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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

X ho=g-vr | O 7T< Yi=<X(O.(UT-n)>

Acquisition Device

Natural questions:
» When is there a one-to-one mapping between x(t) and y,?

> What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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Problem Statement
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Acquisition
System

» The low-quality lens blurs the images.

> The images are sampled by the CCD array.

Pier Luigi

Sparse Sa



Imperial College
London

Outline

> Problem Statement and Motivation
» Classical Sampling Formulation
» Sampling using expansion-based sparsity
» Sparsity in Complete and Over-complete Dictionaries

» Compressed Sensing
> Applications

» Sampling using sparsity in parametric spaces

Signals with Finite Rate of Innovation (FRI)

Sampling Kernels: E-splines and B-splines

Sampling FRI Signals: the Basic Set-up and Extensions
Applications

v vyVvVy

» New Domains of Applications of the Sparsity and Sampling Paradigm

» Diffusion Fields and Neuroscience

» Conclusions and Outlook




Imperial College
London

Motivation: Sparsity and Sampling Everywhere
“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that

this will reach 20% by 2015.” Goal: Individualized treatments based on
low-cost and effective medical devices.

Image
Formation

Image
Processing
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Motivation: Sparsity and Sampling Everywhere

Wide-Band Communications:

010010, Ty S RX

» Current A-to-D converters in UWB communications operate at several
gigaherz.

» This is a sparse parametric estimation problem, only the location and
amplitude of the pulses need to be estimated.

Pier Luigi
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Motivation: Sparsity and Sampling Everywhere

Sensor networks

» The source (phenomenon) is distributed in space and time.
» The phenomenon is sampled in space (finite number of sensors) and
time.

» When the sources are localized the problem is sparse.
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Motivation: Sparsity and Sampling Everywhere

Applications in Neuroscience

Neuroprosthesis

ADC
///,_};\ \ 20K Hz < fs < 30KHz|
TN
=V
Spik t \
pike sorting g /,_4
_— /
///// Processing unit

» Implanted neuronal prostheses require low-processing and
low-sampling rate.

» Spike sorting is based on a sparse description of the action
potentials.

Pier Lu

Sparse



Imperial College
London

Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.
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» This is a multi-dimensional sampling and interpolation problem.
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Classical Sampling Formulation

> Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{p(t/T — n)}rez.

> If x(t) € V, perfect reconstruction is possible.
> Reconstruction process is linear: X(t) = > yap(t/T — n).
> For bandlimited signals ¢(t) = sinc(t).
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Sampling as Projecting into Shift-Invariant
Sub-Spaces
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Classical Sampling Formulation

The Shannon sampling theorem provides sufficient but not necessary conditions
for perfect reconstruction.

Moreover: How many real signals are bandlimited? How many realizable filters
are ideal low-pass filters?

By the way, who discovered the sampling theorem? The list is long ;-)

>
>
>
>
>
>
>

Whittaker 1915, 1935
Kotelnikov 1933
Nyquist 1928

Raabe 1938

Gabor 1946

Shannon 1948
Someya 1948
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Key elements in the novel sampling approaches

Classical Sampling Formulation:
» In classical sampling formulation, the reconstruction process is linear.
» Innovation is uniform.

New formulation:
» The reconstruction process can be non-linear.

» Innovation can be non-uniform.
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Sparse Representations in a Basis

Wavelets provide sparse representations of images. In matrix/vector form

a=wly

is sparse. Here the matrix W has size N X N and models the discrete-time wavelet
transform of finite dimensional signals.
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Notation
» The lp ‘norm’ of a N-dimensional vector X is || X|lo = the number of i such that
Xi ?,é 0
» The hnorm of a N-dimensional vector X is: || X||;1 = /I‘V=1 [xi

» The Mutual Coherence of a given N x M matrix A is the largest absolute
normalized inner product between different columns of A:

|ag aj|

WA) =

= max X
1<k, j<MikZi ||ak])2 - [|ajll2




Imperial College
London

Sparsity in Redundant Dictionaries

The above signal, Y, is a combination of two spikes and two complex exponentials of
different frequency (real part of Y plotted). In matrix vector form:

Y= (I Fn) a=Da,

where Iy is the N x N identity matrix and Fy is the N x N Fourier transform. The

matrix D models an over-complete dictionary and has size N x M with M > N, « has
only K non-zero coefficients (in the example K = 4, N = 128, M = 2N).
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Sparsity in Redundant Dictionaries

» You are given Y and want to find its sparse representation.

Ideally, you want to solve
(Po) : min ||allo st Y = Da.

