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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to reconstruct x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels ϕ(t) can be used?

I What reconstruction algorithm?
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Problem Statement

Observed
scene

Samples

Acquisition
System

Lens CCD
Array

I The low-quality lens blurs the images.

I The images are sampled by the CCD array.
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Motivation: Sparsity and Sampling Everywhere

“In 2005, the U.S. spent 16% of its GDP on health care. It is projected that
this will reach 20% by 2015.” Goal: Individualized treatments based on
low-cost and effective medical devices.

End!Users
Image

Formation
Image

Processing
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Motivation: Sparsity and Sampling Everywhere

Wide-Band Communications:

RX

t

TX...0110010...

t

I Current A-to-D converters in UWB communications operate at several
gigaherz.

I This is a sparse parametric estimation problem, only the location and
amplitude of the pulses need to be estimated.
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Motivation: Sparsity and Sampling Everywhere

Sensor networks

I The source (phenomenon) is distributed in space and time.
I The phenomenon is sampled in space (finite number of sensors) and

time.
I When the sources are localized the problem is sparse.
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Motivation: Sparsity and Sampling Everywhere

Applications in NeuroscienceNeural	  acquisi)on	  and	  sor)ng	  

•  The	  energy	  budget	  of	  implanted	  devices	  is	  limited.	  
•  High	  sampling	  rates	  impose	  wired	  data	  transmission	  and	  

limits	  the	  quality	  and	  diversity	  of	  experiments.	  

Neuroprosthesis	  

Processing	  unit	  

8	  

ADC	  

Spike	  sor)ng	  

I Implanted neuronal prostheses require low-processing and
low-sampling rate.

I Spike sorting is based on a sparse description of the action
potentials.
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Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely
choose an arbitrary viewpoint for 3D viewing.

I This is a multi-dimensional sampling and interpolation problem.
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Classical Sampling Formulation

I Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{ϕ(t/T − n)}n∈Z.

I If x(t) ∈ V , perfect reconstruction is possible.

I Reconstruction process is linear: x̂(t) =
P

n ynϕ(t/T − n).

I For bandlimited signals ϕ(t) = sinc(t).

φ(t)~
~

x(t) y
T

n φ(t)
x(t)^

Pier Luigi Dragotti
Sparse Sampling



Sampling as Projecting into Shift-Invariant
Sub-Spaces
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Classical Sampling Formulation

The Shannon sampling theorem provides sufficient but not necessary conditions
for perfect reconstruction.
Moreover: How many real signals are bandlimited? How many realizable filters
are ideal low-pass filters?
By the way, who discovered the sampling theorem? The list is long ;-)

I Whittaker 1915, 1935

I Kotelnikov 1933

I Nyquist 1928

I Raabe 1938

I Gabor 1946

I Shannon 1948

I Someya 1948
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Key elements in the novel sampling approaches

Classical Sampling Formulation:

I In classical sampling formulation, the reconstruction process is linear.

I Innovation is uniform.

New formulation:

I The reconstruction process can be non-linear.

I Innovation can be non-uniform.
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Sparse Representations in a Basis

Wavelets provide sparse representations of images. In matrix/vector form

α = W−1Y

is sparse. Here the matrix W has size N × N and models the discrete-time wavelet
transform of finite dimensional signals.

Figure: Cameraman is reconstructed using only 8% of the wavelet coefficients.
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Notation
I The l0 ‘norm’ of a N-dimensional vector X is ‖X‖0 = the number of i such that

xi 6= 0

I The l1norm of a N-dimensional vector X is: ‖X‖1 =
PN

i=1 |xi |
I The Mutual Coherence of a given N ×M matrix A is the largest absolute

normalized inner product between different columns of A:

µ(A) = max
1≤k,j≤M;k 6=j

|aT
k aj|

‖ak‖2 · ‖aj‖2
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Sparsity in Redundant Dictionaries

20 40 60 80 100 120
−0.5

0

0.5

1

1.5

Y

The above signal, Y, is a combination of two spikes and two complex exponentials of
different frequency (real part of Y plotted). In matrix vector form:

Y = (IN FN) α = Dα,

where IN is the N × N identity matrix and FN is the N × N Fourier transform. The

matrix D models an over-complete dictionary and has size N ×M with M > N, α has

only K non-zero coefficients (in the example K = 4,N = 128,M = 2N).
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Sparsity in Redundant Dictionaries

I You are given Y and want to find its sparse representation.

