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Outline 

• This talk is about

• Image processing applications that are useful to 
compare data-driven signal processing vs model-
based signal processing

• Shallow learning but not deep-learning

• Overview of key notions used in sparsity-driven 
signal processing methods
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Problem Statement

Real Scene Digital Image

• A visual scene is turned into a digital image by a camera
• Can we overcome the limitation of the camera and, given the pixels, obtain a  

sharper image with increased resolution?
• The problem of enhancing the resolution of a single image is known as Single-

Image Super-Resolution
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Problem Statement

• Single Image Super-Resolution differs from traditional Image 
Super-Resolution because only one low-resolution image is 
available

• Highly Ill-posed

• Two main approaches:
• Data-driven Approach: learn the high-resolution image 

from a database of low-resolution (LR) and high-resolution 
(HR) pairs

• Model-Based Approach: use priors on the property of 
natural images to estimate the HR image from the 
observed LR one.
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Data-Driven SISR
• The key insight in the data-driven approach is that images or patches of 

images have a sparse representation in a (redundant) dictionary
• Example of dictionaries include wavelets, union of bases or learned

dictionaries. 

27 

Sparse Representation in a union of two bases  

•  Wavelets  provide sparse  representations of piecewise smooth images.   
•  In matrix/vector form y=Wα  
•  Here the  matrix  W  has size N × N  and  models  the  discrete-time wavelet transform of finite 

dimensional  signals. 
 
 

•  How about textures? The DCT is maybe better for textured regions 
•  Key insight: use an overcomplete dictionary (frame) D made of the union of two bases to 

obtain even sparser representations of images 
 

Figure:  Cameraman  is reconstructed using only 8% of the wavelet coefficients  
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Bases and Overcomplete Dictionaries 
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Bases and Overcomplete Dictionaries: Matrix Interpretation 

• Assume	the	‘atoms’	{𝜑#} are	finite	dimensional	column	vectors	of	size	N

• Stack	them	one	next	to	the	other	to	form	the	synthesis matrix	M:

• If	𝑀 is	square	and	invertible	then	{𝜑#}#&'( is	a	basis	(of	RN	or	CN ).
• If	𝑀 is	‘fat’	but	has	𝑁 linearly	independent	columns	it	form	a	redundant	or	

overcomplete dictionary

M =

2

4
" · · · " · · ·
'1 · · · 'i · · ·
# · · · # · · ·

3

5
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Data-Driven Super Resolution
• The key insight in the data-driven approach is that images or patches of 

images have a sparse representation in a redundant dictionary
• The dictionary is usually learned 

Introduction

• Sparse representation problem
• Find a K-sparse signal 𝒙 (||𝒙||𝟎 = 𝐾) from noisy observation 𝒚
• Dictionary 𝑫 is a fat matrix
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Dictionary Learning
• Learn dictionaries by alternating between

• Learning	the	sparse	representations	given	the	dictionaries	(sparse	coding	
step)

• Update	the	dictionary	given	the	sparse	representations	(dictionary	
update	step)

=….

….

𝑋 𝐷

𝑍
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Sparse Coding Step
• Given	𝑫,	learn	the	sparse	representations		𝒛𝒊		

• Sparse	Representation	Algorithms:

• Greedy	algorithms:
• Matching	Pursuit	(MP)
• Orthogonal	Matching	Pursuit	(OMP)
• ...

• Convex	Relaxation	Algorithms:
• Basis	Pursuit	(BP)
• ….

Introduction

• Sparse Representation Algorithms:
• Greedy pursuit algorithms: 

• Matching Pursuit
• Orthogonal Matching Pursuit (OMP)
• Subspace Pursuit (SP)
• …

• Convex relaxation algorithms:
• Basis Pursuit (BP)
• LASSO
• …

• Non-convex algorithms…

13/06/2017 3
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Dictionary Update Step
• Given the sparse representations update the dictionary.

• Many	possible	approaches,	k-SVD	(Aharon-Elad:06)	is	the	most	used

=….

….

• Find	𝒅#and	𝒛#3that	minimize	 𝑬𝒊 − 𝒅#𝒛#3

• This	is	achieved	by	taking	the	SDV	of	𝑬𝒊 (with	a	small	caveat	to	keep	𝒛#3	sparse)
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Data-Driven Super-Resolution
Super-Resolution Model:

• One postulates that HR patches and LR patches admit a common sparse 
representation 𝑧#	:

x

LR
i = D

LR
zi

x

HR
i = D

HR
zi

x

LR
i = Ax

HR
i = AD

HR
zi = D

LR
zi
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Data-Driven Super-Resolution: Algorithm
Algorithm:

• Given 𝑫78 and 𝑫98 and the LR image to enhance

• Patches 𝒙#78are extracted 

• Using 𝑫78	and sparse coding methods (e.g., OMP) the sparse vectors 𝒛#
are retrieved

• HR patches are then given by 𝒙#98 = 𝑫98𝒛#

• Open question: How do we learn 𝑫78 and 𝑫98?
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Data-Driven Super-Resolution: Training
Start with an external dataset of images (e.g., BSD 300 dataset)

Down
sampling

Bicubic 
interpolation

Patch extraction

LR patches

Patch extraction

HR patches

Extract pairs of LR and HR patches
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Data-Driven Super-Resolution: Training 

Training:

1. Given 𝒙#78, learn 𝑫78 and 𝒛#	using K-SVD

2. Given 𝒙#98	and 𝒛# compute 𝑫98 directly
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Data-Driven Super-Resolution: Example

Algorithm:

• Given 𝑫78 and 𝑫98 and the LR image to 
enhance

• Patches 𝒙#78are extracted 

• Using 𝑫78	and sparse coding methods the 
sparse vectors 𝒛# are retrieved

• HR patches are then given by 𝒙#98 = 𝑫98𝒛#

Key	references	include	[Yang	et	al.	2010,2012],	[Zeyde et	al.		2010],	[Timofte et	al.	2014]