» This is a combinatorial problem which requires N chooses K operations. You
may instead solve the convex problem:

(P1) : min|lafi  st. Y =Da.

> Key result due to Donoho et al.: (Pp) is unique when K < 1/u(D) = v/N. (Pp)
and (Py) are equivalent when K < (v/2 — 0.5)/u(D) ~ 0.9v/N.
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Sparsity iBounds n Pairs of Bases

(P, Bound: 1/
—Tight (P,) bound
—_simplified (P,) bound: 0914

Uniqueness of (Pp) and the two /; bounds for the case of two orthogonal bases and
1(D) = 0.1. See [Elad 2010, page 59] for more details.

otti
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Sparsity in Redundant Dictionaries

Sketch on the proof of unicity of (Pp).

>

| 2

(Po) is unique when K is such that, given Y; = Day and Y2 = Doy, then
Y1 # Y, for any possible K-sparse a1, as.

Consider oy = a1 — @, this new vector has sparsity 2K and unicity is lost when
Y = Da, = 0.

ap is in the null space of D = (Iy Fyn) when a, = ( _§ ) , where
X = FyX.
In fact:

Y=Dan= (v Fun) (_i):q

X is an N dimensional vector and cannot be simultaneously sparse in both the
time and the frequency domain. Donoho uncertainty principle says that the
number of non-zero entries in o, must be 2K > 2/u(D) = 2+/N. Thus, (Po)
can be solved when K < v/N.
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Sparsity in Redundant Dictionaries (cont'd)

Extensions [Tropp-04, GribonvalN:03, Elad-10]

> For a generic over-complete dictionary D, (P1) is equivalent to (Pg) when?

1 1
K< = (1 + 7) .
2 M
» When D is a concatenation of J orthonormal dictionaries (Pl) is equivalent to

(Po) when

<[l

2Proof in Appendix.
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Compressed Sensing

» The ‘fat’ matrix D now plays the role of the acquisition device and we denote it
with ®. The entries of Y = ®« are the samples.

» Based on the previous analysis, we want to reconstruct the signal o from the
samples Y using /i minimization.

» We want maximum incoherence of the columns of ®.

» We consider large M, N.

Key insight: Relax the condition of a 'deterministic’ perfect reconstruction and accept
that, with an extremely small probability, there might be an error in the

reconstruction.

IR v
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The power of randomness

> Key theorem due to Candes et al.[Candes:06-08]: if ® is a proper random matrix
(e.g., a matrix with normalized Gaussian entries), then with overwhelming
probability the signal can be reconstructed from the samples Y when
N > C - Klog(M/K) for some constant C.

» Assume that the measured signal X is not sparse but has a sparse
representation: X = Da. We have that Y = ®X = ®Da. The new matrix D
is essentially as random as the original one. Therefore the theorem is still valid.
Thus random matrices provides universality. However, very redundant
dictionaries implies larger M and therefore larger N.
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Restricted Isometry Property (RIP)

In order to have perfect reconstruction, ® must satisfy the so called Restricted
Isometry Property:
2 2 2
(1= 65)lIx]lz < x|z < (1+ ds)lIxll

for some 0 < §s < 1 and for any S-sparse vector x.
Candes et al.:

» If x is K-sparse and dx + d3x < 1 then the /; minimization finds x exactly.

» if & is a random Gaussian matrix, the above condition is satisfied with
probability 1 — O(e~"M) for some v > 0, when N > C - K log(M/K).

> if ® is obtained by extracting at random N rows from the Fourier matrix, then
perfect reconstruction is satisfied with high probability when:

N> C - K(log M)*.
NB: When the signal x is not exactly sparse, solve:

lly — ®%ll2 + All%]lx

It is proved that linear programming achieve the best solution up to a constant_factor.
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Compressed Sensing. Simulation Results

© @

Image ‘Boat’. (a) Recovered from 20000 random projections using Compressed
Sensing. PSNR=31.8dB. (b) Optimal 7207-approximation using the wavelet transform
with the same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b). Images courtesy of
Prof. J. Romberg.
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Application in MRI
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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), ©(t/ T — n)), you want to retrieve the degrees of
freedom of x(t).

x® ho=g-vr | O 7T< Y= <x(0). 9 (UT-n)>

Acquisition Device

Natural questions:
» When is there a one-to-one mapping between x(t) and y,?

» What kernels ¢(t) can be used?

» What reconstruction algorithm?
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Sparsity in Parametric Spaces

Consider a continuous-time stream of pulses or a piecewise sinusoidal signal.

These signals
» are not bandlimited.
> are not sparse in a basis or a frame.

