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Motivation: Elementary Building Blocks 

Signal Processing aims to 
decompose complex signals 
using elementary functions which 
are then easier to manipulate 

x(t) = αi
i=−∞

∞

∑ ϕi (t)



Elementary Building Blocks: Circulant Graphs 
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Figure 1: Circulant Graphs with generating sets S = {1}, S = {1, 2}, S = {1, 3} and S = {1, 2, 3, 4} (f. left)

a graph G, with sample value x(i) at node i, and can be represented as the vector x 2 RN [1]; in this
work, we extend this definition to include complex-valued graph signals x 2 CN , for illustration purposes,
while maintaining real weights between connections on G. The Graph Fourier Transform (GFT) x̂ of x
defined on G, is the representation in terms of the graph Laplacian eigenbasis U = [u0| · · · |uN�1] such
that x̂ = UHx, where H denotes the Hermitian transpose, extending the concept of the Fourier transform
to the graph domain [1]. We note that in case of a circulant graph, the GFT can be represented by the
traditional DFT, up to a permutation, as circulant matrices are diagonalisable by the DFT-matrix.
Due to their degree-regularity, circulant graphs lend themselves for defining meaningful downsampling
operations. As has been established in [16], one can downsample a given graph signal by 2 on the vertices
of G with respect to any element sk 2 S. For simplicity, we resort to the simple downsampling operation
with respect to the outmost cycle (s1 = 1) of a given circulant G, i.e. skipping every other labelled node,
assuming that the graph at hand is connected such that s1 2 S, and N = 2n for n 2 N. In addition, the
same authors introduced a set of vertex-domain based filters constituting the spline-like graph wavelet
filterbank on circulant graphs ([11],[18]), which satisfies critical sampling and perfect reconstruction prop-
erties.

Theorem [11]: The set of low-and high-pass filters, defined on a connected circulant graph with ad-
jacency matrix A and degree d per node, take (weighted) averages and di↵erences of a given graph signal
defined at neighboring nodes within 1-hop distances, and can be expressed as:
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✓
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d
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The filterbank is critically sampled and invertible as long as at least one node retains the low-pass compo-
nent, while the complementary set of nodes retain the high-pass component.

Multiscale analysis can be conducted by iterating the result on the respective downsampled low-pass
branches, whereby the corresponding coarsened graphs are obtained through suitable reconnection strate-
gies [18].

2.2.1 Downsampling and Reconnection on Circulant Graphs

Succeeding the definition of a wavelet transform on a circulant graph, we examine the problem of
identifying suitable coarsened graph(s) on the vertices of which the downsampled low-and high-pass-
representations of the initial graph signal can be defined, so as to facilitate a multiresolution decompo-
sition in the graph domain. While a downsampling pattern can be easily identified, as mentioned, it is
not straight-forward to determine if or how to reconnect the reduced set of vertices. In general, the set of
desired properties of a coarsened graph, comprising closure, preservation of the initial connectivity and
spectral characterisation of the graph and/or graph type, among others, (see [10] for a more detailed
review), is rather di�cult to satisfy entirely, and priorities need to be set in keeping with the overall
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Insight: Use circulant graphs as elementary building blocks 
              for graph signal processing 



Elementary Building Blocks: Circulant Graphs 

⇥ =

Figure 6: Graph Cartesian Product of two unweighted circulant graphs

✓
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t=1 tN1 � S1

◆
[N1S2 [43]. Hereby, CN1N2,S is connected with 1 2 S only

if G1 is connected with 1 2 S1. The adjacency matrix A[ ] is not circu-
lant, but its isomorphism Ã[ ] = PA[ ]P

T is, whereby permutation matrix
P performs the relabelling {0, ..., N1N2 � 1} ! {0 : N2 : N1N2 � 1, 1 :
N2 : N1N2 � 1, ..., N2 � 1 : N2 : N1N2 � 1} such that each product node
(g1,j, g2,k) 2 V (G) is labelled as g1,j +N1g2,k, for gi,j 2 V (Gi).
Special cases of other graph products that are circulant with circulant factors
are discussed in [44].