I Ideally, you want to solve

(P0) : min ‖α‖0 s.t. Y = Dα.

I This is a combinatorial problem which requires N chooses K operations. You
may instead solve the convex problem:

(P1) : min ‖α‖1 s.t. Y = Dα.

I Key result due to Donoho et al.: (P0) is unique when K < 1/µ(D) =
√

N. (P0)

and (P1) are equivalent when K < (
√

2− 0.5)/µ(D) ∼ 0.9
√

N.
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Sparsity iBounds n Pairs of Bases
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(P
0
) Bound: 1/µ

Tight (P
1
) bound

Simplified (P
1
) bound: 0.91/µ

Uniqueness of (P0) and the two l1 bounds for the case of two orthogonal bases and

µ(D) = 0.1. See [Elad 2010, page 59] for more details.
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Sparsity in Redundant Dictionaries

Sketch on the proof of unicity of (P0).

I (P0) is unique when K is such that, given Y1 = Dα1 and Y2 = Dα2, then
Y1 6= Y2 for any possible K -sparse α1, α2.

I Consider αn = α1 − α2, this new vector has sparsity 2K and unicity is lost when
Y = Dαn = 0.

I αn is in the null space of D = (IN FN) when αn =

„
X̂
−X

«
, where

X̂ = FNX .

I In fact:

Y = Dαn = (IN FN)

„
X̂
−X

«
= 0,

I X is an N dimensional vector and cannot be simultaneously sparse in both the
time and the frequency domain. Donoho uncertainty principle says that the
number of non-zero entries in αn must be 2K ≥ 2/µ(D) = 2

√
N. Thus, (P0)

can be solved when K <
√

N.
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Sparsity in Redundant Dictionaries (cont’d)

Extensions [Tropp-04, GribonvalN:03, Elad-10]

I For a generic over-complete dictionary D, (P1) is equivalent to (P0) when2

K <
1

2

„
1 +

1

µ

«
.

I When D is a concatenation of J orthonormal dictionaries (P1) is equivalent to
(P0) when

K <

»√
2− 1 +

1

2(J − 1)

–
µ−1

2Proof in Appendix.
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Compressed Sensing

I The ‘fat’ matrix D now plays the role of the acquisition device and we denote it
with Φ. The entries of Y = Φα are the samples.

I Based on the previous analysis, we want to reconstruct the signal α from the
samples Y using l1 minimization.

I We want maximum incoherence of the columns of Φ.

I We consider large M,N.

Key insight: Relax the condition of a ‘deterministic’ perfect reconstruction and accept

that, with an extremely small probability, there might be an error in the

reconstruction.
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The power of randomness

I Key theorem due to Candès et al.[Candes:06-08]: if Φ is a proper random matrix
(e.g., a matrix with normalized Gaussian entries), then with overwhelming
probability the signal can be reconstructed from the samples Y when
N ≥ C · K log(M/K) for some constant C .

I Assume that the measured signal X is not sparse but has a sparse
representation: X = Dα. We have that Y = ΦX = ΦDα. The new matrix ΦD
is essentially as random as the original one. Therefore the theorem is still valid.
Thus random matrices provides universality. However, very redundant
dictionaries implies larger M and therefore larger N.
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Restricted Isometry Property (RIP)

In order to have perfect reconstruction, Φ must satisfy the so called Restricted
Isometry Property:

(1− δS )‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δS )‖x‖2
2

for some 0 < δS < 1 and for any S-sparse vector x .
Candes et al.:

I If x is K-sparse and δ2K + δ3K < 1 then the l1 minimization finds x exactly.

I if Φ is a random Gaussian matrix, the above condition is satisfied with
probability 1− O(e−γM) for some γ > 0, when N ≥ C · K log(M/K).

I if Φ is obtained by extracting at random N rows from the Fourier matrix, then
perfect reconstruction is satisfied with high probability when:

N ≥ C · K(log M)4.