However:

» they are completely determine by a finite number of free parameters.
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Signals with Finite Rate of Innovation

Consider a signal of the form:
x(t) = gt — ti). (1)
kez
The rate of innovation of x(t) is then defined as
p= lim Lc, (-3.2) (2)
T—00 T 2’ 2 ’

where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.

Definition A signal with a finite rate of innovation is a signal whose
parametric representation is given in (1) and with a finite p as defined in (2).
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Examples of Signals with Finite Rate of Innovation

Filtered Streams of Diracs  Piecewise Polynomial Signals

Piecewise Sinusoidal Signals Mondrian paintings ;-)

Pier Lu
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The Sampling Kernel

2O ] = gevn) y® 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature
> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up
> Designed by somebody else. Ex: Hubble telescope, digital cameras.

> Given by design

> Pick the best kernel. Ex: engineered systems.
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The Sampling Kernel

(a)Original (2014 x 3039)

sssss (perpendicular)

(b) Point Spread function
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ————
Jjw —
Notice:
» « can be complex.

» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eselne b, spline when a = 0.
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Kernels Reproducing Exponentials

s 5§ 8 ¥ 8 & 3
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Here the E-spline is of second order and reproduces the exponential et e®1t: with

ag = —0.06 and a1 = 0.5.
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Examples of E-Splines Kernels
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Examples of Best Kernels

0.18] 0.15| o
o
o
o o
o
o3
ooy
oo ocy
o
o |- .
J -
1 05 0§ 05 1 15 25 3 1 0 1 2 3 4 1 0 1 2 3 4 5 O
(a) P=1 (b)P-3 (c)P=5
o o o
o) o) o)
o o o
oo ocs ocd
oo oo ooy
oo oo osd
o 0w o
of - - o 1 o J
o 0w <o
e S B B + + W : LI S S
(dP-11 (e) P~ 13 (f)P-15

Pier Luigi

Sparse Sampl




Imperial College
London

The Sampling Kernel

(a)Original (2014 x 3039)

sssss (perpendicular)

(b) Point Spread function
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Kernel Reproducing Exponential

Any functions with rational Fourier transform:

~ _ [1;(w — b;) _
P(w) = m m=0,1,...,L.

is a generalized E-splines. This includes practical devices as common as an RC circuit:

R

+o—m S\ /\/\—m——a———o+

x(t) c y(t)

Pier Lu
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Sparse Sampling: Basic Set-up

v

Assume the sampling period T = 1.
Consider any x(t) with t € [0, N).

v

v

Assume the sampling kernel (t) is any function that can reproduce
exponentials of the form

> cmnp(t—n)=e*"" m=0,1,..,1L,

> We want to retrieve x(t), from the samples y, = (x(t), o(t — n)),
n=0,1,..,N—1.

Pier Luigi
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Sparse Sampling: Basic Set-up
We have that
Sm = Yonlo CmnYn
= (x(£), X050 cmnp(t — 1)
= [T _x(t)e*ntdt, m=0,1,..,L

> sp is the bilateral Laplace transform of x(t) evaluated at ap,.

» When ap, = jwn, then s, = %(wm) where %(w) is the Fourier
transform of x(t).

» When ap, =0, the s,,'s are the polynomial moments of x(t).
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Sampling Streams of Diracs

v

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S L bt — 1), ti € [0, N),

» We restrict oy =g+ m\  m=0,1,...L and L>2K —1.
» We have N samples: y, = (x(t),¢(t — n)), n=10,1,..N — 1:
» We obtain

N—-1
Sm = 2in=0 CmnYn

= [% x(t)e*ntdt,

— 00

K-1 t
= k=0 Xkeam k

_ K—1 A Amt, __ K—1 A _
= Do XeMt =% o Xeuy, m=0,1,.., L
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The Annihilating Filter Method

» The quantity

is a sum of exponentials.

» We can retrieve the locations u, and the amplitudes X, with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

» Given the pairs {uk, R}, then tx = (Inuk)/X and xx = X, /e“0t.
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The Annihilating Filter Method

1. Call hn the filter with z-transform H(z) = Z,K:O hiz7l = ]_[,’5;01(1 —uz™h).
We have that

K
hm * sm = g hism—i =
i=0

X

K K-1 K—1 K
Akh,-u,'("f' = E )?ku;r(n E h,-u,:' =0.
=0 k=0 i=0

—_—
0

x
Il

i 0

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that hy = 1, we obtain

SK—1 SK—2 “-* S0 hy SK
Sk SK—1 - s1 h2 SK+1
SL—1 SL—2 ' SL-K hk st

Solve the above system to find the coefficients of the annihilating filter:
g - r sl
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The Annihilating Filter Method

2. Given the coefficients {1, h1, ha, ..., he }, we get the locations uy by finding

the roots of H(z).
3. Solve the first K equations in s, = ZkK:_Ol Xkug' to find the amplitudes X«.