4.2. Multi-dimensional Wavelet Analysis on Product Graphs

In the following, we explore how the theory on circulant graph wavelet
analysis can be extended to product graphs. Hereby, we operate under the
assumption that the decomposition (and decomposition type) of an arbitrary
graph into circulants is either known (exact or approximate), or unknown,
in which case we can always resort to a Kronecker product approximation.
Before we can proceed, we need to define the graph Laplacian of product
graphs L⇧ as a relevant high-pass filter; its interpretation as an extension
of the circulant graph Laplacian high-pass filter to higher dimensions, with
associated property preservations, will be revisited in Sect 4.3. We note that
the formation of L⇧ is not a reflection of the adjacency matrix relations,
except in the case of the Cartesian product ([45], [46]):

• the Kronecker product: L⌦ = D1 ⌦D2 �A1 ⌦A2 = L1 ⌦D2 +D1 ⌦
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Complex Graph can be decomposed in (approximately) circulant components 



Roadmap  

 
•  Goal: Develop a complete graph signal processing theory for circulant 

graphs: 
•  B-Splines and E-Splines Wavelets on Graphs  
•  Sparse Sampling on Circulant Graphs 

•  Apply the above theory to signals on Complex Graphs by 
decomposing them into elementary Circulant Graphs 

 

  



Polynomial Splines  

 
•  Polynomial Splines are at the heart of any wavelet construction1  

 

  

1 M. Unser and T. Blu, “Wavelet Theory Demystified” IEEE Trans. Signal processing, 2003. 

Scaling Function and Splines

A remarkable example of scaling functions is given by the family of B-splines. A B-spline βN(t)
of order N is obtained from the (N+1)-fold convolution of the box function β0(t) or

βN(t) = β0(t) ∗ β0(t)... ∗ β0(t)
| {z }

N+1 times

with β̂0(ω) =
1 − e−jω

jω

where β̂(ω) is the Fourier transform of β(t).
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Polynomial Splines  

 
•  Splines Reproduce Polynomials  
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Polynomial Splines  

 
•  Splines Reproduce Polynomials  
•  Spline Wavelets Annihilate Polynomials (vanishing moments property) 
 

  

Scaling Function and Splines

Given H0(z) the construction of the wavelet ψ(t) is then straightforward. The
scaling function ϕ(t) and wavelet ψ(t) for this example are shown below.
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Discrete-Time Polynomial Splines  

 

•  The low-pass filter is the polynomial spline 
  
•  The high-pass filter annihilates polynomial: 

      when x[n] is a polynomial of the right degree. 
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Splines on Circulant Graphs  

•  For a undirected circulant graph with adjacency matrix A, the graph 
Laplacian L=D-A has two vanishing moments. Thus, L annihilates up to 
linear polynomial graph signals. Moreover, (D-A)k has 2k vanishing 
moments. 

•  Theorem [KotzagiannidisD:16]: Given the undirected, and connected 
circulant graph G  with adjacency matrix A and degree d per node, the 
higher-order graph-spline wavelet transform is given by: 

     and is invertible for any down-sampling pattern2 
 

2Similar result for k=1 in [Ekambaram et al, '13]. 

 

  

k-th power, thereby incorporating the previously detected vanishing moment
property:

Theorem 3.1. Given the undirected, and connected circulant graph G =
(V,E) of dimension N , with adjacency matrix A and degree d per node, we
define the higher-order graph-spline wavelet transform (HGSWT), composed
of the low-and high-pass filters

HLP =
1

2k

✓
IN +

A

d

◆k

(3)

HHP =
1

2k

✓
IN � A

d

◆k

(4)

whose associated high-pass representer polynomial HHP (z) has 2k vanishing
moments. This filterbank is invertible for any downsampling pattern, as long
as at least one node retains the low-pass component, while the complementary
set of nodes retains the high-pass component.

