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Outline

* This talk is about
* Image processing applications that are useful to
compare data-driven signal processing vs model-
based signal processing

» Shallow learning but not deep-learning

» Overview of key notions used in sparsity-driven
signal processing methods
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Problem Statement

Real Scene Digital Image

* Avisual sceneisturned into a digital image by a camera
Can we overcome the limitation of the camera and, given the pixels, obtain a
sharper image with increased resolution?

The problem of enhancing the resolution of a single image is known as Single-
Image Super-Resolution
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Problem Statement

» Single Image Super-Resolution differs from traditional Image
Super-Resolution because only one low-resolution image is
available

» Highly lll-posed

» Two main approaches:
» Data-driven Approach: learn the high-resolution image
from a database of low-resolution (LR) and high-resolution
(HR) pairs
*  Model-Based Approach: use priors on the property of
natural images to estimate the HR image from the
observed LR one.
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Data-Driven SISR

The key insight in the data-driven approach is that images or patches of
images have a sparse representation in a (redundant) dictionary

Example of dictionaries include wavelets, union of bases or /earned
dictionaries.
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Bases and Overcomplete Dictionaries
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Bases and Overcomplete Dictionaries: Matrix Interpretation

* Assume the ‘atoms’ {¢;} are finite dimensional column vectors of size N

* Stack them one next to the other to form the synthesis matrix M:

T
M=1¢1 - g
Lo ]

* If M is square and invertible then {¢;}}"_is a basis (of RNor CV).
* If M is ‘fat’ but has N linearly independent columns it form a redundant or
overcomplete dictionary
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Data-Driven Super Resolution

» The key insight in the data-driven approach is that images or patches of
images have a sparse representation in a redundant dictionary
* The dictionary is usually learned
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Dictionary Learning

« Learn dictionaries by alternating between
* Learning the sparse representations given the dictionaries (sparse coding
step)
* Update the dictionary given the sparse representations (dictionary
update step)
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Sparse Coding Step

* Given D, learn the sparse representations z;
* Sparse Representation Algorithms:

* Greedy algorithms:
* Matching Pursuit (MP)
* Orthogonal Matching Pursuit (OMP)

* Convex Relaxation Algorithms:
e Basis Pursuit (BP)
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Dictionary Update Step

» Given the sparse representations update the dictionary.

* Many possible approaches, k-SVD (Aharon-Elad:06) is the most used
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* Find d;and z!that minimize ||El - dl-ziT”
* This is achieved by taking the SDV of E; (with a small caveat to keep zl-T sparse)
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Data-Driven Super-Resolution

Super-Resolution Model:

» One postulates that HR patches and LR patches admit a common sparse
representation z; :

LR _ pLR

i Z;
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Data-Driven Super-Resolution: Algorithm

Algorithm:

Given DR and DR and the LR image to enhance
Patches x'Rare extracted

Using DR and sparse coding methods (e.g., OMP) the sparse vectors z;
are retrieved

HR patches are then given by xR = DHRg;

Open question: How do we learn DR and DHR?
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Data-Driven Super-Resolution: Training
Start with an external dataset of images (e.g., BSD 300 dataset)
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_
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Data-Driven Super-Resolution: Training

Training:
1. Given x!®, learn D'R and z; using K-SVD

2. Given x® and z; compute DR directly
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Data-Driven Super-Resolution: Example

Low-resolution Image

Algorithm:

« Given DR and DR and the LR image to ﬁ
enhance

+ Patches x/*are extracted High-resolution Image

+ Using DR and sparse coding methods the m
sparse vectors z; are retrieved

+ HR patches are then given by x!’R = DHRg;

Key references include [Yang et al. 2010,2012], [Zeyde et al. 2010], [Timofte et al. 2014]
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Data-Driven Super-Resolution

* Preliminary Observations:
» Based on a (simple) modelling assumption: sparsity
* Most of the complexity is shifted to the training stage