NB: When the signal x is not exactly sparse, solve:

‖y − Φx̂‖2 + λ‖x̂‖1

It is proved that linear programming achieve the best solution up to a constant factor.
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Compressed Sensing. Simulation Results

Image ‘Boat’. (a) Recovered from 20000 random projections using Compressed

Sensing. PSNR=31.8dB. (b) Optimal 7207-approximation using the wavelet transform

with the same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b). Images courtesy of

Prof. J. Romberg.
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Application in MRI

Image taken from Lustig, Donoho, Santos, Pauly-08.
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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = 〈x(t), ϕ(t/T − n)〉, you want to retrieve the degrees of
freedom of x(t).

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What kernels ϕ(t) can be used?

I What reconstruction algorithm?
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Sparsity in Parametric Spaces

Consider a continuous-time stream of pulses or a piecewise sinusoidal signal.

0 100 200 300 400 500 600
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1

50 100 150 200 250 300 350 400 450 500

−1.5

−1

−0.5

0

0.5

1

1.5

These signals

I are not bandlimited.

I are not sparse in a basis or a frame.

However:

I they are completely determine by a finite number of free parameters.
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) =
X
k∈Z

γkg(t − tk). (1)

The rate of innovation of x(t) is then defined as

ρ = lim
τ→∞

1

τ
Cx

“
−τ

2
,
τ

2

”
, (2)

where Cx(−τ/2, τ/2) is a function counting the number of free parameters in
the interval τ .

Definition A signal with a finite rate of innovation is a signal whose

parametric representation is given in (1) and with a finite ρ as defined in (2).
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Examples of Signals with Finite Rate of Innovation
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Filtered Streams of Diracs Piecewise Polynomial Signals
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Piecewise Sinusoidal Signals Mondrian paintings ;-)
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The Sampling Kernel

T
x(t)

!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

I Given by nature

I Diffusion equation, Green function. Ex: sensor networks.

I Given by the set-up

I Designed by somebody else. Ex: Hubble telescope, digital cameras.

I Given by design

I Pick the best kernel. Ex: engineered systems.
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The Sampling Kernel
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Sampling Kernels

Any kernel ϕ(t) that can reproduce exponentials:X
n

cm,nϕ(t − n) = eαmt , αm = α0 + mλ and m = 0, 1, ..., L.

This includes any composite kernel of the form γ(t) ∗ β~α(t) where
β~α(t) = βα0 (t) ∗ βα1 (t) ∗ ... ∗ βαL (t) and βαi (t) is an Exponential Spline of first order
[UnserB:05].

eα t 

E−Spline βα(t) 

βα(t)⇔ β̂(ω) =
1− eα−jω

jω − α
Notice:

I α can be complex.

I E-Spline is of compact support.

I E-Spline reduces to the classical polynomial
spline when α = 0.
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Kernels Reproducing Exponentials
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Here the E-spline is of second order and reproduces the exponential eα0t , eα1t : with

α0 = −0.06 and α1 = 0.5.

Pier Luigi Dragotti
Sparse Sampling



Examples of E-Splines Kernels
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Examples of Best Kernels

Pier Luigi Dragotti
Sparse Sampling



The Sampling Kernel
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Kernel Reproducing Exponential

Any functions with rational Fourier transform:

ϕ̂(ω) =

Q
i (jω − bi )Q

m(jω − am)
m = 0, 1, ..., L.

is a generalized E-splines. This includes practical devices as common as an RC circuit:

x(t)   y(t) 

R 

     C 

+ 

- 

+ 

- 
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Sparse Sampling: Basic Set-up

I Assume the sampling period T = 1.

I Consider any x(t) with t ∈ [0,N).

I Assume the sampling kernel ϕ(t) is any function that can reproduce
exponentials of the formX

n

cm,nϕ(t − n) = eαmt m = 0, 1, ..., L,

I We want to retrieve x(t), from the samples yn = 〈x(t), ϕ(t − n)〉,
n = 0, 1, ...,N − 1.
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Sparse Sampling: Basic Set-up

We have that

sm =
∑N−1

n=0 cm,nyn

= 〈x(t),
∑N−1

n=0 cm,nϕ(t − n)〉

=
∫∞
−∞ x(t)eαmtdt, m = 0, 1, ..., L.