Proof. See Appendix A.1.

In particular, given a graph signal p 2 RN defined on G, the HGSWT yields

p̃ =

✓
1

2
(IN +K)HLP +

1

2
(IN �K)HHP

◆
p =

1

2
(IN+K)p̃LP+

1

2
(IN�K)p̃HP

wherebyK is a diagonal sampling matrix, withKi,i = 1 at i = 0, 2, ..., N�
2 and Ki,i = �1 otherwise, i.e. we downsample w.r.t. s = 1 2 S and re-
tain even-numbered nodes. The resulting signals p̃LP , p̃HP 2 RN represent
coarsened low-and high-pass versions of p on G within a k-hop local neigh-
borhood N(i, k), 8i 2 V . The higher the degree of the filterbank, the higher
the number of vanishing moments, and the less localized it becomes in the
vertex domain. Figure 2 plots the low-and high-pass graph filter functions
of the HGSWT for k = 2 and illustrates the spread in the vertex domain for
a sample circulant graph.

A bipartite circulant graph G is characterized by a generating set S which
contains only odd elements sk 2 S for even dimension N , with the simple cy-
cle S = {1} as a natural example; we note the following interesting property
of the HGSWT, when G is such:

11



Splines on Circulant Graphs  

 

•  The proposed splines annihilates polynomials, however, a polynomial 
signal is NOT in the null space of  HHP 

•  The low-pass filters reproduces polynomials when the graph is bipartite 
•  The low-pass filter converges to the traditional discrete spline for simple 

cycles  
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Figure 2: Localization of the HGSWT filters for k = 2 in the graph vertex domain for
graph G with S = {1, 2}: shown at vertex v = 5 2 V on G (left), and the corresponding
graph filter functions at alternate vertices.

Corollary 3.1. When G is an undirected, circulant, bipartite graph, with
adjacency matrix A of bandwidth M , the polynomial representation HLP (z)
of the low-pass filter HLP in Eq. (3) can reproduce polynomial graph signals
up to order 2k � 1, subject to a border e↵ect determined by the bandwidth
Mk of HLP , provided 2Mk << N .

Proof. Similarly, as in Lemma 3.1, we can express the representer polynomial
as

HLP (z) =
1

(2d)k
(dMz�M+...+d1z

�1+d+d1z+...+dMzM)k =

 
1

2d

X

i22Z++1

di(z
i + 1)(z�i + 1)

!k

and note that the RHS factors (z+1)k(z�1+1)k, since (zi+1) has a root at
z = �1 only for i 2 2Z+ 1. According to the Strang-Fix condition [22], this
is necessary and su�cient for ensuring the reproduction of polynomials.

It becomes evident that our use of the spline-wavelet terminology is well-
founded, since in the case of bipartite circulant graphs the polynomial re-
production property can be generalised to higher order k, and graph filters
(3)-(4) respectively reproduce and annihilate polynomial graph signals up
to degree n = 2k-1, bridging the gap to the traditional domain. We will
elaborate more thoroughly on similarities with the classical spline and spline
wavelets in Sect. 3.3.

12



Splines on Circulant Graphs  

 

•  The proposed splines annihilates polynomials, however, a polynomial 
signal is NOT in the null space of  HHP  

•  The low-pass filters reproduces polynomials when the graph is bipartite 
•  The low-pass filter converges to the traditional discrete spline for simple 

cycles  



Complementary Splines on Circulant Graphs  

•  The previous construction does not impose constraint on the synthesis graph 
filters  

•  There is a need to reproduce polynomials also on non-bipartite graphs 

•  Construct complementary filters all of compact support and with polynomial 
reproduction capabilities by using spectral factorization  

H (z) G (z)

H (z) G (z)

2

2 2

2

+

0

1

0

1

x[n] x[n]

y [n]

y [n]

