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Why imaging voltage fast is important:
Living neuronal network update their weights on millisecond time scales



Why imaging voltage fast is important:

Studying brain circuits with electrodes is “a dismaying exercise in 
tedium, like trying to cut the back lawn with a pair of nail scissors.” 

Hubel & Wiesel, 2005

“It seems reasonable to imagine an array of 100 photodetectors that 
would allow simultaneous potential recordings from 100 individual cells.”

Lawrence B. Cohen, 1977



Why imaging voltage fast is important:
Optical voltage reporters (can) track voltage with microsecond fidelity

Ross, Salzberg, Cohen, Davila, Biophysical Journal 1974.



Brain Imaging Challenges

Imaging 
volumes

Scattering

Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.



Popovic, Carnevale, Rózsa, Zecevic, Nature Communications 2015.

Widefield epifluorescence imaging suffers from crosstalk



Brain Imaging Strategies

✓ Optical sectioning
✓ Robust to scattering
✗ Low-photon budget
 

✓ High bandwidth
✗ Degraded by 

out-of-focus and 
scattered light

 

Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.



Solution 1: Image something slower (e.g., calcium)

Quicke, Howe, Foust, Balancing the fluorescence imaging budget for all-optical neurophysiology experiments
In Neuromethods, Humana Press 2022.



Solution 2: Scan multiple foci

Quicke, Reynolds, Neil, Knöpfel, Schultz, Foust, Biomed Opt Exp 2018.



Solution 2: Scan multiple foci

20 fr/s, multifocal two-photon

20 fr/s, widefield one-photon, single trial

40 μm

Cortex L2/3, VSFPB
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20 fr/s, widefield one-photon, single trial
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Voltage Imaging Competing Requirements

Optical Sectioning
Mitigate Scattering

vs.

Speed
Sensitivity 



Voltage Imaging Competing Requirements

Scanning
Optical Sectioning
Mitigate Scattering

vs.

Speed
Sensitivity Scanless



Voltage Imaging Competing Requirements

Scanning

Scanless



Voltage Imaging Competing Requirements

Two-photon point 
scanning

+
Scanless one-photon

light-field
imaging



Our Solution: Scattering-robust structural volumes
+ high-bandwidth, scanless functional volumes

Microlens array



Our Solution: Scattering-robust structural volumes
+ high-bandwidth, scanless functional volumes

tdTomato structural marker

jGCaMP8f (world’s fastest calcium indicator protein ): 
one-photon LFM at 100 Hz

25 µm

One-photon LFMTwo-photon scanning



Light-field Microscopy and Illumination 
Strategies



IBR Results on the Lightfield

Pearson et al. IEEE TIP 2013



Light-field Microscopy and EPI



2D Measured LF image

3D Input

2

Computational
 Algorithm 

Light-field Microscopy
Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of  
volumes (3-D+t)



Forward Model

Microlens Array
Objective Tube Lens

𝑥
𝑧

LF Microscope

Image Sensor

NOP NIP

• Forward model is linear which means	𝒚 = 𝑯𝒙 
• 𝑯 is estimated using wave-optics 
• For each depth, 𝑯 is block-circulant 

(periodically shift invariant) and can be 
modelled with a filter-bank 

• The entire forward model can be 
modelled using a linear convolutional 
network with known parameters (given 
by the wave-optics model)



Neural network for volume reconstruction 

• Data is sparse (neurons fire rarely and are localized in space)

• Solve min
!
( 𝑦 − 𝐻𝑥 " + 𝑥 #) s.t 𝑥 ≥ 0

• This leads to the following iteration: 

𝑥$%# = 𝑅𝑒𝐿𝑈(𝑥$ − 𝐻&𝐻𝑥$ + 𝐻&𝑦 + 𝜆)

• Approach: Convert the iteration in a deep neural network using the unfolding technique



Sparsity and Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

𝑓(⋅)

𝒙𝒌
𝒚

𝑓	(⋅) 𝑓	(⋅) 𝑓	(⋅)

𝒚

𝒙𝒌

Iterative algorithm with 𝒙 
as input and 𝑰 as output

1	 2	 𝑘	

Unfolded version of the iterative algorithm with 
learnable parameters

h	(⋅)

(𝒚

Need to re-synthesize the input, if self-supervised

𝒙𝟏 𝒙𝟐



Neural network for volume reconstruction 
• Convert the iteration in a deep neural network using the unfolding technique 