I sm is the bilateral Laplace transform of x(t) evaluated at αm.

I When αm = jωm then sm = x̂(ωm) where x̂(ω) is the Fourier
transform of x(t).

I When αm = 0, the sm’s are the polynomial moments of x(t).
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Sampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
∑K−1

k=0 xkδ(t − tk), tk ∈ [0,N).

I We restrict αm = α0 + mλ m = 0, 1, ..., L and L ≥ 2K − 1.

I We have N samples: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, ...N − 1:

I We obtain

sm =
∑N−1

n=0 cm,nyn

=
∫∞
−∞ x(t)eαmtdt,

=
∑K−1

k=0 xke
αmtk

=
∑K−1

k=0 x̂ke
λmtk =

∑K−1
k=0 x̂ku

m
k , m = 0, 1, ..., L.
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The Annihilating Filter Method

I The quantity

sm =
K−1∑

k=0

x̂ku
m
k , m = 0, 1, ..., L

is a sum of exponentials.

I We can retrieve the locations uk and the amplitudes x̂k with the
annihilating filter method (also known as Prony’s method since it
was discovered by Gaspard de Prony in 1795).

I Given the pairs {uk , x̂k}, then tk = (ln uk)/λ and xk = x̂k/e
α0tk .
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The Annihilating Filter Method

1. Call hm the filter with z-transform H(z) =
PK

i=0 hiz
−i =

QK−1
k=0 (1− ukz

−1).
We have that

hm ∗ sm =
KX

i=0

hi sm−i =
KX

i=0

K−1X
k=0

x̂khiu
m−i
k =

K−1X
k=0

x̂ku
m
k

KX
i=0

hiu
−i
k| {z }

0

= 0.

This filter is thus called the annihilating filter. In matrix/vector form, we have
that SH = 0 and using the fact that h0 = 1, we obtain26666666664

sK−1 sK−2 · · · s0

sK sK−1 · · · s1

...
...

. . .
...

sL−1 sL−2 · · · sL−K

37777777775

0BBBBBBBBB@

h1

h2

...

hK

1CCCCCCCCCA
= −

0BBBBBBBBB@

sK

sK+1

...

sL

1CCCCCCCCCA
.

Solve the above system to find the coefficients of the annihilating filter.
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The Annihilating Filter Method

2. Given the coefficients {1, h1, h2, ..., hk}, we get the locations uk by finding
the roots of H(z).
3. Solve the first K equations in sm =

PK−1
k=0 x̂ku

m
k to find the amplitudes x̂k .

In matrix/vector form26666666664

1 1 · · · 1

u0 u1 · · · uK−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

37777777775

0BBBBBBBBB@

x̂0

x̂1

...

x̂K−1

1CCCCCCCCCA
=

0BBBBBBBBB@

s0

s1

...

sK−1

1CCCCCCCCCA
. (3)

Classic Vandermonde system. Unique solution for distinct uks.
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Sampling Streams of Diracs: Numerical Example
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Sampling Streams of Diracs: Sequential
Reconstruction
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Sampling Streams of Diracs: Sequential
Reconstruction
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Original Diracs

Reconstructed Diracs

Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220 yn samples. Only a small section of the
stream is shown. Rate K “ 5 Diracs per τ “ 3.125 s. N “ 50,
T “ 1{16 and P “ 9.

retrieve K Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window by T and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; and the
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate of K Diracs per τ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure 6
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Fig. 6: Noisy samples with a SNR “ 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
The temporal locations are very accurately estimated.

shows one realisation of the procedure explained before.
To further analyse the performance variation for different

levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and 10220 samples, T “ 1{16 s, N “ 50, P ` 1 “ 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process 10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups of K Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process 10K sam-
ples in about 100 seconds and can retrieve with high accu-
racy 1000 Diracs even in very low SNR regimes. We are not
aware of any current FRI algorithm able to achieve such per-
formance for the same type of data.

In this example: 10K samples, 1000 Diracs, SNR = 15dB, Execution time: one

minute, Success rate 100%, one false positive.
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Note on the proof

Linear vs Non-linear

I Problem is Non-linear in tk , but linear in xk given tk
I The key to the solution is the separability of the non-linear from the linear

problem using the annihilating filter.

