk is the index of the kth nonzero element of c 

yn =
1p
N

K�1X

k=0

cmk ej2⇡mkn/N =
K�1X

k=0

↵kun
k ,
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Overview of Prony’s Method 

 
•  Consider the polynomial: 

•   It is easy to verify that 

•  In matrix-vector form, we get   
 

 

P (x) =
KY

k=1

(x� uk) = x

K + h1x
K�1 + h2x

K�2 + . . . + hK�1x + hK .

hn ⇤ yn = 0

2

6666664

yl+K yl+K�1 · · · yl

yl+K+1 yl+K · · · yl+1
...

. . . . . .
...

yl+2K�2
. . . . . .

...
yl+2K�1 yl+2K�2 · · · yl+K�1

3

7777775

2

666664

1
h1

h2
...

hK

3

777775
= TK,lh = 0
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Overview of Prony’s Method 

 
•  The vector of polynomial coefficients h=[1, h1, . . .,hk]T is in the null space of  Tk,l. 

Moreover, Tk,l has size K x (K+1) and has full rank, therefore, h is unique. 

•  Prony's method summary: 
•  Given the input yn, build the Toeplitz matrix  Tk,l and solve for h.  

•  Find the roots                                 . These roots are exactly the exponentials  

                       . They give you the locations of the non-zero entries of your vector. 

•  Given the locations of the non-zero entries find their amplitudes (this is  a linear 
problem) 

 
 

 

P (x) = 1 +
KX

n=1

hkx

K�k

{uk}K�1
k=0
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ProSparse – Prony’s based Sparsity  

 
•  Given                                            where x is (Kp,Kq)-sparse  

 
 

 

•  Kp Fourier atoms —> need a “clean” interval of length 2Kp 

•  For sufficiently sparse signals, such intervals always exist 

•  Sequential search and test: polynomial complexity 

“clean”  
interval 

“clean”  
interval 

“clean”  
interval 
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ProSparse  Properties 

  

Theorem [Dragotti & Lu, IEEE IT. 2014] Let                      and                 

an arbitrary signal. There exists an algorithm, with a worst-case complexity 

of               , that finds all (Kp,Kq)-sparse signals x  such that 

 
 

 

and 
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ProSparse Bounds vs BP 

0 3 6 9 12
0

3

6

9

12

BP#exact#bound

BP#simplified#bound

bound

(P
0 )

Kp

Kq
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ProSparse vs BP (noisy case) 

Sparsity According to Prony: From Structured to Unstructured Representations and Back
Jon Oñativia 1, Yue M. Lu 2 and Pier Luigi Dragotti 1
1 Communications and Signal Processing Group (CSP), Imperial College London, UK
2 Signals, Information and Networks Group (SING), Harvard University, USA

Work supported by the European Research Council starting investigator award Nr. 277800 (RecoSamp).

Introduction

• The problem of finding the sparse representation of a signal has attracted
a lot of attention over the last decade.

• Compressed sensing established uniqueness conditions and reconstruc-
tion algorithms by relaxing a non-convex optimisation problem [1], [2].

• Recent results [3] have shown that it is possible to recover sparse repre-
sentations beyond the uniqueness limits.

• Here, we show the average performances of such algorithm and the ap-
plication of such methods to the extended case of union of frames.

ProSparse, Prony’s method for sparse reconstruction

• Let y 2 CN be a finite dimensional signal that has a K-sparse represen-
tation in an overcomplete dictionary:

y = Dx =

⇥
�, 

⇤ 
x�

x 

�
,

where x is made of Kf atoms of � and Ks atoms of , with K = Kf +Ks.
• Intractable approach: (P0) : arg min

x̃

kx̃k0 s.t. y = D x̃.
• Basis Pursuit (BP) replaces the `0-norm with the `1-norm.

Proposition 1. (ProSparse [3]) Assume D = [F , I ], where F and I

are, respectively the N ⇥ N Fourier and identity matrices. Let y 2 CN

be an arbitrary signal. There exists an algorithm, with a worst-case
complexity of O(N 3

), that finds all (Kf,Ks)-sparse signals x such that

y = Dx and Kf Ks < N/2.

Prony’s method

• Clean window: 2Kf consecutive samples only due to Fourier atoms:
yn =

PKf

k=1 ak e
i!kn.

• Filter with zeros at z = e�i!k: H(z) =
QKf

k=1

�
1� e�i!k z�1

�
.

• Clean window is annihilated by H(z): yn⇤hn = 0, in matricial form: S h = 0.

Figure 1: Noiseless perfect reconstruction bounds.