» Given more complex datasets, how much more modelling is
required to achieve good performance in the application at
hand?
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Multimodal Depth Image Super-Resolution

Estimated HR Depth Image

HR Color Image
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Depth Image Super-Resolution Model

Model:

* HR depth patches and LR depth patches admit a common sparse
representation

» Colour images are made of texture + piecewise smooth 2-D signals

* The texture is unique but the piecewise smooth signal is in common with
the depth image

* So HR depth, LR depth and HR colour have something in common but also
unique features
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Depth Image Super-Resolution Model

Model:

* HR depth, LR depth and HR colour have something in common but also
unique features

» This requires a more sophisticated dictionary model

* We split the dictionary into two parts, one describes the common features
and the other the features unique to each modality

X! 7 Z
Xt | =| " ®w o U
Y ® 0 & ||V
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Multi-Modal Dictionary Learning

« Learn dictionaries by alternating between
* Learning the sparse representations given the dictionaries (sparse coding
step)
* Update the dictionary given the sparse representations (dictionary
update step)
+ Dictionaries are updated iteratively

X! A Z
Xk | =| wh @ 0 U
Y ® 0 ® ||V
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Multi-Modal Super-Resolution: Algorithm
Algorithm:

+ Given the learned dictionaries, the LR depth image to enhance and the HR
colour image

+ Extract patches x}* and y;

» Using sparse coding methods (e.g., OMP), retrieve the sparse vectors z;, u;
and v;

* HRdepth patches are then given by: X" =] @ @ | { IZJ ]

Key references include [Rodrigues et al. 2016], [Song, Deng et al. 2017], [Deng et al. 2017]
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MuIt| Modal Super-Resolution: Results

Img No.3
i1 ; i

| Img No.1 | Img No.2 | Img No.3 | Img No4 | Img No.5 | Img No.6

Bicubic 27.63 3331 27.27 24.30 25.00 27.89
DL 29.47 34.22 29.14 25.81 26.65 29.16
CDL 3045 35.24 30.13 27.04 2791 30.21

Image courtesy of M. Rodrigues
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Multi-Modal Super-Resolution: Results
Super-resolving hyper-spectral images with the aid of RGBimages

Img No.1

)

Imi No.3

Image courtesy of M. Rodrigues
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Image Super-Resolution: Model-Based Approach
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lens sensor
continuous scene camera digital image

T
2(t) ——d h(e) = @(—t/T) e Yo

+ Sampling and Resolution Enhancement are heavily connected through wavelet
multi-resolution analysis
« The acquisition process can be modelled as low-pass filtering followed by sampling
* In a camera the low-pass filtering is due to the lenses and is modelled with the
point spread function
g} 9 :1."3‘7
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Point Spread Function and Splines

(a)Original (2014 x 3039) (b) Point Spread function

* In a camera the low-pass filtering is due to the lenses and is modelled
with the point spread function
» The point spread function in a camera behaves like a spline function
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Acquisition Process and Wavelet Decomposition

* The acquisition process remove the fine details of the image

« Since the low-pass filter is a spline, the acquisition process can be interpreted as a process
that removes the wavelet coefficients at fine scales

+ Key insight: Exploit the dependency across scale of the wavelet coefficients to retrieve the
lost details.

(a) The high-resolution image (b) Low-pass and high-pass (c) We only have access to the
'Peppers’ subbands of a 2-level 2D low-pass subband of the 2-level
wavelet transform of (a) 2D wavelet transform in (b)
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Wavelet Decomposition and Multiresolution




Wavelet Decomposition and Multiresolution
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Modelling of Dependencies Across Scales

Original signal

Disparity value
°
&

S 0 = 70 P 0 20 40 60 80 100 120 140 160

(a) Horizontal line

* We model lines of images as piecewise regular functions defined as the
combination of a piecewise polynomial signal and a globally smooth function that
lies in shift-invariant subspace:

o I I U I
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Modelling of Dependencies Across Scales