The proof is based on a constructive algorithm:

1. Given the N samples yn, compute the moments sm using the exponential
reproduction formula. In matrix vector form S = CY .

2. Solve a K × K Toeplitz system to find H(z)

3. Find the roots of H(z)

4. Solve a K × K Vandermonde system to find the ak

Complexity

1. O(KN)

2. O(K2)

3. O(K3)

4. O(K2)

Thus, the algorithm complexity is polynomial with the signal innovation.
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Sampling Piecewise Sinusoidal Signals: Numerical
Example
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Sampling 2-D domains

Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
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nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
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ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
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Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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Robust Sparse Sampling

nx(t)
!

Acquisition Device

h(t)=   (!t/T)
y(t)

T +

"n

n !y =<x(t),   (t/T!n)>+"

I The measurements are noisy

I The noise is additive and i.i.d. Gaussian
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Robust Sparse Sampling

In the presence of noise, the annihilation equation

SH = 0

is only approximately satisfied.
Minimize: ‖SH‖2 under the constraint ‖H‖2 = 1.
This is achieved by performing an SVD of S:

S = UλVT.

Then H is the last column of V.
Notice: this is similar to Pisarenko’s method in spectral estimation.
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Robust Sparse Sampling: Cadzow’s algorithm

For small SNR use Cadzow’s method to denoise S before applying TLS.
The basic intuition behind this method is that, in the noiseless case, S is
rank deficient (rank K ) and Toeplitz, while in the noisy case S is full rank.
Algorithm:

I SVD of S = UλVT.

I Keep the K largest diagonal coefficients of λ and set the others to
zero.

I Reconstruct S′ = Uλ′VT.

I This matrix is not Toeplitz, make it so by averaging along the
diagonals.

I Iterate.
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Robust Sparse Sampling

I Samples are corrupted by additive noise.

I This is a parametric estimation problem.

I Unbiased algorithms have a covariance matrix lower bounded by CRB.

I The proposed algorithm reaches CRB down to SNR of 5dB.
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Robust Sparse Sampling
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Robust Sparse Sampling

Piecewise sinusoidal signal
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Fig. 8. Retrieval of the switching point of a step sine (ω1 = 12.23π [1/sec] and t1 = 0.4907 [sec]) in 128 noisy samples. (a)

Scatter plot of the estimated location. (b) Standard deviation (averages over 1000 iterations) of the location retrieval compared

to the Cramér-Rao bound.

C. Performance evaluation

It is of interest here to evaluate the performance of the reconstruction algorithm in the presence of

different noise levels. Therefore, we consider the Cramér-Rao bound that provides an answer to the

best possible performance of an unbiased estimator. The derivation of the Cramér-Rao bound in the

case of additive white Gaussian noise is presented in Appendix A. In this experiment, the acquisition

device observes 128 noisy samples with T = 1/128 [sec] of a truncated sine wave with frequency

ω1 = 12.23π [rad/sec] and switching points t1 = 0.4907 [sec] and t2 = 1 [sec]. Since we assume

that the switching points are sufficiently far apart, their locations can be estimated independently. We

therefore show the results only for the first discontinuity. The frequency of the sine wave is estimated using

Matlab’s rootmusic function and the location of the switching point is estimated using a four phase

approach and additional hard thresholding. Note that we have also experimented with other frequency

estimation methods as well as using the ground truth frequency. Similar results are obtained in all cases.

Figure 8(a) shows the scatter plot for the reconstruction of the switching point t1 for different SNR

levels. The standard deviation of the error (averages over 1000 iterations) of the location retrieval is

shown in Figure 8(b). These simulations show that the proposed reconstruction algorithm behaves well

down to noise levels of about 7 [dB]. Figure 9 illustrates an example of the recovery of a continuous-
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Robust Sparse Sampling
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Fig. 9. Recovery of a truncated sine wave at SNR = 8 [dB]. (a) The observed noisy samples. (b) The reconstructed signal

along with the ground truth signal (dashed).

time piecewise sinusoidal signal (with t1 = 0.2441 [sec], t2 = 0.7324 [sec] and ω1 = 12.23π [rad/sec])

given 128 noisy samples at an SNR of 8 [dB]. Note that despite the small error in the estimation of the

frequency of the sine wave, the estimation of the switching points are accurate.