Image	Super-Resolution

Sparse	representations	based	super-resolution

Representative	References

Super-resolution	model Low-resolution	Image

This	problem	can	be	addressed	using	sparse	representations	whereby	
the	HR	image	is	generated	from	the	LR	image	as	follows:		

High-resolution	Image

Some	key	references	include:
1.[Yang,	2010,	2012]
2.[Zeyde,	2012]
3.[Timofte,	2014]

One	postulates	that	HR	patches	xiHR and	LR	patches	xiLR admit	a	common	
sparse	representation	zi in	HR	and	LR	dictionaries	DHR and	DLR:

"AJK = DJK#A, ∀C

"ALK = DLK#A, ∀C

min
EMN,EON,6F

G "AJK − DJK#A I
I + "ALK − DLK#A I

I + P ⋅ #A 7
A

#̂A = argmin
	6F

"ALK − DLK#A I
I + P ⋅ #A 7 "RAJK = DJK#̂A

Training:

Testing:
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Data-Driven Super-Resolution

• Preliminary Observations:
• Based on a (simple) modelling assumption: sparsity
• Most of the complexity is shifted to the training stage

• Given more complex datasets, how much more modelling is 
required to  achieve good performance in the application at 
hand?
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Multimodal Depth Image Super-Resolution

LR	Depth	Image

HR	Color	Image

Estimated	HR	Depth	Image
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Depth Image Super-Resolution Model

Model:

• HR depth patches and LR depth patches admit a common sparse 
representation

• Colour images are made of texture + piecewise smooth 2-D signals

• The texture is unique but the piecewise smooth signal is in common with 
the depth image

• So HR depth, LR depth and HR colour have something in common but also 
unique features
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Depth Image Super-Resolution Model

Model:

• HR depth, LR depth and HR colour have something in common but also 
unique features

• This requires a more sophisticated dictionary model

• We split the dictionary into  two parts, one describes the common features 
and the other the features unique to each modality
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Multi-Modal Dictionary Learning

• Learn dictionaries by alternating between
• Learning	the	sparse	representations	given	the	dictionaries	(sparse	coding	

step)
• Update	the	dictionary	given	the	sparse	representations	(dictionary	

update	step)
• Dictionaries are updated iteratively
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Multi-Modal Super-Resolution: Algorithm 

Algorithm:

• Given the learned dictionaries, the LR depth image to enhance and the HR 
colour image

• Extract patches 𝒙#78 and 𝒚#

• Using sparse coding methods (e.g., OMP), retrieve the sparse vectors 𝒛#, 𝒖#
and 𝒗#

• HR depth patches are then given by: Xh =
⇥
 h

c  h
⇤  Z

U

�

Key	references	include	[Rodrigues	et	al.	2016],	[Song,	Deng	et	al.		2017],	[Deng	et	al.	2017]
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Multi-Modal Super-Resolution: Results 

Multi-Modal	Data	Aided	Super-Resolution
Super-resolving	depth	images	with	the	aid	of	RGB	images

Image	courtesy	of	M.	Rodrigues
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Multi-Modal Super-Resolution: Results 
Multi-Modal	Data	Aided	Super-Resolution
Super-resolving	hyper-spectral	images	with	the	aid	of	RGB	images

Image	courtesy	of	M.	Rodrigues
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Image Super-Resolution: Model-Based Approach

• Sampling and Resolution Enhancement are heavily connected through wavelet 
multi-resolution analysis

• The acquisition process can be modelled as low-pass filtering followed by sampling
• In a camera the low-pass filtering is due to the lenses and is modelled with the 

point spread function

3724 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 8, AUGUST 2016

Fig. 2. Natural images and scan-lines of natural images are approximately
2D and 1D piecewise smooth functions respectively.

of parameters. FRI theory has shown that these signals,
although non-bandlimited, can be uniquely reconstructed by
only a small number of samples taken with specific acquisition
devices. In other words, there is a unique mapping between
a specific low-resolution version to the infinite-resolution
version for these signals and there is a constructive way for
recovery. The FRI theory is later extended to the approximate
FRI framework that works with any sampling kernel [28].

This insight inspires a novel method for sampling
continuous-time image scan-lines or 1D piecewise smooth
functions: a piecewise smooth signal can be modeled as the
sum of a piecewise polynomial and a globally smooth part
and we propose a hybrid reconstruction method based on
classical linear recovery of the smooth part and non-linear
recovery of the piecewise polynomial part using FRI on the
same set of samples. We then leverage from wavelet theory and
the corresponding multi-resolution analysis [29] to adapt this
hybrid reconstruction method to the resolution enhancement
problem. In particular, enhancing the resolution of a signal
is equivalent to finding the detail wavelet coefficients at finer
scales. We do this using FRI and we combine the details with
the coarse linear approximation. Because of the connection
with wavelet theory this can be achieved using filter banks.
This leads to a fast and extremely effective algorithm to
enhance the resolution of 1D piecewise smooth functions.

We extend this approach to images by approximating
the point-spread-function with a scaling function in the
wavelet theory (typically a spline of a certain order) and
apply the 1D method along vertical, horizontal and diagonal
directions. These reconstruction are then combined with the
low-resolution version of the image using a 2D filter-bank.

Finally, inspired by the works in single image super-
resolution based on self-learning, we propose correcting the
error in our FRI upsampling result by learning from the pair of
input LR image and the corresponding FRI image of same size
recovered from an even lower scale. Contrary to [17] and [19],
we use self-learning algorithms only to refine our FRI based
method. As a result, we do not require learning at every
small increment of scales and our upsampled images have less
artefacts. The end result is an FRi-based singlE-image Super-
resolution algoritHm FRESH, which outperforms state-of-the-
art methods in most situations. Fig. 3 shows a comparison on
an example.