^

0

1



Complementary Splines on Circulant Graphs  
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The necessary existence of a complementary analysis low-pass filter for a
given high-pass filter of graph G, follows from the Bézout theorem:

Theorem (Bézout [23]). Given C(z) 2 R[z], there exists a polynomial D(z) 2
R[z] such that

C(z)D(z) + C(�z)D(�z) = 2

if and only if C(z) has neither zero as a root, nor a pair of opposite roots. In
this case, there exists a unique polynomial D0(z) 2 R[z] satisfying the above
and such that degD0(z)  C(z)� 1. The set of all polynomials D(z) 2 R[z]
that satisfy the above is

{D0(z) + z�(z2)C(�z), �(z) 2 R[z]}

In our case, we observe that C(z) = HHP (�z) cannot have a zero root
since d =

PM
i=1 2di > 0 (as we only consider nonnegative weights di � 0).

Furthermore, C(z) contains pairs of opposing roots such that HHP (�z) =
HHP (z) if the generating set S of the graph at hand contains only even
elements; however, as we assume that G is connected with s = 1 2 S,
this cannot occur in our framework. We can equivalently resort to spectral
factorization for bipartite graphs, however, since both P (z) and HHP (z) are
odd degree polynomials, R(z) is required to be of higher degree T than the
remaining factor in P (z) in order to produce a non-trivial solution. This
gives rise to an underdetermined linear system, which can be uniquely solved
by imposing additional constraints on the coe�cients ri (such as roots at z =
�1). The proposed biorthogonal graph wavelet constructions for circulant
graphs are captured in the following theorem:

Theorem 3.3. Given the undirected, and connected circulant graph G =
(V,E) of dimension N , with adjacency matrix A and degree d per node,
we define the higher-order ‘complementary’ graph-spline wavelet transform
(HCGSWT) via the set of analysis filters:

HLP,an
(⇤)
= CH̄LP =

1

2k
C

✓
IN +

A

d

◆k

(8)

HHP,an =
1

2k

✓
IN � A

d

◆k

(9)

and the set of synthesis filters:

HLP,syn = c1HHP,an � IHP (10)

25



E-Splines3 

3M. Unser and T. Blu, ‘Cardinal Exponential Splines: Part I - Theory and Filtering Algorithms’, IEEE Trans. on Signal Proc., 2005 
 

 

FRI the story so far: Sampling Kernels

Any kernel '(t) that can reproduce exponentials:
X

n

c

m,n'(t � n) = e

↵
m

t , ↵
m

= ↵0 + m� and m = 0, 1, ..., L.

This includes any composite kernel of the form �(t) ⇤ �~↵(t) where
�~↵(t) = �↵0 (t) ⇤ �↵1 (t) ⇤ ... ⇤ �↵

L

(t) and �↵
i

(t) is an Exponential Spline of first order
[UnserB:05].

eα t 

E−Spline βα(t) 

�↵(t) , �̂(!) =
1� e

↵�j!

j! � ↵

Notice:

I ↵ can be complex.

I E-Spline is of compact support.

I E-Spline reduces to the classical polynomial
spline when ↵ = 0.

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Kernel



E-Splines 
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E-Splines Reproduce Exponentials  
E-Spline Wavelets Annihilate Exponentials 
 



E-Splines on Circulant Graphs 

•  The E-spline construction is based on a differential operator different from the 
one of the polynomial spline4 

•  We therefore need to change the graph Laplacian in order to design graph E-
Splines 

Definition: Let G be an undirected, circulant graph with adjacency matrix A and 
degree d per node with symmetric weights dk=Ai,k. Then the parameterized e-
graph Laplacian of G is L=Da-A with exponential degree  
 

dα = dk
k
∑ cos(αk)

4See also: I. Pesenson, “Variational Splines and Paley–Wiener Spaces on Combinatorial 
Graphs”, 2011 