VIII. CONCLUSION

We have set out to show that piecewise sinusoids belong to the family of signals with finite rate

of innovation and can be sampled and perfectly reconstructed using sampling kernels that reproduce

exponentials or polynomials. These classes of kernels are physically realizable and are of compact support.

Moreover, combinations of piecewise sinusoids and polynomials also have a finite rate of innovation and

can be dealt with using similar sampling schemes. This combination gives rise to a very general type of

signal.

Since the sampling scheme is limited by the rate of innovation rather than the actual frequency

of the continuous-time signal, we are, in theory, capable of retrieving piecewise sine waves with an

arbitrarily high frequency along with the exact location of the switching points. We believe therefore that

the sampling scheme presented may find applications, for example, in spread spectrum and wide band

communications.

Finally, we studied the effect of noise on the performance of the estimation of the switching points. In

doing so, we derived a polyphase reconstruction algorithm that together with hard thresholding behaves

well with respect to the Cramér-Rao bounds down to SNRs of 7 [dB].
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Application: Image Super-Resolution

Super-Resolution is a multichannel sampling problem with unknown shifts. Use
moments to retrieve the shifts or the geometric transformation between images.

(a)Original (512× 512) (b) Low-res. (64× 64) (c) Super-res ( PSNR=24.2dB)

I Forty low-resolution and shifted versions of the original.

I The disparity between images has a finite rate of innovation and can be retrieved.

I Accurate registration is achieved by retrieving the continuous moments of the
‘Tiger’ from the samples.

I The registered images are interpolated to achieve super-resolution.
Pier Luigi Dragotti
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Application: Image Super-Resolution

Image super-resolution basic building blocks

Restoration
Super-resolved

image

Set of low-resolution images Image Registration HR grid estimation

LR image 0
...

LR image k
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Application: Image Super-Resolution

I For each blurred image I (x , y):

I A pixel Pm,n in the blurred image is given by

Pm,n = 〈I (x , y), ϕ(x/T − n, y/T −m)〉,

where ϕ(t) represents the point spread function of the lens.
I We assume ϕ(t) is a spline that can reproduce polynomials:X

n

X
m

c (l,j)
m,n ϕ(x − n, y −m) = x ly j l = 0, 1, ...,N; j = 0, 1, ...,N.

I We retrieve the exact moments of I (x , y) from Pm,n:

τl,j =
X

n

X
m

c (l,j)
m,n Pm,n =

Z Z
I (x , y)x ly jdxdy .

I Given the moments from two or more images, we estimate the geometrical
transformation and register them. Notice that moments of up to order three
along the x and y coordinates allows the estimation of an affine transformation.
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Application: Image Super-Resolution
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Application: Image Super-Resolution

(a)Original (128× 128) (b) Super-res (1024× 1024)
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Application: Image Super-Resolution

(a)Original (48× 48) (b) Super-res (480× 480)
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Application in Neuroscience

Applications in NeuroscienceNeural	  acquisi)on	  and	  sor)ng	  

•  The	  energy	  budget	  of	  implanted	  devices	  is	  limited.	  
•  High	  sampling	  rates	  impose	  wired	  data	  transmission	  and	  

limits	  the	  quality	  and	  diversity	  of	  experiments.	  

Neuroprosthesis	  

Processing	  unit	  

8	  

ADC	  

Spike	  sor)ng	  
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Application in Neuroscience

Insight: Sample at lower rate and reconstruct the signal outside the
implant

Objec)ve	  
•  Sample	  at	  a	  lower	  rate	  and	  reconstruct	  the	  signal	  outside	  

the	  implant.	  