The paper is organized as follows. In Section II we review
the classical sampling theory whose reconstruction process
is linear, and the recently developed FRI sampling theory.
In Section III, we first show our interpretation of sam-
pling from multi-resolution property of wavelet transform and

Fig. 3. Upsampling results (factor 4) of woman by different methods.
The downsampling kernel is bior4.4. (a) the original image. (b) linear
reconstr. PSNR=25.91dB. (c) A+ [16] PSNR=27.34dB. (d) our algorithm
PSNR=27.72dB.

Fig. 4. Sampling set-up. Here x(t) is the input signal, h(t) is the impulse
response of the acquisition device and T is the sampling period. The samples
are given by yn = ⟨x(t), ϕ̃(t/T − n)⟩.

Fig. 5. Linear reconstruction set-up. The reconstruction of the input signal
is given by x̂(t) = ∑

n ynϕ(t/T − n).

propose how to sample piecewise smooth signals, then by
relating the resolution enhancement problem to sampling
problem we propose a method for enhancing the resolution
of piecewise smooth signals using filter-banks. In Section IV,
we show how the 1D upsampling method is extended to
enhance the resolution of 2D images. We then propose an
improved upsampling method which corrects errors in the
FRI upsampled image by exploiting the similarities between
images at different resolutions. We show simulation results in
Section V and conclude in Section VI.

II. OVERVIEW OF RECENT DEVELOPMENTS

IN SAMPLING THEORY

A. Sampling Problem and Classical Linear Reconstruction

Fig. 4 depicts the typical sampling setup, where the orig-
inal continuous-time signal x(t) is filtered with a linear-time
invariant filter with impulse response h(t) and then is sampled
with sampling period T . Under this model the samples yn are
given by

yn = ⟨x(t), ϕ̃(t/T − n)⟩, (1)

where ϕ̃(t) is the sampling kernel and is the scaled and time-
reversed version of h(t). Traditionally, see Fig. 5, x(t) is
reconstructed using a linear filter with response ϕ(t) where the
pair {ϕ̃(t),ϕ(t)} is chosen so that ⟨ϕ(t −n), ϕ̃(t − k)⟩ = δn−k .
Under this model the sampling and reconstruction process can
be interpreted as computing the orthogonal projection of x(t)
onto the shift-invariant subspace V spanned by ϕ(t) and its
shifted versions: V = span{ϕ(t/T −n)}n∈Z. Therefore perfect
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Point Spread Function and Splines
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(a)Original (2014 ×3039) (b) Point Spread function

• In a camera the low-pass filtering is due to the lenses and is modelled 
with the point spread function

• The point spread function in a camera behaves like a spline function
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Acquisition Process and Wavelet Decomposition
• The acquisition process remove the fine details of the image
• Since the low-pass filter is a spline, the acquisition process can be interpreted as a process 

that removes the wavelet coefficients at fine scales
• Key insight: Exploit the dependency across scale of the wavelet coefficients to retrieve the 

lost details.

Problem Statement Sampling Piecewise Smooth Signals Image Up-sampling Simulation results Conclusions

From Sampling Problem to Resolution Enhancement

(a) The high-resolution image
’Peppers’

(b) Low-pass and high-pass
subbands of a 2-level 2D
wavelet transform of (a)

(c) We only have access to the
low-pass subband of the 2-level
2D wavelet transform in (b)
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Wavelet Decomposition and Multiresolution
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Wavelet Decomposition and Multiresolution



Pier Luigi Dragotti
Single-Image Super-Resolution

Modelling of Dependencies Across Scales

• We model lines of images as piecewise regular functions defined as the 
combination of a piecewise polynomial signal and a globally smooth function that 
lies in shift-invariant subspace: 

Problem Statement Sampling Piecewise Smooth Signals Image Up-sampling Simulation results Conclusions

Problem Statement
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We model image scan-lines by piecewise smooth signals

enhancing images to infinite resolution can be interpreted as the problem of
sampling and reconstructing 2-D piecewise smooth functions:

Problem Statement Sampling Piecewise Smooth Signals Image Up-sampling Simulation results Conclusions

Problem Statement

We model image scan-lines by piecewise smooth signals

+

enhancing images to infinite resolution can be interpreted as the problem of
sampling and reconstructing 2-D piecewise smooth functions:
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Here, the kernel φ(t) should satisfy the generalised Strang-Fix
conditions [40], so that it is able to reproduce exponentials
eαmt with proper coefficients cm,n,

∑

n∈Z

cm,nφ(t/T − n) = eαmt/T ,

where am = a0 +mλ, m = 0, 1, 2, ..., P.

(5)

With the sampled input y(n), we aim to reconstruct the
original signal p(R)(t). As can be seen in Eq. (3), we only
need to obtain the amplitudes ak,r and the time locations tk.
To this end, we first linearly combine the samples y(n) with
the coefficients cm,n to obtain the new sequence sm,

sm =
∑

n∈Z

cm,ny(n)

=
∑

n∈Z

cm,n

K−1
∑

k=0

R−1
∑

r=0

ak,rφ(tk/T − n)

=
K−1
∑

k=0

R−1
∑

r=0

ak,re
αmtk/T =

K−1
∑

k=0

R−1
∑

r=0

xk,ru
m
k ,

(6)

where xk,r = ak,reα0tk/T and uk = eλtk/T . The tk can be
retrieved from sequence sm using Prony’s method, which is
also known as the annihilating filter method. After we have
locations tk, the amplitudes ak,r can be obtained by solving
an equation matrix. Until now, both the amplitudes and time
locations are obtained, thus p(R)(t) can be fully reconstructed.
For more details, refer to [40].

IV. PROPOSED METHODS

In this section, the proposed approach is introduced in four
parts in detail. In Section IV-A, the FRI-based depth upscaling
(FDU) algorithm is introduced, and in Section IV-B, we show
the triple dictionary learning (TDL) algorithm. Then, based
on the learned dictionaries, a projection-based rapid upcaling
technique is introduced in Section IV-C. Finally, in Section
IV-D, to compensate the overall error in the upscaling process,
we introduce an error correction (EC) algorithm.