E-Splines on Circulant Graphs 

Theorem: Given the undirected, and connected circulant graph G  with adjacency 
matrix A and degree d per node, the higher-order e-graph-spline wavelet transform is 
given by: 
 
 
 
 
 
 
     
 
 
 
 
 and is “normally” invertible for any down-sampling pattern. 

the same eigenbasis [2], as well as arbitrary graphs, extending the classes of
graph signals which can be annihilated on their nodes.
In addition, while the ordered eigenvalues of L̃↵ are no longer nonnegative,
their interpretation as graph frequencies which order the corresponding eigen-
vectors in terms of the number of their oscillations (zero crossings) [1] re-
mains valid, with the only di↵erence that the graph frequency d � �j of L
becomes the new zero or DC-frequency in L̃↵ = (�jIN � A). Further, the
e-graph Laplacian quadratic form can be expressed as S̃↵2(x) = xT L̃↵x =
(d̃↵ � d)||x||22 + xTLx = (d̃↵ � d)||x||22 + S2(x).

Based on these insights, we proceed to design a graph e-spline wavelet fil-
terbank, following a similar line as the (higher-order) graph-spline wavelet
filterbank. Hereby, in order to generalize the types of graph signals which
can be reproduced and/or annihilated by a GWT, we incorporate multiple
parameters ~↵ = (↵1, ...,↵T ) 2 RT via a simple convolution of the graph filter
functions, resulting in an invertible transform:

Theorem 3.2. The higher-order graph e-spline wavelet transform (HGESWT)
on a connected, undirected circulant graph G, is composed of the low-and
high-pass filters

HLP~↵
=

TY

n=1

1

2k

✓
�nIN +

A

d

◆k

(5)

HHP~↵
=

TY

n=1

1

2k

✓
�nIN � A

d

◆k

(6)

whereby A is the adjacency matrix, d the degree per node and parameter �n

is given by �n = d̃↵n

d
with d̃↵n =

PM
j=1 2dj cos(↵nj) and ~↵ = (↵1, ...,↵T ).

Then the high-pass filter annihilates complex exponential polynomials (of
deg(p(t))  k � 1) with exponent ±i↵n for n = 1, ..., T . The transform
is invertible for any downsampling pattern as long as the eigenvalues �i of

A
d

satisfy |�n| 6= |�i|, i = 0, ..., N � 1, under either of the su�cient conditions
(i) k 2 2N, or
(ii) k 2 N and �n, T such that 8�i, f(�i) =

QT
n=1(�

2
n� �2

i )
k > 0 or f(�i) < 0.

If parameters �n, are such that �n = �i, for up to T distinct values, the
filterbank continues to be invertible under the above as long as �n 6= 0 and
at least

PT
i=1 mi low-pass components are retained at nodes in set V↵ such that

{v+i,k(V↵)}i=T,k=mi

i=1,k=1 (and, if ��i exists, complement {v�i,k(V C
↵ )}i=T,k=mi

i=1,k=1 ) form

15



E-Splines on Circulant Graphs  

•  The proposed splines annihilate exponential signals  
•  The low-pass filter converges to the traditional discrete E-spline for simple 

cycles  
•  The low-pass filters reproduces exponentials when the graph is bipartite 
•  This construction converges to polynomial splines when βn=0 
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Figure 4: The HGESWT filter functions for di↵erent bipartite circulant graphs at ↵ = 2⇡
N ,

N = 16.

e-Spline Continuous Operator Order Graph (e-)Spline Matrix Operator Order

�(0,0)(t) D2{} = d2

dt2
2 (2dIN � L̃0)ei L̃0 2

�(0,..,0)(t) D2n{} = d2n

dt2n
2n (2dIN � L̃0)nei L̃n

0 2n
�(↵,�↵)(t) (D � ↵I) ⇤ (D + ↵I){} 2 (2d̃↵IN � L̃↵)ei L̃↵ 2
�(↵,�↵,...,↵,�↵)(t) (D � ↵I)n ⇤ (D + ↵I)n{} 2n (2d̃↵IN � L̃↵)nei L̃n