𝑥$%# = 𝑅𝑒𝐿𝑈(𝑥$ − 𝐻&𝐻𝑥$ + 𝐻&𝑦 + 𝜆)
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Fig. 6. CNN architecture. Our reconstruction network g(·) is composed of (1)
a compression layer c(·), which is a linear convolutional layer with N →N
input channels and V output channels and (2) a LISTA network. At each layer
of LISTA we use the architecture of the compress forward CNN h(·) shown
in Figure5 and the adjoint operator hT (·). The LISTA network is composed
of K layers.

each layer corresponds to one iteration of ISTA. Effectively,
each layer of LISTA implements the following step:

x
k+1 = Tω(xk →H

T
1H2x

k +H3
T
y), (4)

where H1,H2 and H3 are matrices of same size and
structure as H. These matrices are the parameters of the
network that can be learned using a proper loss function.
Note that, contrary to [21], we do not fuse the product HT

1H2

into a single matrix since we want to keep the structure of
each factor. This version of LISTA uses the soft-thresholding
as the element-wise non-linearity due to the l1 constraint in
Equation (2). However, ISTA can be used with different types
of non-linearities related to the prior imposed, as explained in
[24]. For instance, replacing Tω by a rectified linear unit (Relu)
imposes non-negativity, and replacing it with a ReLU with a
bias term imposes sparsity and non-negativity. In our case, x
is sparse and non-negative. Therefore, we propose a LISTA
network that uses a ReLU with a bias term as non-linearity:

x
k+1 = ReLU(xk →H

T
1
kHk

2x
k +H

T
3
k
y + ωk), (5)

where ωk is a learnable bias. Furthermore, the custom
{Hk

i }3i=1 for each unfolded iteration k gives the network more
capabilities without compromising its simplicity.

In many practical cases, the described LISTA network
cannot be used directly to solve the volume reconstruction
problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:

x
k+1 = ReLU(xk → hT

1
k
(hk

2(x
k)) + hT

3
k
(c(y)) + ωk), (6)

where we have replaced matrices H
k
i in Equation (5) with the

linear mappings {hi}3i=1. The computation of all the {hi}3i=1

is determined by the architecture of the compressed forward
CNN derived from physics and explained in SectionIV-B. Note
that the structure of the adjoint operators (transpose) {hT

i }3i=1

in Equation (6) can be easily computed from the permutation
of the weights of h(·). Furthermore, the input of the network
is c(y) rather than y. The mapping c(·) is defined as a single
linear convolutional layer with N ↑N input channels and V

(a)

(b)

Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ε),
where ε represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ε of our LISTA network g(·; ε) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:



Training of the neural network 
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problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:

x
k+1 = ReLU(xk → hT

1
k
(hk

2(x
k)) + hT

3
k
(c(y)) + ωk), (6)

where we have replaced matrices H
k
i in Equation (5) with the

linear mappings {hi}3i=1. The computation of all the {hi}3i=1

is determined by the architecture of the compressed forward
CNN derived from physics and explained in SectionIV-B. Note
that the structure of the adjoint operators (transpose) {hT

i }3i=1

in Equation (6) can be easily computed from the permutation
of the weights of h(·). Furthermore, the input of the network
is c(y) rather than y. The mapping c(·) is defined as a single
linear convolutional layer with N ↑N input channels and V

(a)

Critic

h3
T

I-h
1T h

2

+

La
ye

r K𝑐(⋅)

𝑔(⋅)
𝑓(⋅)

𝐷(⋅)

(b)

Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ε),
where ε represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ε of our LISTA network g(·; ε) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:

• Training, in this context, is difficult due to lack of ground-truth data
• Our approach: semi supervised learning

• Small ground truth dataset
• Adversarial network for adversarial loss
• Light-field loss based on re-synthesizing 
     light-field from reconstructed volume



Training of the neural network 
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.

Ground-truth ISRA ADMM New method (0.3s to 
reconstruct one volume)

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field 
Microscopy”,  IEEE Trans. on Computational Imaging, 2023.
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Figure 4.1: The overview of the end-to-end process, which involves reconstruction (in the blue box,
using the method presented in [7]), volume segmentation, synthetic footprint generation, and time
sequence identification.