A. FRI-based depth upscaling (FDU)
In this section, we introduce a model-based method benefit-

ing from the FRI theory to upscale the LR depth image with
or without noise. The FRI-based image super resolution has
been successfully used for color image super-resolution [17],
by regarding each image line as a piece-wise smooth signal.
Here, considering the characteristics of depth images, e.g., no
texture but with noise, we propose a new FRI based upscaling
algorithm specifically for depth images.
Noise-free case. As shown in Fig. 2, the horizontal/vertical

line of depth images is quite close to a 1-D piece-wise
polynomial function. According to Section III-B, this kind
of signal can be perfectly reconstructed by the FRI theory.
But since the depth image is a 2-D signal, we need to figure
out a way to do 2-D FRI reconstruction. Fig. 3 (a) illustrates
the basic unit of the proposed 2-D FDU algorithm. For each
input LR depth image, we do image upscaling separately in
horizontal and vertical directions. Then the 2-D reconstruction
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(a) Horizontal line

(b) Vertical line

Fig. 2. 1-D illustration of the horizontal/vertical lines in a depth image. The
horizontal/vertical lines can be approximately seen as a piece-wise polynomial
function split by the red/blue dots.

problem can be converted into two 1-D problems, which can
be solved by FRI. Take the vertical direction for example, we
first do linear interpolation on each horizontal line to make the
vertical resolution equal to the final upscaled image. Suppose
that the input image is with dimension N × N , then after
the 2× horizontal interpolation, we can have image with size
N × 2N . After that, for each vertical line, we use FRI theory
to do upscaling, and we can get an upcaled image with size
2N × 2N . This image mainly contains the high-frequency de-
tails in horizontal. In order to extract the horizontal details, we
do 2-D wavelet decomposition on this image and keep the LH
part. On the other hand, we extract the vertical high-frequency
details from the horizontal FRI reconstruction by remaining its
HL part after wavelet decomposition. For the diagonal details,
we choose to use the HH part of either vertically upscaled or
horizontal upscaled image. Most importantly, in order to make
the super-resolved image consistent with the original LR input,
we use the original LR input as the LL part. Until now, we
have all the four parts, i.e., LL, LH, HL, HH, then we can
use wavelet reconstruction to obtain the reconstructed image
with high-frequency details. This finishes the basic unit of our
FDU algorithm.
In order to achieve a better reconstructed quality, following

[17], we employ an internal self-learning algorithm proposed
in [41] to correct some errors caused by FRI reconstruction.
The basic unit followed by the internal self-learning algorithm
completes our FDU algorithm with noise-free input.
Noisy case. In the noisy case, the LR input image is with

noise, which means there is no LR ground truth that we can
rely on. Recall that in the noise-free case, we replace the LL
part with the original LR input because this can make the
reconstructed HR image consistent with the LR input. Here,
obviously, this technique cannot work. Thus, we propose a
new technique to simultaneously denoise and upscale the noisy
input, as shown in Fig. 3 (b). Each green rectangle indicates
a basic unit in (a), but with different replaced LL component.
Note that for a basic unit, the input is a N × N image and
the output is an upscaled 2N × 2N image. Specifically, with
the noisy input N × N , we first do basic unit but replace
the LL component with the vertical LL instead of the noisy
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Modelling of Dependencies Across Scales

• We model lines of images as piecewise regular functions defined as the 
combination of a piecewise polynomial signal and a globally smooth function that 
lies in shift-invariant subspace: 

x(t) = p(t) + r(t) = p(t) +
X

n

yn'(t/T � n)

Note that we assume: h'(t), '̃(t� n)i = �n
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enhancing images to infinite resolution can be interpreted as the problem of
sampling and reconstructing 2-D piecewise smooth functions:
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Here, the kernel φ(t) should satisfy the generalised Strang-Fix
conditions [40], so that it is able to reproduce exponentials
eαmt with proper coefficients cm,n,

∑

n∈Z

cm,nφ(t/T − n) = eαmt/T ,

where am = a0 +mλ, m = 0, 1, 2, ..., P.

(5)

With the sampled input y(n), we aim to reconstruct the
original signal p(R)(t). As can be seen in Eq. (3), we only
need to obtain the amplitudes ak,r and the time locations tk.
To this end, we first linearly combine the samples y(n) with
the coefficients cm,n to obtain the new sequence sm,

sm =
∑

n∈Z

cm,ny(n)

=
∑

n∈Z

cm,n

K−1
∑

k=0

R−1
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(6)

where xk,r = ak,reα0tk/T and uk = eλtk/T . The tk can be
retrieved from sequence sm using Prony’s method, which is
also known as the annihilating filter method. After we have
locations tk, the amplitudes ak,r can be obtained by solving
an equation matrix. Until now, both the amplitudes and time
locations are obtained, thus p(R)(t) can be fully reconstructed.
For more details, refer to [40].

IV. PROPOSED METHODS

In this section, the proposed approach is introduced in four
parts in detail. In Section IV-A, the FRI-based depth upscaling
(FDU) algorithm is introduced, and in Section IV-B, we show
the triple dictionary learning (TDL) algorithm. Then, based
on the learned dictionaries, a projection-based rapid upcaling
technique is introduced in Section IV-C. Finally, in Section
IV-D, to compensate the overall error in the upscaling process,
we introduce an error correction (EC) algorithm.