↵ 2n
�(↵1,�↵1,...,↵m,�↵m)(t)

Qm
t=1(D � ↵tI)n ⇤ (D + ↵tI)n{} 2mn

Qm
t=1(2d̃↵tIN � L̃↵t)

nei
Qm

t=1 L̃
n
↵t

2mn

Table 1: Comparison between the continuous e-Spline and Graph e-Spline Definitions

ing set S, more concrete. Figures 3 and 4 compare the low-and high-pass
functions of the HGSWT and HGESWT respectively for di↵erent bipartite
graph examples which correspond to second-order graph (e-)splines, with the
simple cycle representing the traditional (e-)spline.
Our motivation for the use of the spline-terminology for functions (2d̃↵IN �
L̃↵)ei originates from its reproductive properties of (exponential) polynomi-
als and hence structural similarity with its classical counterparts, as well as
its definition through a suitable di↵erential operator, i.e. the parameterised
graph Laplacian L̃↵; however, it should be clarified that these do not con-
stitute Green’s functions of L̃↵. While the variational graph splines in [28]
of the form (L+ ✏IN)�tei, t > 0 inherit similar properties for (exponential)
polynomial reproduction when L is circulant, contrary to our spline-like con-
structions, they are not well-characterized on the graph nor compactly sup-
ported, and therefore of lesser interest as basis functions for graph wavelets.

We summarize and compare the classes of spline-like functions on bipar-
tite circulant graphs and their classical continuous counterparts in Table 1

21



Sparse Sampling 

Goal: Given a sparse graph signal x on a circulant graph, sample it and coarsen its  
graph without losing information 
Note: Sparse signals do not belong to fixed sub-spaces like bandlimited signals 
 
 
 
 
 
 
 
 
 
 
Challenges:  
•  Find a deterministic sampling and reconstruction strategy for x 
•  Find a good strategy for graph coarsening  
 
Insight: leverage from the theory of sampling Finite Rate of Innovation (FRI) signals5  

5 P.L. Dragotti, M. Vetterli and T. Blu, ’Sampling Moments and Reconstructing Signals of Finite Rate of 
Innovation: Shannon meets Strang-Fix’, IEEE Trans. on Signal Processing, 2007.   

φ(t)x(t) y
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n

'Anti-aliasing' filter 



Sparse Sampling 

In FRI theory  
•  x can be discrete or continuous 
•  the anti-aliasing filter is an E-spline because it can reproduce exponentials 
•  Reconstruction is achieved using Prony’s method 
•  Exact deterministic results 

For Graph Signals 
•  Replace the traditional E-spline with the graph E-spline that preserves 

reproduction of exponential property 
•  Graph coarsening obtained by downsampling the eigenbasis of the original graph 

(this preserve the generating set of the original graph) 

 

φ(t)x(t) y
T

n

'Anti-aliasing' filter 



Sparse Sampling 

 

Qj�1
k=0( k#2E2k~↵)x, has adjacency matrix

Aj = (2j/N)Ũj⇤̃jŨ
H
j

which preserves the generating set S of G for a su�ciently small bandwidth.