Average performance, phase transition

• In the noiseless scenario, if the sparsity constraint Kf Ks < N/2 is satis-
fied, perfect reconstruction is guaranteed.

• When we go beyond this condition, the algorithm is still able to reconstruct
the sparse vector with high probability for a much larger area.

Proposition 2. Let y 2 CN be a mixture of Fourier atoms and spikes
chosen uniformly at random. Let Kf = ⌧ logN be the number of
Fourier atoms. If there are Ks = ↵N spikes, then,

lim

N!1
P {algorithm succeeds} =

(
1, if ⌧ < C(↵),

0, otherwise.

Figure 2: Empirical probability of success when Ks = ↵N and Kf = ⌧ logN , with N = 10

6.
In green, the deterministic bound (Kf Ks = N/2), in red, the phase transition bound.

Union of frames

• ProSparse can naturally be applied to the case where the first matrix is a
Fourier frame of size N ⇥M , with N < M (Proposition 2 also holds):

D = [FN,M, IN ]

Figure 3: Empirical probability of success. Overcomplete dictionary: Fourier frame of size
N ⇥M , where N = 64 and M = 256, and the Identity matrix of size N ⇥ N . For each pair
(Ks,Kf), 100 realizations of the sparse vector x (amplitudes drawn from N (0, 1)).

Noisy scenario

• In the presence of noise, the reconstruction algorithm is based on re-
moving the contribution of the spikes and applying Prony’s method to the
entire vector y

K

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
ProSparse
BPDN

K

4 6 8 10 12 14 16
0

0.2
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0.6

0.8

1
ProSparse
BPDN

(a) SNR = 10 dB (b) SNR = 5 dB

Figure 4: Empirical probability of support retrieval for different levels of noise when the dic-
tionary is the union of Fourier and canonical bases. N = 64 and Ks = Kf = 50%K. For
each sparsity level, 20 different realizations of the sparse vector x have been generated
and for each vector 20 different realizations of complex white Gaussian noise.

(a) SNR = 10 dB (b) SNR = 5 dB

Figure 5: Empirical probability of support retrieval for different levels of noise when the
dictionary is the union of a Fourier frame and the canonical basis. The dimension of the
Fourier frame is 64⇥ 256 and for the canonical basis N = 64. Ks = 25%K and Kf = K �Ks.
For each sparsity level, 20 different realizations of the sparse vector x have been generated
and for each vector 20 different realizations of complex white Gaussian noise.

Conclusions
• ProSparse is a polynomial complexity algorithm that is able to find all the

sparse solutions that satisfy some sparsity conditions.
• Here we have shown that the algorithm is able to find the sparse solution

with high probability well beyond these sparsity levels.
• In the case of the union of a Fourier frame and the identity matrix,

ProSparse outperforms Basis Pursuit in a region of the (Kf,Ks) plane.
• This framework can be extended to other relevant pairs of bases, for in-

stance, the case of the union of DCT and Haar.
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Recovery of Approximately Sparse Signals  

 
•  Assume y is not exactly sparse. You may also observe a corrupted (e.g., noisy 

version) of y   

•  Rather than solving (P1) 

 
•  Consider the following relaxed version: 

 
•  This basic formulation applies to denoising, deconvolution, inpainting (see for 

example Elad et al. SPIE 2007) 

(P1) : min k↵k1 s.t. y = D↵.

min
↵
ky �D↵k2

2 + �k↵k1
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Recovery of Approximately Sparse Signals  

 
•  Consider the following relaxed version: 

 
•  This basic formulation applies to denoising, deconvolution, inpainting (see for 

example Elad et al. SPIE 2007) 

•  Can be solved iteratively as follows 

•  Here       is a shrinkage  operator (e.g., soft-threshold) 

min
↵
ky �D↵k2

2 + �k↵k1

↵i+1 = S�/c

✓
1
c
DT (y �D↵i) + ↵i

◆

S
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Application: Image Denoising 

Original Degraded (PSNR=20dB) State-of-the-Art BM3D-SAPCA 
(PSNR = 29.81 dB) 
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Application: Image Forensic 

Spot the difference ;-) 
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Application: Image Forensic – Recapture Detection 
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Application: Image Forensic – Alias Free Recapture 
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Recapture Footprints: Blurring 

Our key footprint: unique blurred patterns introduced by acquisition devices  

Single Capture 

Recapture 
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Beyond Traditional Sparsity Models  

•  Traditional sparsity models are essentially linear and apply essentially 
only to 1-D signals 

•  Possible 2-D extension: decompose the image with tiles of different size 
each being made of two smooth regions separated by a straight edge 
(semi-parametric model)  IEEE TRANSACTIONS ON IMAGE PROCESSING 8

(a) Reconstruction using the
prune model only.

