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Why imaging voltage fast is important:

Living neuronal network update their weights on millisecond time scales
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Studying brain circuits with electrodes is “a dismaying exercise in

tedium, like trying to cut the back lawn with a pair of nail scissors.”
Hubel & Wiesel, 2005

“It seems reasonable to imagine an array of 100 photodetectors that

would allow simultaneous potential recordings from 100 individual cells.”
Lawrence B. Cohen, 1977
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London Optical voltage reporters (can) track voltage with microsecond fidelity
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Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.
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Popovic, Carnevale, Rdzsa, Zecevic, Nature Communications 2015.
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Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.



Imperial College Solution 1: Image something slower (e.g., calcium)
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Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.
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London

) \
| Converging
| ]cylindrical lens |
I —————
| Diverging Line - forming
S |
| Kcyllndrlcal lens MLA telescope Hm
| —200 -100 0 100 200
| Converging I
| lens
I . | ﬁ Galvanometer =1
| } Mirror | scanners
_____ )
Beam
splitter
SCMOS M2 plate
Dichroic Ti:Sapphire
. 690 -1040
mirror
nm
—
LED

Quicke, Reynolds, Neil, Knépfel, Schultz, Foust, Biomed Opt Exp 2018.
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Solution 2: Scan multiple foci

20 fr/s, multifocal two-photon
extracellular average of 40 imaging trials

stimulation
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20 fr/s, multifocal two-photon
extracellular average of 40 imaging trials

stimulation
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Optical Sectioning
Mitigate Scattering

VS.

Speed
Sensitivity
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Scanning

Optical Sectioning
Mitigate Scattering

VS.

Speed
Sensitivity
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Scanning

Scanless
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Two-photon point
scanning
+
Scanless one-photon
light-field
imaging




Imperial College Our Solution: Scattering-robust structural volumes
London + high-bandwidth, scanless functional volumes
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Imperial College Our Solution: Scattering-robust structural volumes
London + high-bandwidth, scanless functional volumes

tdTomato structural marker

Two-photon scanning One-photon LFM

jGCaMP8f (world’s fastest calcium indicator protein ):
one-photon LFM at 100 Hz
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London Strategies
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Pearson et al. IEEE TIP 2013
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Light-field Microscopy and EPI

London
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Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of
volumes (3-D+t)
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London Forward Model

* Forward model is linear which means y = Hx

* H is estimated using wave-optics

- For each depth, H is block-circulant : e
(periodically shift invariant) and can be - z=0| |[|Objective !
modelled with a filter-bank o I

* The entire forward model can be
modelled using a linear convolutional
network with known parameters (given
by the wave-optics model)
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Data is sparse (neurons fire rarely and are localized in space)

Solve min(|ly — Hx||? + ||x]|;) s.tx =0
X

This leads to the following iteration:

Xr+1 = ReLU(x, — HTHx), + HTy + 1)

Approach: Convert the iteration in a deep neural network using the unfolding technique




Imperial College Sparsity and Deep Unfolding Strategy
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: Unfolded version of the iterative algorithm with
as input and I as output

learnable parameters

Need to re-synthesize the input, if self-supervised




imperial College  Neural network for volume reconstruction

Convert the iteration in a deep neural network using the unfolding technique

x**t1 = ReLU(x* — HTHx* + HTy + 1)
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'L’Bﬁg';')?: College Training of the neural network
« Training, in this context, is difficult due to lack of ground-truth data
» Our approach: semi supervised learning
« Small ground truth dataset
» Adversarial network for adversarial loss
» Light-field loss based on re-synthesizing
light-field from reconstructed volume
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London

PSNR:23.18 PSNR:25.10 PSNR:33.80
SSIM:0.420 SSIM:0.525 SSIM:0.809

Ground-truth ISRA ADMM New method (0.3s to
reconstruct one volume)

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field
Microscopy”, |IEEE Trans. on Computational Imaging, 2023.
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Imperial College Results — Functional Data
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2P Microscop

ISRA

PSNR:18.74
SSIM:0.364

PSNR:21.99
SSIM:0.404

PSNR:27.13]

SSIM:0.616
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Fast volumetric jGCaMP8f time-series extraction

>

> LISTA-based net
Volume Estimation

Input F(t): LF activity map:
LF video acquired in max(AF)/o(F)
brain slice

cortical layer 2/3
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Fast volumetric jGCaMP8f time-series extraction

>

> LISTA-based net
Volume Estimation

Input F(t): LF activity map:
LF video acquired in max(AF)/o(F)
brain slice

cortical layer 2/3 8-iteration Richardson-Lucy Deconvolution
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Fast volumetric jGCaMP8f time-series extraction
London

LF footprints, Y

forward
model CNN
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Sampling Rate = jGCaMP8f Trace
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=== R-L deconvolution (8 iterations)
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Physics-based deep learning can powerfully exploit the advantages of light-field and two-photon
microscopy.

«  LISTAnet reduces calcium signal crosstalk between neighboring neurons.

»  Calcium signals extracted up to 100 microns deep in neocortex. Scope to go deeper with:
— Red-shifted indicators
— Integrating structured illumination

*  Future applications:

— Determine living neural network learning rules in-vivo
— Direct measurement of voltage
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