A. FRI-based depth upscaling (FDU)
In this section, we introduce a model-based method benefit-

ing from the FRI theory to upscale the LR depth image with
or without noise. The FRI-based image super resolution has
been successfully used for color image super-resolution [17],
by regarding each image line as a piece-wise smooth signal.
Here, considering the characteristics of depth images, e.g., no
texture but with noise, we propose a new FRI based upscaling
algorithm specifically for depth images.
Noise-free case. As shown in Fig. 2, the horizontal/vertical

line of depth images is quite close to a 1-D piece-wise
polynomial function. According to Section III-B, this kind
of signal can be perfectly reconstructed by the FRI theory.
But since the depth image is a 2-D signal, we need to figure
out a way to do 2-D FRI reconstruction. Fig. 3 (a) illustrates
the basic unit of the proposed 2-D FDU algorithm. For each
input LR depth image, we do image upscaling separately in
horizontal and vertical directions. Then the 2-D reconstruction
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(a) Horizontal line

(b) Vertical line

Fig. 2. 1-D illustration of the horizontal/vertical lines in a depth image. The
horizontal/vertical lines can be approximately seen as a piece-wise polynomial
function split by the red/blue dots.

problem can be converted into two 1-D problems, which can
be solved by FRI. Take the vertical direction for example, we
first do linear interpolation on each horizontal line to make the
vertical resolution equal to the final upscaled image. Suppose
that the input image is with dimension N × N , then after
the 2× horizontal interpolation, we can have image with size
N × 2N . After that, for each vertical line, we use FRI theory
to do upscaling, and we can get an upcaled image with size
2N × 2N . This image mainly contains the high-frequency de-
tails in horizontal. In order to extract the horizontal details, we
do 2-D wavelet decomposition on this image and keep the LH
part. On the other hand, we extract the vertical high-frequency
details from the horizontal FRI reconstruction by remaining its
HL part after wavelet decomposition. For the diagonal details,
we choose to use the HH part of either vertically upscaled or
horizontal upscaled image. Most importantly, in order to make
the super-resolved image consistent with the original LR input,
we use the original LR input as the LL part. Until now, we
have all the four parts, i.e., LL, LH, HL, HH, then we can
use wavelet reconstruction to obtain the reconstructed image
with high-frequency details. This finishes the basic unit of our
FDU algorithm.
In order to achieve a better reconstructed quality, following

[17], we employ an internal self-learning algorithm proposed
in [41] to correct some errors caused by FRI reconstruction.
The basic unit followed by the internal self-learning algorithm
completes our FDU algorithm with noise-free input.
Noisy case. In the noisy case, the LR input image is with

noise, which means there is no LR ground truth that we can
rely on. Recall that in the noise-free case, we replace the LL
part with the original LR input because this can make the
reconstructed HR image consistent with the LR input. Here,
obviously, this technique cannot work. Thus, we propose a
new technique to simultaneously denoise and upscale the noisy
input, as shown in Fig. 3 (b). Each green rectangle indicates
a basic unit in (a), but with different replaced LL component.
Note that for a basic unit, the input is a N × N image and
the output is an upscaled 2N × 2N image. Specifically, with
the noisy input N × N , we first do basic unit but replace
the LL component with the vertical LL instead of the noisy
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In the wavelet domain, the detail coefficients are only due to the piecewise 
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Fig. 7. The details we need for resolution enhancement are due only to the
piecewise polynomial part. (a) The piecewise smooth signal x(t) = p(t)+r(t)
and its wavelet decomposition. (b) The piecewise polynomial part p(t) and
its wavelet decomposition. (c) The globally smooth part r(t) and its wavelet
decomposition.

Fig. 8. The Schematic diagram of our proposed sampling and reconstruction
strategy for piecewise smooth signals. The blue solid part: FRI reconstruction
of the piecewise polynomial function p(t). The black dashed part: linear
reconstruction of the smooth residual r(t).

we compute ŷ p
J,n = ⟨ p̂(t), ϕ̃J,n(t)⟩ which can then be removed

from the samples yJ,n to obtain the contribution ŷr
J,n =

yJ,n − ŷ p
J,n due to the smooth residual r(t). Then r(t) can

be reconstructed by classical linear method using the dual
of the sampling kernel, i.e. r(t) = ∑∞

n=−∞ ŷr
J,nϕJ,n(t) (the

black dashed part in Fig. 8). The estimation of x(t) is then the
summation of estimated piecewise polynomial and estimated
smooth part.

B. Resolution Enhancement of 1D Piecewise Smooth Signal

Given the discrete-time sequence yJ,n = ⟨x(t), ϕ̃J,n⟩, rather
than trying to reconstruct the original continuous-time sig-
nal x(t), one could be more interested in just trying to enhance
the resolution of yJ,n and the multi-resolution decomposition
of (10) provides the right framework to achieve this goal.
Assume that ϕ̃(t) is a valid scaling function satisfying the
two-scale relation:

ϕ̃(t) =
√

2
∑

h0[n]ϕ̃(2t − n), (12)

and that we aim to enhance the resolution of yJ,n by a factor
2K for some positive integer K . It is then natural to seek
for the signal yJ−K ,n which corresponds to the sequence
obtained by sampling x(t) with scaling function ϕ̃J−K (t) at
finer scale 2J−K .

Because of the two-scale equation (12) we can relate yJ,n to
yJ−K ,n using the K -level filter bank of Fig. 9. More precisely,

yJ = (yJ−K ∗ h(K )
0 ) ↓2K

, (13)

Fig. 9. K-level biorthogonal filter bank. Given the approximation coef-
ficients yJ = ⟨x(t), ϕ̃J,n⟩ we are looking for a higher resolution version
yJ−K = ⟨x(t), ϕ̃J−K ,n⟩.

Fig. 10. The schematic diagram of resolution enhancement of a piecewise
smooth signal by factor of 2K using a biorthogonal filter bank. From the
given approximation coefficients yJ = ⟨x(t), ϕ̃J,n⟩ and the detail coefficients
dJ , . . . , dJ−K +1 estimated using FRI, we are able to recover a higher
resolution version yJ−K = ⟨x(t), ϕ̃J−K ,n⟩.

Fig. 11. Assume we only have access to the low-pass subband y0 of
a 2D wavelet transform applied to the high-resolution image y−K . We want
to estimate the high-pass coefficients using FRI in order to recover the
high-resolution image. (a) The high-resolution piecewise smooth image.
(b) Low-pass and high-pass subbands of a 2-level 2D wavelet transform of
(a). (c) We only have access to the low-pass subband in (b).

where h(K )
0 in z-domain is H (K )

0 (z) = H0(z)
H0(z2) . . . H0(z2K−1

) and is derived based on the fact
that the cascade of K analysis filters H0(z) each
followed by subsampling by 2 is equivalent to one

filter H (K )
0 (z) = H0(z)H0(z2) . . . H0(z2K−1

) followed by
subsampling by 2K . Here H0(z) is the z-transform of
h0 in (12).

