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Motivation: Elementary Building Blocks

Signal Processing aims to
decompose complex signals
using elementary functions which
are then easier to manipulate
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Elementary Building Blocks: Girculant Graphs

Insight: Use circulant graphs as elementary building blocks
for graph signal processing
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Elementary Building Blocks: Girculant Graphs

Complex Graph can be decomposed in (approximately) circulant components
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Goal: Develop a complete graph signal processing theory for circulant
graphs:

» B-Splines and E-Splines Wavelets on Graphs

» Sparse Sampling on Circulant Graphs

Apply the above theory to signals on Complex Graphs by
decomposing them into elementary Circulant Graphs
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« Polynomial Splines are at the heart of any wavelet construction’
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1 M. Unser and T. Blu, "Wavelet Theory Demystified” IEEE Trans. Signal processing, 2003.
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Splines Reproduce Polynomials
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 Splines Reproduce Polynomials
+ Spline Wavelets Annihilate Polynomials (vanishing moments property)
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Discrete-Time Polynomial Splines
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 The low-pass filter is the polynomial spline

* The high-pass filter annihilates polynomial:
> halkzln — k] =0
k

when x[n] is a polynomial of the right degree.
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* For a undirected circulant graph with adjacency matrix A, the graph
Laplacian L=D-A has two vanishing moments. Thus, L annihilates up to
linear polynomial graph signals. Moreover, (D-A)< has 2k vanishing
moments.

 Theorem [KotzagiannidisD:16]: Given the undirected, and connected
circulant graph G with adjacency matrix A and degree d per node, the
higher-order graph-spline wavelet transform is given by:
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and is invertible for any down-sampling pattern?

2Similar result for k=1 in [Ekambaram et al, '13].
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Graph Signal
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The proposed splines annihilates polynomials, however, a polynomial
signal is NOT in the null space of H,p

The low-pass filters reproduces polynomials when the graph is bipartite

The low-pass filter converges to the traditional discrete spline for simple
cycles
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IPonnomiaI Splines

The proposed splines annihilates polynomials, however, a polynomial
signal is NOT in the null space of H,p

The low-pass filters reproduces polynomials when the graph is bipartite

The low-pass filter converges to the traditional discrete spline for simple
cycles
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« The previous construction does not impose constraint on the synthesis graph
filters

 There is a need to reproduce polynomials also on non-bipartite graphs

« Construct complementary filters all of compact support and with polynomial
reproduction capabilities by using spectral factorization
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E-Spline ﬁu(t)

3M. Unser and T. Blu, ‘Cardinal Exponential Splines:

1 — e¥Jw

Ba(t) & B(w) =

w—
Notice:

» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
spline when o = 0.

Part | - Theory and Filtering Algorithms’, IEEE Trans. on Signal Proc., 2005
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E-Splines Reproduce Exponentials
E-Spline Wavelets Annihilate Exponentials
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The E-spline construction is based on a differential operator different from the
one of the polynomial spline?

We therefore need to change the graph Laplacian in order to design graph E-
Splines

Definition: Let G be an undirected, circulant graph with adjacency matrix A and
degree d per node with symmetric weights d,=A, .. Then the parameterized e-
graph Laplacian of G is L=D_-A with exponential degree

d, =Y d, cos(ak)
k

4See also: I. Pesenson, “Variational Splines and Paley—Wiener Spaces on Combinatorial
Graphs”, 2011
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Theorem: Given the undirected, and connected circulant graph G with adjacency
matrix A and degree d per node, the higher-order e-graph-spline wavelet transform is
given by:
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and is “‘normally” invertible for any down-sampling pattern.
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Low-Pass Graph Functions High-Pass Graph Functions
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The proposed splines annihilate exponential signals

The low-pass filter converges to the traditional discrete E-spline for simple
cycles

The low-pass filters reproduces exponentials when the graph is bipartite
This construction converges to polynomial splines when 3,=0
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Goal: Given a sparse graph signal x on a circulant graph, sample it and coarsen its
graph without losing information
Note: Sparse signals do not belong to fixed sub-spaces like bandlimited signals
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'Anti-aliasing' filter

Challenges:
« Find a deterministic sampling and reconstruction strategy for x
 Find a good strategy for graph coarsening

Insight: /everage from the theory of sampling Finite Rate of Innovation (FRI) signals>

> P.L. Dragotti, M. Vetterli and T. Blu, 'Sampling Moments and Reconstructing Signals of Finite Rate of
Innovation: Shannon meets Strang-Fix’, IEEE Trans. on Signal Processing, 2007.



Imperial College
London

In FRI theory
e« X can be discrete or continuous

« the anti-aliasing filter is an E-spline because it can reproduce exponentials
« Reconstruction is achieved using Prony’s method
« Exact deterministic results
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'Anti-aliasing' filter

For Graph Signals
« Replace the traditional E-spline with the graph E-spline that preserves
reproduction of exponential property

« Graph coarsening obtained by downsampling the eigenbasis of the original graph
(this preserve the generating set of the original graph)
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sparse Sampling
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Preliminary Applications: Image Approximation

PSNR in dB

Non-Linear Approximation Performance Comparison in dB
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Summary:

« Introduced new families of high order graph wavelets

« Extension of sparse sampling theory to the case of graph signals

« Preliminary encouraging results on non-linear image approximation

Papers:

 M.S. Kotzagiannidis and P.L. Dragotti, ‘Splines and Wavelets on Circulant
Graphs’, http://arxiv.org/abs/1603.04917

« M.S. Kotzagiannidis and P.L. Dragotti,”The graph FRI framework: spline
wavelet theory and sampling on circulant graphs, ICASSP 2016