(b) Reconstruction using the
prune-join model.

Fig. 6: Approximation of the cameraman image to a PSNR of 30dB
using the prune and prune-join models.

ratio (PSNR1) of 30dB. The first approximation was
calculated in 1.0 seconds using the prune only model
and the second was calculated in 8.3 seconds using
the more complex prune-join model2; for comparison
these approximations would take around 100 and 10000
seconds if we calculated the QR decomposition from
scratch each time.

For a rough comparison of sparsity, the prune and
prune-join models use 3602 and 2753 polynomial co-
efficients respectively, whereas a Daubechies 4 tap
wavelet decomposition would require 4712 coefficients
to achieve the same approximation error. This greater
sparsity should aid us in restoration, particularly in cases
of high degradation where a strong prior is required.

IV. DENOISING

In this section we will adapt the previously presented
approximation algorithm to tackle the well studied de-
noising problem. Over the years there has been such a
vast amount of research in this area that a comparison
to the state of the art will provide a very stringent test
of our modelling technique.

We define the denoising problem as approximating x
from y where

y = x+ z

and z is white Gaussian noise.
We approximate x from y by solving (7) using our

prune-join algorithm, which can be interpreted as a max-
imum a posteriori (MAP) estimator using a probabilistic

1All PSNRs in this paper are calculated as
10 log10

⇣
2552

1
N kx1�x2k22

⌘
.

2All calculations were made in MATLAB on a 2.2GHz Intel Core
i7 Macbook Pro with 4GB of RAM (no multi-threading).

framework. If we define the probability of a particular
image x occurring to be

p(x) = Aexp



�⇣P x(x)

2

�

,

where P x(x) is given in (5) and A is a constant so that
X

x2RN

Aexp



�⇣P x(x)

2

�

= 1,

then the MAP estimator is

x̂ = argmin
x

�

ky � xk22 + ⇣�2
z

P x(x)
 

. (11)

Equation (11) is equivalent to (7) with � = ⇣�2
z

. We have
replaced the unknown constant � with another unknown
constant ⇣. However, ⇣ is independent of �

z

so can be
tuned experimentally just once (in all our simulations
⇣ = 3.3).

A. Cycle spinning

Our quadtree decomposition approximation algorithm
is shift variant allowing us to construct multiple ap-
proximations from different shifts of the image. Cycle
spinning [12] is the process of averaging these shifts to
construct a better approximation and improved results
can be obtained by performing weighted averaging [28].

We can reduce the complexity of computing an ap-
proximation for each new shift by noticing that N

i

⇥N
i

tiles only have N2
i

unique shifts. For example 2⇥2 tiles
only have four unique shifts. This means that only the
first four shifts have to calculate 2⇥2 tiles and all future
shifts can simply look up these results from previous
trees.

B. Example tilings

Figure 7 shows examples of the tilings generated by
four different denoising experiments, calculated using
256 shifts of cycle spinning and the prune-only model.
Note that there is a slightly different tiling for each shift
but the figure just shows one of these tilings. One can
see that, even in the presence of noise, the adaptive
regions sensibly fit the data and, since � is proportional
to the noise variance, a coarser model is used in higher
degradation cases.

V. INTERPOLATION

With very minor modifications, the previously de-
scribed approximation algorithm can be used for inter-
polation. We model the problem by setting

y = Hx,
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Beyond Traditional Sparsity Models (cont’d) 

•  The better the sparsity, the better the results ;-) 
Scholefield-Dragotti. IEEE Trans. Image Processing 2014 

Degraded  
(PSNR=10.6dB) 

State-of-the-Art 
(PSNR = 26.8 dB) 

New Sparsity Model 
(PSNR = 27.1 dB) 
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Beyond Traditional Sparsity Models (cont’d) 

•  Inpainting: Scholefield-Dragotti. IEEE Trans. Image Processing 2014 

Original 90% missing pixels Inpainted using  
new Sparsity Model 
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Summary  

•  “Hey Hey My My the notion of Sparsity will never die” ;-)   

•  Traditional sparsity is based around two pillars: 
•  An expansion-based sparsity model 
•  Reconstruction based on convex programming (e.g., BP) 
  

•  Room for more creative solutions both in terms of sparsity and 
reconstruction method 

•  E.g. Reconstruction using ProSparse outperforms Convex 
Programming in specific settings 

•  E.g. Semi-Parametric sparsity models for images outperforms state-
of-the-art image processing algorithms 
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