Consequentially, the edge set of the coarsened graph associated with the GFRI-framework is not unique,
and we have explored two possible approaches which satisfy our connectivity constraints of symmetry and
circularity. Kron-reduction preserves basic graph characteristics, yet, while taking into account the entire
graph adjacency relations in the computation of the coarsened version, it provides little general intuition
on the topology of the latter. In contrast, the alternative spectral reduction technique, is shown to pre-
serve the original graph connectivity by retaining its generating set (see Fig. 3), thereby simultaneoulsy
alleviating the issue of an increasing bandwidth.
We summarize the graph sampling framework, further illustrated Fig. 4, as the filtering of a sparse graph
signal x on G in the GWT domain of a graph e-spline low-pass filter with dimensionality reduction, giving
rise to signal ỹ on coarsened G̃, which is subsequently projected onto the further dimensionality reduced
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representation via a GWT can be similarly sampled following an initial sparsification step.
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at level j, is of the form of the low-pass filter designed in (3) (Thm. 3.2) or (6) (Thm. 3.3), depending
on whether the graph at hand is bipartite or not; we implicitly assume that E2j~↵ can reproduce complex
exponential graph signals, with ~↵ as specified. As the filter construction in either case is based on the
combination/convolution of di↵erent bases functions, it should be noted that the resulting higher-order
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Bézout’s Thm [32], and thus the necessary biorthogonality condition for filterbank construction. While
for complementary graph wavelet filterbanks, it is more di�cult to deduce generalized conditions on when
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Preliminary Applications: Image Approximation 
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Figure 4. Non-Linear Approximation Performance Comparison between the 2D Haar, the 2D Linear Spline and a variety
of proposed GWT at 5 levels on a 64⇥ 64 Image Patch from ‘cameraman’

for spatial and intensity parameters p and I. We subsequently proceed to conduct the graph wavelet analysis on
smooth regions of the image, which are obtained by performing a graph cut12 on G, and computing the nearest
circulant graph-approximations G̃i of the individual subgraphs Gi, see Ref. 8 for a more detailed discussion.
Hereby, we resorted to minimising the Frobenius-norm error13 by averaging over the diagonals of a given, general
matrix A to obtain its nearest circulant matrix approximation C:

C =
N�1X

i=0

1

N
hA,⇧iiF⇧i,

where ⇧ is the permutation matrix. Moreover, we use this scheme for the reconnection of nodes after downsam-
pling.
We extend our approach by considering the smoothest possible representation of the resulting sub-graph signals
xi 2 RN , whose samples are composed of the intensity values of the individual pixels, i.e. x(k) = I(k) at node
k for graph signal x on G. In particular, given the subgraph Gi, we perform a thresholding on the weights
in the corresponding adjacency matrices Ai to obtain sparse graphs, followed by the RCM algorithm,14 which
determines the banded form of smallest possible bandwidth via a node relabelling, before computing their nearest
circulant approximations.
While the primary purpose for using the RCM has been to obtain a reordered matrix (re-labelled graph) with
more similar neighborhoods, whose structure is closer to that of a circulant matrix, it appears that in light of
our treatment of maximum annihilation, the obtained, smallest possible bandwidth may be used for an increased
sparse representation in the graph wavelet domain if the corresponding re-ordered graph signal is smooth. When
the similarity measure in Ai is based solely on the intensity measure I of the graph signal xi, the relabelling
obtained via the proposed approach on Ai converges toward performing a simple sort operation on xi, due to
the breadth-first traversal of the RCM. We can further generalize the given subgraph to be approximated by
the simple cycle, i.e. the ‘sparsest’ possible circulant graph, or alternatively, the ‘smoothest possible cycle’ in
Gi, and define the sorted graph signal xi on its vertices. Thereby, we obtain maximum sparsity in the graph
wavelet domain by simultaneously minimizing the bandwidth of the adjacency matrix and (graph-unrelated)
total variation

||x||TV =
NX

i=2

= |x(j)� x(j � 1)|

of the graph signal. Figure 4 illustrates the non-linear approximation performance comparing traditional methods
with our proposed smoothness-inspired designs. In particular, we observe that the sparsest representation for
subgraphs with generating set S = {1} and intensity-based weights achieves the best performance by a high
margin, followed by more connected, circulant approximations ((I,sort), for an appropriately chosen sparsifying
threshold). We also note that, while subgraph-representations with bilateral weights (bil,RCM ) still outperform
traditional methods, they are overall less e↵ective.



Conclusions  

 
 
Summary: 
•  Introduced new families of high order graph wavelets 
•  Extension of sparse sampling theory to the case of graph signals  
•  Preliminary encouraging results on non-linear image approximation 
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