In matrix/vector form

M 1 1 1 X0 S0

Uo u o Uk X1 S1

- | (3)
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Sampling Streams of Diracs: Numerical Example

02 0

(a) Original Signal (b

Sampling Kernel (87(t

0z o2

(c) Samples (d) Reconstructed Signal

~
~

)
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Sampling Streams of Diracs: Sequential

Reconstruction

(a) aridgir;alﬁs{bgngl ” (b) Sampllng Kernel (57(t))

B LR ‘ -
T He

(c) Samples (d) Reconstructed Signal
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Sampling Streams of Diracs: Sequential

Reconstruction

— Noiseless samples
— Noise

A Original Diracs
—% Estimated Diracs

4 6 8 10 12 14 - 4 6 8 10 12 14
Time (s) Time (s)
(a) y»,, samples (b) Reconstructed stream

In this example: 10K samples, 1000 Diracs, SNR = 15dB, Execution time: one
minute, Success rate 100%, one false positive.

Pier Luigi
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Note on the proof

Linear vs Non-linear
» Problem is Non-linear in t,, but linear in x, given t,
» The key to the solution is the separability of the non-linear from the linear
problem using the annihilating filter.
The proof is based on a constructive algorithm:
1. Given the N samples y,, compute the moments sp, using the exponential
reproduction formula. In matrix vector form S = CY.
2. Solve a K x K Toeplitz system to find H(z)
3. Find the roots of H(z)
4. Solve a K x K Vandermonde system to find the aj

Complexity
1. O(KN)
2. O(K?)
3. O(K?)
4. O(K?)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sampling Piecewise Sinusoidal Signals: Numerical
Example
5 T T T
04{\/\/\/\/\/‘—
; ‘ ‘ ‘
0 0.25 0.5 0.75 1 [sec]
(a)
2 1
1 g
° LR LY
2 L L
0 0.25 0.5 0.75 1 [sec]
(b)
5 T T T
0 / N/ A
o 025 05 075 1 [sec]

©
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Sampling 2-D domains
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Robust Sparse Sampling

T

’ €n

Acquisition Device

X0 h(t)= ¢(—t/T) M ﬁ?ﬁ“ﬁ),m(vnn»ﬁn

» The measurements are noisy

» The noise is additive and i.i.d. Gaussian
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Robust Sparse Sampling
In the presence of noise, the annihilation equation
SH=0

is only approximately satisfied.
Minimize: ||SH||2 under the constraint ||H]||2 = 1.
This is achieved by performing an SVD of S:

S=UuxvT".

Then H is the last column of V.
Notice: this is similar to Pisarenko’s method in spectral estimation.




Imperial College
London

Robust Sparse Sampling: Cadzow's algorithm

For small SNR use Cadzow’s method to denoise S before applying TLS.
The basic intuition behind this method is that, in the noiseless case, S is
rank deficient (rank K) and Toeplitz, while in the noisy case S is full rank.
Algorithm:

» SVD of S = UAVT.

> Keep the K largest diagonal coefficients of A and set the others to
zero.

» Reconstruct S’ = UNVT.

» This matrix is not Toeplitz, make it so by averaging along the
diagonals.

> lterate.
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Robust Sparse Sampling

2 Diracs / 21 noisy samples . First Dirac
10
- retrieved locations o
Y 10 pm— =
— Craatrr vt o observed standard deviation
5 — Cramér—Rao bound
210°)
i
-
Wi 0 1 20 30 40 50
o Second Dirac
10 :
L, 107
5
3 10°
4
107
10 20 30 © 50 ~10 [ 10 20 30 7o) 50
input SNR (dB) input SNR (dB)

Samples are corrupted by additive noise.

This is a parametric estimation problem.

Unbiased algorithms have a covariance matrix lower bounded by CRB.
The proposed algorithm reaches CRB down to SNR of 5dB.