Therefore, one reasonable linear upsampling of yJ,n is
the version obtained by simply feeding yJ,n to the wavelet
reconstruction stage, and can be expressed as:

ŷJ−K = yJ ↑2K ∗g(K )
0 , (14)

where g(K )
0 in z-domain is G(K )

0 (z) = G0(z)G0(z2) . . .

G0(z2K−1
) and ŷJ−K is the projection of yJ−K to the subspace

spanned by {g(K )
0 [n − 2K k]}k∈Z. Here G0(z) is the synthesis

low-pass filter.
However, as Fig. 9 also indicates, this linear reconstruction

does not allow us to retrieve the missing detail coefficients
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Algorithm 1 FRI Method for Reconstructing Piecewise
Polynomial Signals

III. SAMPLING AND RESOLUTION ENHANCEMENT OF

1D PIECEWISE SMOOTH SIGNALS

We now go back to the original problem of enhancing the
resolution of images and make the following observations.
First of all we note that the image formation process in
a digital camera (refer to Fig. 1) can be seen as a 2D version
of the sampling set-up of Fig. 4 where the sampling kernel
now is the point spread function of the camera. Moreover,
images are piecewise regular functions (see Fig. 2), therefore,
enhancing images to infinite resolution can be interpreted as
the problem of sampling and reconstructing 2D piecewise
smooth functions.

In this section, we consider a 1D version of this prob-
lem and discuss the 2D case in Sec. IV. We consider the
sampling and reconstruction of 1D continuous-time functions
first and then the resolution enhancement of 1D discrete-time
signals.

A. Sampling of Piecewise Smooth Signals

We consider the case where the sampling kernel (or point
spread function in 2D case) is the scaling function of a wavelet
transform because the wavelet framework naturally relates the
linear and FRI non-linear reconstruction methods to the notion
of resolution enhancement and therefore provides a proper way
to combine them. Here we emphasize that the FRI sampling
method itself is universal since it works with any kernel.

Now we provide an interpretation of the problem of sam-
pling an input signal x(t) from the multi-resolution representa-
tion of x(t). Denote with ϕ(t) and ψ(t) the scaling and wavelet
functions respectively, and with ϕJ,n(t) = 2−J/2ϕ(2−J t − n)

and ψm,n(t) = 2−m/2ψ(2−m t − n), J, m, n ∈ Z the set of
dilated and shifted versions of the scaling and wavelet func-
tion. Consider the following multi-resolution representation of
a signal x(t) in terms of the scaling and wavelet functions:

x(t) =
∞∑

n=−∞
yJ,nϕJ,n(t)

︸ ︷︷ ︸
xJ (t)

+
J∑

m=−∞

∞∑

n=−∞
dm,nψm,n(t), (10)

where yJ,n = ⟨x(t), ϕ̃J,n⟩ and dm,n = ⟨x(t), ψ̃m,n⟩. Here
ϕ̃J,n, ψ̃m,n are the dual bases of ϕJ,n and ψm,n respectively.
We also note that xJ (t) in (10) represents an approximation
of x(t) at resolution 2J . Adding more and more levels of

Fig. 6. We model piecewise smooth signals by the sum of a piecewise
polynomial signal and a globally smooth signal.

details
∑∞

n=−∞ dm,nψm,n(t) to the coarse version xJ (t) gives
finer and finer resolution approximations and eventually the
original signal x(t).

The inner products yJ,n = ⟨x(t), ϕ̃J,n⟩ are equivalent to
the samples obtained by sampling x(t) with sampling kernel
ϕ̃J,n and sampling period T = 2J (see Fig. 4). Moreover,
the coarse approximation xJ (t) = ∑∞

n=−∞ yJ,nϕJ,n(t) in (10)
corresponds to the linear reconstruction process in classical
sampling theory discussed in Sec. II-A (see also Fig. 5),
which finds projection of x(t) onto the shift-invariant subspace
spanned by {ϕJ,n(t)}n∈Z [30]. However, for the purpose of
resolution enhancement, we are after an algorithm which is
able to recover details from yJ,n which are beyond the coarse
approximation.

We assume x(t) is piecewise smooth and model piece-
wise smooth functions as the combination of a piecewise
polynomial signal p(t) and a globally smooth function r(t)
(see Fig. 6). We assume the smooth part r(t) lives in the shift-
invariant subspace generated by integer shifts of ϕ(2−J t). The
piecewise smooth function can then be expressed as:

x(t) = p(t) + r(t)

=
∞∑

n=−∞
y p

J,nϕJ,n(t) +
J∑

m=−∞

∞∑

n=−∞
d p

m,nψm,n(t)

︸ ︷︷ ︸
p(t)

+
∞∑

n=−∞
yr

J,nϕJ,n(t)

︸ ︷︷ ︸
r(t)

=
∞∑

n=−∞
(y p

J,n+yr
J,n)︸ ︷︷ ︸

yJ,n

ϕJ,n(t)+
J∑

m=−∞

∞∑

n=−∞
d p

m,nψm,n(t).

(11)

By comparing (11) with (10), we notice that the details
d p

m,n we need for resolution enhancement are due only to
the piecewise polynomial part p(t) (see also Fig. 7), and the
remaining part can simply be obtained through linear recovery
using coefficients yJ,n.

This observation together with the fact that the approximate
reproduction formula of (8) enables reconstructing
approximately piecewise polynomial signals using any kernel
ϕ̃(t), leads to the proposed hybrid reconstruction strategy
highlighted in Fig. 8, which recovers p(t) using FRI method
and r(t) using the traditional linear reconstruction
approach.