Original signal

4 0.
= o T ) F= 0 20 40 60 80 100 120 140 160
(a) Horizontal line

* We model lines of images as piecewise regular functions defined as the

combination of a piecewise polynomial signal and a globally smooth function that
lies in shift-invariant subspace:

() = p(t) +7(t) = p(t) + Y yap(t/T —n)

Note that we assume: (¢(t), p(t —n)) = 0,
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Modelling of Dependencies Across Scales

In the wavelet domain, the detail coefficients are only due to the piecewise
polynomial signal

126 original piecewise smooth signal x(t) approx detail 2 detail 1
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Reconstruction of Piecewise Smooth Signals

Key Insight:
The residual can be recovered using traditional linear reconstruction
methods

Piecewise polynomial signals are continuous sparse signals and can be
recovered using sparse sampling theory (i.e., finite rate of innovation
theory [DragottiVB:07, UriguenBD:13])

o FRI b(t)
(t) T reconstruction >
M : W) = () ——" >
(1)
el S
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Exact Reconstruction of Piecewise Polynomial Signals

(a) Original Signals (b) Measured Samples

T

(c) Finite Difference (d) Reconstructed Signal

Piecewise polynomial signals are continuous sparse signals and can be
recovered using sparse sampling theory (i.e., finite rate of innovation theory
[DragottivB:07, UriguenBD:13])
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Reconstruction of Piecewise Smooth Signals

e remove the contribution of the reconstructed polynomial part p(t) from

the samples y,.
e reconstruct the residual 7(t) by classical linear reconstruction.

T FRI
reconstru-
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Numerical Results
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FRESH: FRI-based Single-Image Super-
Resolution
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sensor

continuous scene camera digital image

» Algorithm capable of increasing the resolution of digital images up to 4X.

« Based on applying the 1-D resolution enhancement algorithm along several
directions of the image

* The upsampled images are merged using wavelet theory

» Self-learning further improves performance

» Accurately retrieve fine details lost during the acquisition process.

[WeiD:TIP16]
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FRESH: FRI-Based Single-Image Super-Resolution

Input image Linear upsampling FRI upsampling along
along columns rows
128x128 pixels 256x128 pixels 256x256 pixels
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FRESH: FRI-Based Single-Image Super-Resolution

Input image Linear upsampling FRI upsampling along
along rows columns
128x128 pixels 128x256 pixels 256x256 pixels
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FRESH: FRI-based Single-Image Super-Resolution

Original input image

Decomposition of
image upsampled
along rows

High-res image after

Decomposition of inverse decomposition

image upsampled

along columns 256x256 pixels
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FRESH: FRI-based Single-Image Super-Resolution

FRI upsampling of main
and secondary diagonals
of low-res image

Fusion of upsampled
images based on their
dominant gradient
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FRESH Results: Real Data

Low-res input Final result
64 x64 pixels 256x256 pixels
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Single-Image Super-Resolution: Numerical Comparisons

e
[

vz

N
~

Original Linear (25.9dB) Timofte (27.3dB) FRESH (27.7dB)
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Multimodal Depth Super-Resolution

MR depth image

LR depth image

external datasets

HR colour image
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Multimodal Depth Super-Resolution: Numerical Comparisons

AV s

(a) GT (b) Bicubic 27.92dB  (¢) Xie¢ 26.50dB  (d) Lu27.13dB

Rl e

(e) Ferstl 28.04dB  (f) Timofte 31.13dB (g) Song 32.27dB  (h) Ours 33.78dB

* Method (h) is a combination of FRESH and multimodal dictionary learning
* Method (g) is based on deep learning

uper-Resolution



Conclusions

» The notion of sparsity is still essential to develop and understand both model-
based or data-driven methods

» Data-driven algorithms based on shallow (or deep) learning still use a modelling
assumption (sparsity)

* Model-based approaches are competitive when they can reflect closely the nature of
the data (e.g., depth images), but lack flexibility

» Model-based algorithm can always be combined with data-driven methods to yield
algorithms with best performance
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