Pier Luigi
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Robust Sparse Sampling

Original and estimated Diracs : SNR = 5 dB;

! 121 —= original Diracs
8 . 4o i —* _estimated Diracs
6 i | [Tl o A
" oo " i
4 i [N TR [0 il
in. we "
2 n IR TITRIIT i, 0.8
tu e DL ol
0 02 0.4 06 08 1
Noiseless Samples (N=128) 06
- o . .
[T | 04r
5 N q Lot {
i, i RITI ] i
P L T S I[P T [T IS 021
et 1 L il Tl ity il et
L e o LU T
‘ 1 e | I
! C
0 0.2 . X 08 1 [ 02 0.4 06 0.8 1
Noisy Samples (N=128) t

—
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Robust

Piecewise sinusoidal signal

Sparse

LR
()

[

location [seconds]

L R R R R R R R R R

15
Input SNR [dB]

Pier Luigi Dragotti

Sparse Sampling

Sampling

Standard deviation for location t1

" ' —— Observed Standard Deviation|
= = = Cramer—Rao Bound
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Robust Sparse Sampling

1 [sec]
®

SNR= 8dB, N=128.
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Application: Image Super-Resolution

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512 x 512)  (b) Low-res. (64 x 64)  (c) Super-res ( PSNR=24.2dB)

» Forty low-resolution and shifted versions of the original.
» The disparity between images has a finite rate of innovation and can be retrieved.

» Accurate registration is achieved by retrieving the continuous moments of the
‘Tiger' from the samples.
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Application: Image Super-Resolution

Image super-resolution basic building blocks

@) © ©
o O
)
: O!FO
' g . Super-resolved
dk{} —»| Restoration | — image
! O
O
_I o ov
@® LR image 0
O LR i'r;lagek

Set of low-resolution images Image Registration HR grid estimation
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Application: Image Super-Resolution

» For each blurred image I(x, y):
> A pixel Pp, , in the blurred image is given by

Pmn = (I(X,y),go(x/T—n,y/T—m)),

where o(t) represents the point spread function of the lens.
> We assume ¢(t) is a spline that can reproduce polynomials:

ZZcmncp(x—ny m)=x"y’ 1=0,1,..,N;j=0,1,..N.

> We retrieve the exact moments of /(x, y) from Pp, s:

Tij = ZZ C(IJ m n — //I(X,y)le"dXdy

» Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.




Imperial College
London

Application: Image Super-Resolution

(a)Original (2014 x 3039)

sssss (perpendicular)

(b) Point Spread function
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Application: Image Super-Resolution

(a)Original (128 x 128)
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)
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Application in Neuroscience

Applications in Neuroscience

Neuroprosthesis

ADC

- 20K Hz < fs < 0K Hz
:L‘\% =

Spike sorting

_— Processing unit

Pier Lu
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Application in Neuroscience

Insight: Sample at lower rate and reconstruct the signal outside the

implant
Neuroprosthesis ‘ Processing unit
L. f J
ADC Spike
Classical sorting

Neuroprosthesis Processing unit

]

ADC ) Spike
Sparse Reconstruction sorting
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Application in Neuroscience

» Classical Sampling (C) f; = 24KHz
» Sparse Sampling (F) f; = 5.8KHz
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Calcium Transient Detection

M === (i) =
s
Car el =
S ~
2% =z 27 P
H - = : :
= g =
" s ~

(iii)

(iv) o
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Application in Sensor Networks

Localizing Point Sources in Diffusion Fields

Localized and instantaneous sources:

K

fr=DF 4+ ckb(@—m)o(t — t)

k=1

Diffusion field:

K 2

CR @yl
t) = — e Ut —ty,
flat) = X gy U=t

finite degrees of freedom

Goal:

Estimate the unknown parameters{ci}, , {tx}, , {zx}; from the spatiotemporal
samples taken by distributed sensors.

Pier Luigi
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Conclusions and Outlook

Sampling signals using sparsity models:
» New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

» It is a non-linear problem

» Different possible algorithms with various degrees of efficiency and
robustness

Applications:
» Many actual and potential applications:
» But you need to fit the right model!

> Carve the right algorithm for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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Appendix
Orthogonal matching pursuit (OMP) finds the correct sparse representation

when
1 1
K < > (1 + ;) . (4)

Sketch of the Proof (Elad 2010, pages 65-67):
Assume the K non-zero entries are at the beginning of the vector in descending
order with y = Dx. Thus

K
y=>_xD (5)
1=1
First iteration of OMP work properly if |[D{ y| > |D/ y| for any i > K.

Using (5)

K K
|> xD{ D) > > xD/ D)
=1 I=1
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Appendix (cont'd)

Sketch of the Proof (cont'd):

But
K K K
13 3DI D1 > pal = S IxlIDI DIl = bal = 3 ol > (1 = p)(K = 1).
=1 =2 =2
Moreover,

K K K
> xD DI <Y xlIDI DIl <Y il < Paluk
I=1 1=1 I=1

Using these two bounds, we conclude that |D{ y| > | D/ y| is satisfied when
condition (4) is met. O
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