Specifically, our proposed scheme first reconstructs the
piecewise polynomial part p(t) using the approximate Strang-
Fix theory of Algorithm 1 from the samples yJ,n by treating
the globally smooth residual as noise (the blue solid part
in Fig. 8). Given the estimated piecewise polynomial p̂(t),
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Reconstruction of Piecewise Smooth Signals 

Key Insight: 
• The residual can be recovered using traditional linear reconstruction 

methods
• Piecewise polynomial signals are continuous sparse signals and can be 

recovered using sparse sampling theory (i.e., finite rate of innovation 
theory [DragottiVB:07, UriguenBD:13])

Problem Statement Sampling Piecewise Smooth Signals Image Up-sampling Simulation results Conclusions

Problem Statement

• Classical sampling theory:

• Our method:

h(t) = '̃(�t)
T

y

n

'(t)
r̂(t)

x(t)

FRI
reconstruction

p̂(t)

• recover the discontinuities using FRI (non-linear)
• recover the residual smooth part by linear reconstruction

Note that we assume: h'(t), '̃(t� n)i = �n



Pier Luigi Dragotti
Single-Image Super-Resolution

Exact Reconstruction of Piecewise Polynomial Signals 

Piecewise polynomial signals are continuous sparse signals and can be 
recovered using sparse sampling theory (i.e., finite rate of innovation theory 
[DragottiVB:07, UriguenBD:13])
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Reconstruction of Piecewise Smooth Signals

Problem Statement Sampling Piecewise Smooth Signals Image Up-sampling Simulation results Conclusions

Reconstruction of Piecewise Smooth Signals

• remove the contribution of the reconstructed polynomial part p̂(t) from
the samples y

n

.

• reconstruct the residual r̂(t) by classical linear reconstruction.

T
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x(t) FRI
reconstru-
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Fig. 15. Our method is able to accurately recover a piecewise smooth signal
from its approximation coefficients. (a) The original high-resolution piecewise
smooth signal and its wavelet decomposition. (b) The linear reconstruction
(22.7dB) and its wavelet decomposition. (c) TV reconstruction (28.9dB) and
its wavelet decomposition. (d) Our reconstruction (47.9dB) and its wavelet
decomposition.

TABLE II

COMPARISONS OF UPSAMPLING RESULTS (FACTOR 4) GIVEN BY
DIFFERENT METHODS IN TERMS OF PSNR.

SAMPLING KERNEL: BIOR4.4

our improved method in Sec. IV-B with the linear recon-
struction method and some of the state-of-the-art algorithms,
we show the upsampling results of two different downsampling
kernels in terms of PSNR and SSIM (structural similarity
index [31]) in Table II and Table III respectively. Visual
comparisons on ‘Zebra’ (downsampling kernel of bior4.4) and
‘Comic’ (downsampling kernel of linear spline) are shown
in Fig. 16 and Fig. 17 respectively. Note that for self-
learning method [17], we use a third-party implementation [32]
and we cannot guarantee the implementation duplicates the

TABLE III

COMPARISONS OF UPSAMPLING RESULTS (FACTOR 4) GIVEN BY
DIFFERENT METHODS IN TERMS OF PSNR.

SAMPLING KERNEL: LINEAR SPLINE

original results. For other methods we ensure the comparison
is fair because we modified the blurring kernel in the source
codes to the specific kernel we use (bior4.4/linear spline), and
for dictionary-based methods of [15] and [16], the dictionary
was re-trained with the same kernel used in upsampling
process.

Our proposed method is universal in the sense that it works
with different blurring kernels. The results demonstrate that
our proposed basic (fast) method, with no learning involved,
outperforms other reconstruction-based algorithms, e.g. total
variation [6], contourlet [7] and even one of the dictionary
learning methods [15]. The improved method – FRESH is
robust and outperforms state-of-the-art methods in different
categories. Moreover, our method leads to visually pleasant
edges.

2) Upsampling of Images Taken With a Camera: Finally,
we show that the proposed algorithm is also able to upsample
the images taken with a real camera, where the blurring due
to lens is not exactly a scaling function as assumed previously
but can still be modeled as a spline. We demonstrate in Fig. 18
that the algorithm achieves visually good performance for
upsampling factor of 4. In the following result, the original
photographs are taken with Canon 400D, and its point spread
function is modeled by the fifth order spline. The upsampling
is performed only on the luminance component of the input
image and the chrominance component are simply upscaled
by bicubic interpolation.

C. Computation Complexity and Discussions

Upsampling an image of size N × N to 2K N × 2K N with
the basic algorithm proposed in Sec. IV-A requires number
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FRESH: FRI-based Single-Image Super-
Resolution

• Algorithm capable of increasing the resolution of digital images up to 4X.
• Based on applying the 1-D resolution enhancement algorithm along several 

directions of the image
• The upsampled images are merged using wavelet theory 
• Self-learning further improves performance 
• Accurately retrieve fine details lost during the acquisition process.

[WeiD:TIP16]
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FRESH: FRI-Based Single-Image Super-Resolution

FRI upsampling of each row in the image (~0.4s)

Input image 

128x128 pixels

Linear upsampling 
along columns

256x128 pixels

FRI upsampling along 
rows 

256x256 pixels
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FRESH: FRI-Based Single-Image Super-Resolution

FRI upsampling of each column in the image (~0.4s)

Input image 

128x128 pixels

Linear upsampling 
along rows

128x256 pixels

FRI upsampling along 
columns 

256x256 pixels
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FRESH: FRI-based Single-Image Super-Resolution

Linear combination of the upsampled images via wavelet transform (~0.05s)

Original input image

Decomposition of 
image upsampled 

along rows

Decomposition of 
image upsampled 

along columns

High-res image after 
inverse decomposition

256x256 pixels
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FRESH: FRI-based Single-Image Super-Resolution

FRI upsampling of diagonals and fusion (~0.9s)

FRI upsampling of main 
and secondary diagonals 

of low-res image

Fusion of upsampled 
images based on their 

dominant gradient
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Low-res input
64 x64 pixels

Final result
256x256 pixels

FRESH Results: Real Data
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Original Linear (25.9dB)
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Fig. 2. Natural images and scan-lines of natural images are approximately
2D and 1D piecewise smooth functions respectively.

of parameters. FRI theory has shown that these signals,
although non-bandlimited, can be uniquely reconstructed by
only a small number of samples taken with specific acquisition
devices. In other words, there is a unique mapping between
a specific low-resolution version to the infinite-resolution
version for these signals and there is a constructive way for
recovery. The FRI theory is later extended to the approximate
FRI framework that works with any sampling kernel [28].