Neuroprosthesis	   Processing	  unit	  

Neuroprosthesis	   Processing	  unit	  

6	  

ADC	  
Classical	  

ADC	  
Sparse	  

Spike	  
sor)ng	  

Spike	  
sor)ng	  

Reconstruc)on	  
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Application in Neuroscience

I Classical Sampling (C) fs = 24KHz

I Sparse Sampling (F) fs = 5.8KHz

Spike	  sor)ng	  valida)on	  (iii)	  
•  Classical	  sampling	  at 	   	   	   	  	  	  	  	  	  .	  
•  Sparse	  sampling	  at 	   	   	   	  	  	  	  	  (x4	  undersampling).	  
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Calcium Transient Detection

Figure 6: Double consistency spike search. (i) and (ii) show the detected locations in red and the locations of the
original spikes in green for two different window sizes. In (i) the algorithm runs estimating the number of spikes
within the sliding window. In (ii) the algorithm runs assuming a fixed number of spikes equal to one for each position
of the sliding window. (iii) shows the joint histogram of the detected locations. (iv) shows the fluorescence signal in
blue with the original spikes in green and the detected spikes in red.

2.4 Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to investigate the

changes in performance of the spike detection algorithm in terms of parameters such as data signal to noise

ratio and the sampling frequency. We assume that the spike occurrence follows a Poisson distribution with

parameter λ spikes/s. Experimental data presents occurrences between 0.45 and 0.5 spikes per second. The

probability of having k spikes in the interval considered in parameter λ (one second) is given by the probability

mass function of the Poisson distribution:

fλpkq “
λke´λ

k!
. (17)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot corresponds to

a time interval of ∆t “ L
N seconds. The λ1 parameter that corresponds to this new time interval is λ1 “ λ ¨∆t.

We then generate a vector k “ pk1, . . . , kN q of size 1 ˆN where each ki „ Poispλ1q are independent random

variables. The i-th element of this vector, ki, gives the number of spikes that occurred during the i-th time

slot. We then have to generate the precise instant of time when the spike occured. For a given time slot, we

generate the ki spike instants according to a uniform distribution. The total number of spikes in the time

interval L is K “
řN

i“1 ki. Once we have generated the locations of the K spikes ptkqK
k“1 the waveform given

11
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Application in Sensor Networks

Source	  Localiza-on	  in	  Diffusive	  Fields IMA	  2012

Localizing	  Point	  Sources	  in	  Diffusion	  Fields

8

Localized	  and	  instantaneous	  sources:

ft = 4f +
KX

k=1

ck�(x� xk)�(t� tk)

Diffusion	  field:

f(x, t) =
KX

k=1

ck

4⇡(t� tk)
e
� kx�xkk2

4(t�tk) U(t� tk)

x1

x2

p1
p2

p3

p4

p5

finite	  degrees	  of	  freedom

Goal:

Es-mate	  the	  unknown	  parameters	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  from	  the	  spa-otemporal	  
samples	  taken	  by	  distributed	  sensors.

{ck}k , {tk}k , {xk}k

Tuesday, 11 September 12
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Conclusions and Outlook

Sampling signals using sparsity models:

I New framework that allows the sampling and reconstruction of signals at
a rate smaller than Nyquist rate.

I It is a non-linear problem

I Different possible algorithms with various degrees of efficiency and
robustness

Applications:

I Many actual and potential applications:

I But you need to fit the right model!

I Carve the right algorithm for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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Appendix

Orthogonal matching pursuit (OMP) finds the correct sparse representation
when

K <
1

2

„
1 +

1

µ

«
. (4)

Sketch of the Proof (Elad 2010, pages 65-67):
Assume the K non-zero entries are at the beginning of the vector in descending
order with y = Dx . Thus

y =
KX

l=1

xlDl (5)

First iteration of OMP work properly if |DT
1 y | > |DT

i y | for any i > K .
Using (5)

|
KX

l=1

xlD
T
1 Dl | > |

KX
l=1

xlD
T
i Dl |
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Appendix (cont’d)

Sketch of the Proof (cont’d):
But

|
KX

l=1

xlD
T
1 Dl | ≥ |x1| −

KX
l=2

|xl ||DT
1 Dl | ≥ |x1| −

KX
l=2

|xl |µ ≥ |x1|(1− µ)(K − 1).

Moreover,

|
KX

l=1

xlD
T
i Dl | ≤

KX
l=1

|xl ||DT
i Dl | ≤

KX
l=1

|xl |µ ≤ |x1|µK

Using these two bounds, we conclude that |DT
1 y | > |DT

i y | is satisfied when

condition (4) is met.
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