Computational light-field microscopy enables high-throughput, scattering-mitigated, volumetric neural activity imaging

Amanda Foust, Bioengineering Pier Luigi Dragotti, EEE Imperial College London

13 August 2024

Why imaging voltage **fast** is important:

Living neuronal network update their weights on millisecond time scales

Why **imaging** voltage fast is important:

Studying brain circuits with electrodes is "a dismaying exercise in tedium, like trying to cut the back lawn with a pair of nail scissors."

Hubel & Wiesel, 2005

"It seems reasonable to imagine an array of 100 photodetectors that would allow simultaneous potential recordings from 100 individual cells." Lawrence B. Cohen, 1977

Why imaging voltage **fast** is important:

Optical voltage reporters (can) track voltage with microsecond fidelity

Brain Imaging Challenges

Image **Imaging** Scattering Plane volumes Tube Lens Objective Lens Focal

Plane

Imperial College Widefield epifluorescence imaging suffers from crosstalk London

Brain Imaging Strategies

High bandwidth Degraded by out-of-focus and scattered light

- √ Optical sectioning
- √ Robust to scattering
- X Low-photon budget

Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments In *Neuromethods*, Humana Press 2022.

Solution 1: Image something slower (e.g., calcium)

Converging cylindrical lens Diverging Line - forming MLA cylindrical lens telescope Converging lens Galvanometer Mirror scanners Beam splitter ∔ λ/2 plate sCMOS camera Ti:Sapphire Dichroic 690 -1040 mirror nm LED

Solution 2: Scan multiple foci

Solution 2: Scan multiple foci

20 fr/s, widefield one-photon, single trial

Cortex L2/3, VSFPB

$$S/_N \propto \frac{\Delta F}{F} \sqrt{\phi}$$

Solution 2: Scan multiple foci

20 fr/s, widefield one-photon, single trial

500 ms

Voltage Imaging Competing Requirements

Optical Sectioning Mitigate Scattering

VS.

Speed Sensitivity

Voltage Imaging Competing Requirements

Scanning

Optical Sectioning Mitigate Scattering

VS.

Speed Sensitivity

Voltage Imaging Competing Requirements

Voltage Imaging Competing Requirements

Our Solution: Scattering-robust structural volumes + high-bandwidth, scanless functional volumes

Our Solution: Scattering-robust structural volumes + high-bandwidth, scanless functional volumes

tdTomato structural marker

Light-field Microscopy and Illumination Strategies

IBR Results on the Lightfield

Pearson et al. IEEE TIP 2013

Light-field Microscopy and EPI

Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of volumes (3-D+t)

Forward Model

- Forward model is linear which means y = Hx
 - *H* is estimated using wave-optics
 - For each depth, H is block-circulant (periodically shift invariant) and can be modelled with a filter-bank
 - The entire forward model can be modelled using a linear convolutional network with known parameters (given by the wave-optics model)

Imperial College London Neural network for volume reconstruction

- Data is sparse (neurons fire rarely and are localized in space)
- Solve $\min_{x} (\|y Hx\|^2 + \|x\|_1)$ s.t $x \ge 0$
- This leads to the following iteration:

$$x_{k+1} = ReLU(x_k - H^T H x_k + H^T y + \lambda)$$

Approach: Convert the iteration in a deep neural network using the unfolding technique

Sparsity and Deep Unfolding Strategy

Iterative algorithm with x as input and I as output

Unfolded version of the iterative algorithm with learnable parameters

Need to re-synthesize the input, if self-supervised

Imperial College London Neural network for volume reconstruction

Convert the iteration in a deep neural network using the unfolding technique

$$x^{k+1} = ReLU(x^k - H^T H x^k + H^T y + \lambda)$$

Training of the neural network

- Training, in this context, is difficult due to lack of ground-truth data
- Our approach: semi supervised learning
 - Small ground truth dataset
 - Adversarial network for adversarial loss
 - Light-field loss based on re-synthesizing light-field from reconstructed volume

Training of the neural network

Results – Structural Data

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field Microscopy", IEEE Trans. on Computational Imaging, 2023.

Neural Activity Extraction

$$Y = S \cdot T$$

Results – Functional Data

Sample 2 (Paperial College London

Average

3D (view 1) 3D (view 2)

cortical layer 2/3

Fast volumetric jGCaMP8f time-series extraction

Fast volumetric jGCaMP8f time-series extraction

 $max(\Delta F)/\sigma(F)$

Input F(t):
LF video acquired in brain slice cortical layer 2/3

8-iteration Richardson-Lucy Deconvolution

Fast volumetric jGCaMP8f time-series extraction

Why imaging **fast** is important:

jGCaMP8f Trace Deconvolved Trace Detected Spikes

LISTA-based net decreases crosstalk between neighbouring neurons

Conclusions

- Physics-based deep learning can powerfully exploit the advantages of light-field and two-photon microscopy.
- LISTAnet reduces calcium signal crosstalk between neighboring neurons.
- Calcium signals extracted up to 100 microns deep in neocortex. Scope to go deeper with:
 - Red-shifted indicators
 - Integrating structured illumination
- Future applications:
 - Determine living neural network learning rules in-vivo
 - Direct measurement of voltage

A special thank to:

Kate Zhao

Herman Verinaz

Pingfan Song

Peter Quicke

Carmel Howe

Thank you!