This insight inspires a novel method for sampling
continuous-time image scan-lines or 1D piecewise smooth
functions: a piecewise smooth signal can be modeled as the
sum of a piecewise polynomial and a globally smooth part
and we propose a hybrid reconstruction method based on
classical linear recovery of the smooth part and non-linear
recovery of the piecewise polynomial part using FRI on the
same set of samples. We then leverage from wavelet theory and
the corresponding multi-resolution analysis [29] to adapt this
hybrid reconstruction method to the resolution enhancement
problem. In particular, enhancing the resolution of a signal
is equivalent to finding the detail wavelet coefficients at finer
scales. We do this using FRI and we combine the details with
the coarse linear approximation. Because of the connection
with wavelet theory this can be achieved using filter banks.
This leads to a fast and extremely effective algorithm to
enhance the resolution of 1D piecewise smooth functions.

We extend this approach to images by approximating
the point-spread-function with a scaling function in the
wavelet theory (typically a spline of a certain order) and
apply the 1D method along vertical, horizontal and diagonal
directions. These reconstruction are then combined with the
low-resolution version of the image using a 2D filter-bank.

Finally, inspired by the works in single image super-
resolution based on self-learning, we propose correcting the
error in our FRI upsampling result by learning from the pair of
input LR image and the corresponding FRI image of same size
recovered from an even lower scale. Contrary to [17] and [19],
we use self-learning algorithms only to refine our FRI based
method. As a result, we do not require learning at every
small increment of scales and our upsampled images have less
artefacts. The end result is an FRi-based singlE-image Super-
resolution algoritHm FRESH, which outperforms state-of-the-
art methods in most situations. Fig. 3 shows a comparison on
an example.

The paper is organized as follows. In Section II we review
the classical sampling theory whose reconstruction process
is linear, and the recently developed FRI sampling theory.
In Section III, we first show our interpretation of sam-
pling from multi-resolution property of wavelet transform and

Fig. 3. Upsampling results (factor 4) of woman by different methods.
The downsampling kernel is bior4.4. (a) the original image. (b) linear
reconstr. PSNR=25.91dB. (c) A+ [16] PSNR=27.34dB. (d) our algorithm
PSNR=27.72dB.

Fig. 4. Sampling set-up. Here x(t) is the input signal, h(t) is the impulse
response of the acquisition device and T is the sampling period. The samples
are given by yn = ⟨x(t), ϕ̃(t/T − n)⟩.

Fig. 5. Linear reconstruction set-up. The reconstruction of the input signal
is given by x̂(t) = ∑

n ynϕ(t/T − n).

propose how to sample piecewise smooth signals, then by
relating the resolution enhancement problem to sampling
problem we propose a method for enhancing the resolution
of piecewise smooth signals using filter-banks. In Section IV,
we show how the 1D upsampling method is extended to
enhance the resolution of 2D images. We then propose an
improved upsampling method which corrects errors in the
FRI upsampled image by exploiting the similarities between
images at different resolutions. We show simulation results in
Section V and conclude in Section VI.

II. OVERVIEW OF RECENT DEVELOPMENTS

IN SAMPLING THEORY

A. Sampling Problem and Classical Linear Reconstruction

Fig. 4 depicts the typical sampling setup, where the orig-
inal continuous-time signal x(t) is filtered with a linear-time
invariant filter with impulse response h(t) and then is sampled
with sampling period T . Under this model the samples yn are
given by

yn = ⟨x(t), ϕ̃(t/T − n)⟩, (1)

where ϕ̃(t) is the sampling kernel and is the scaled and time-
reversed version of h(t). Traditionally, see Fig. 5, x(t) is
reconstructed using a linear filter with response ϕ(t) where the
pair {ϕ̃(t),ϕ(t)} is chosen so that ⟨ϕ(t −n), ϕ̃(t − k)⟩ = δn−k .
Under this model the sampling and reconstruction process can
be interpreted as computing the orthogonal projection of x(t)
onto the shift-invariant subspace V spanned by ϕ(t) and its
shifted versions: V = span{ϕ(t/T −n)}n∈Z. Therefore perfect

FRESH (27.7dB)Timofte (27.3dB) 
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Multimodal Depth Super-ResolutionMultimodal depth image super-resolution

z The HR depth image is reconstructed from a LR depth image with a registered 
HR intensity/color image as guidance.

z Since depth and intensity images are two modalities of the same scene,  they 
must have strong  structural similarities.

Six Dictionaries

LR depth image

MR depth image

HR colour image

Dictionaries learned 
from

external datasets

Reconstructed HR depth 
image 

3/28
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Multimodal Depth Super-Resolution: Numerical Comparisons

• Method	(h)	is	a	combination	of	FRESH	and	multimodal	dictionary	learning
• Method	(g)	is	based	on	deep	learning

(a) GT  (b) Bicubic 27.92dB

(f) Timofte 31.13dB

(c) Xie 26.50dB (d) Lu 27.13dB

(e) Ferstl 28.04dB (g) Song 32.27dB (h) Ours 33.78dB
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Conclusions

• The notion of sparsity is still essential to develop and understand both model-
based or data-driven methods

• Data-driven algorithms based on shallow (or deep) learning still use a modelling 
assumption (sparsity)

• Model-based approaches are competitive when they can reflect closely the nature of 
the data (e.g., depth images), but lack flexibility

• Model-based algorithm can always be combined with data-driven methods to yield 
algorithms with best performance 
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