4.2 Volume Reconstruction

The volume reconstruction is completed via the multimodal physics-inspired deep learning ap-

proach detailed in Chapter 3. As a quick summary, the forward imaging process is described by

a convolutional neural network and has reduced dimensionality. Reconstruction consists of a com-

pression (linear convolutional) layer and a K -layer LISTA network, where each layer of the network

corresponds to an iteration of ISTA. Training is completed with a generative adversarial network

on small datasets obtained from 2PM and LFM imaging. The trained network is used to recon-

struct a 4D LF volume (3D spatial and 1D temporal) that is used as input for the segmentation

process [7].

4.3 Volume Segmentation

As previously mentioned, localizing neurons in space is of key interest to researchers. Pnev-

matikakis et al. and Nöbauer et al. applied matrix factorization to iteratively and simultaneously

𝑌 = 𝑆 ⋅ 𝑇



Results – Functional Data 

Extract GEVI time series from one-photon light fields through an optics- and scattering-aware deep
neural network
We will leverage scattering-robust structural priors to extract cellular GEVI time series from scattering-corrupted light
fields. This builds on the deep neural network (DNN) we developed to reconstruct volumes from light fields acquired
in soma-targeted GCaMP8f-expressing mouse cortical slices [13]. Our method improved on previous model-based and
data-driven approaches through two strategies. First, we developed a convolutional neural network (CNN) structured
on the optical physics of our LFM. Second, we developed a semi-supervised adversarial training protocol based on
LFM and two-photon (2P) images of TdTomato, largely co-expressed by the GCaMP8f-labelled cells. In essence, our
DNN leveraged the information in the scattering-robust 2P image stacks to improve the contrast and accuracy of
volumes reconstructed from the one-photon (1P) light fields which were blurred by scattering. Not only did these
strategies improve the SNR and accuracy of the reconstructed volumes compared to previous strategies (Figure 4A),
but volume reconstruction was 100x faster than conventional model-based reconstruction, and as fast as other less
accurate deep-learning approaches. Volumes reconstructed by our DNN enabled 50 Hz cellular-resolution tracking of
GGaMP8f fluorescence throughout a 530 x 530 x 104 micron volume at 100 Hz (Figure 4B).

Figure 4: PRELIMINARY DATA: Our first-generation DNN enabled fast, scattering-robust volume reconstruction. (A)
Comparison of planes acquired with 2P microscopy to planes reconstructed from a 1P light field through model-based
(ISRA, ADMM), data-driven (LFMnet), and our hybrid method (“Ours”) [13]. Our method reconstructed TdTomato
fluorescence with the highest PSNR and similarity (SSIM) to 2P ground truth image stacks. (B) Our method enabled
50 Hz, high-SNR, cellular-resolution GCaMP8f fluorescence imaging (blue traces, right) throughout a 530 x 530 x 104
micron volume. The middle column shows projected and isometric views of a volume reconstructed from a light field
by our DNN. The right column shows cellular GCaMP8f fluorescence time series from the blue-outlined ROIs in the
adjacent z-plane slices. (A) and (B) were acquired in layer 2/3 of acute cortical mouse brain slices.

Here, we will develop a DNN that will further reduce computational burden by bypassing volume reconstruction or
iterative demixing [16]. That is, the trained model will extract each neuron’s GEVI fluorescence time series directly
from the light fields acquired at 1 kHz. Our next generation DNN will also accommodate shifts in source location
encountered in-vivo.
Maximize SNR and imaging time through temporal light-dose engineering
GEVI imaging speed, time, and SNR all derive from F0, which decreases with light exposure over time due to fluorophore
bleaching. In confocal [17] and multiphoton [18], [19] laser scanning microscopy, rapidly scanning or pulsing the
excitation laser decreases bleach rates by up to 30-fold. These strategies reduce dark-triplet state fluorophore absorption,
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Why imaging fast is important:



LISTA-based net decreases crosstalk between neighbouring neurons 



• Physics-based deep learning can powerfully exploit the advantages of light-field and two-photon 
microscopy.

• LISTAnet reduces calcium signal crosstalk between neighboring neurons.

• Calcium signals extracted up to 100 microns deep in neocortex.  Scope to go deeper with:
– Red-shifted indicators
– Integrating structured illumination

• Future applications:
– Determine living neural network learning rules in-vivo
– Direct measurement of voltage 

Conclusions   
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