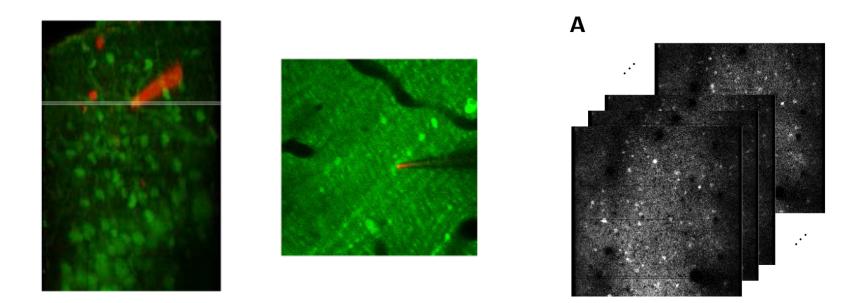
Signal Processing Methods for Cell Localization and Activity Detection from Calcium Imaging Data

Pier Luigi Dragotti

Joint work with Stephanie Reynolds, Jon Onativia and Simon Schultz

Motivation

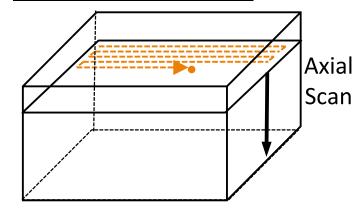


- Goal of Neuroscience: to study how information is processed in the brain
- Neurons communicate through pulses called Action Potentials (AP)
- Need to measure in-vivo the activity of large populations of neurons at cellular level resolution
- Two-photon microscopy combined with calcium indicators is the most promising technology to achieve that

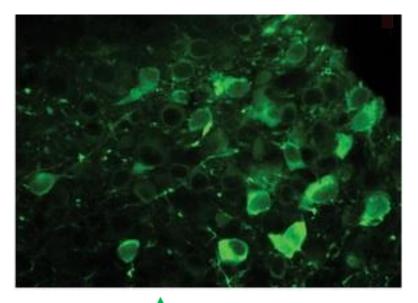
Two-Photon Microscopy

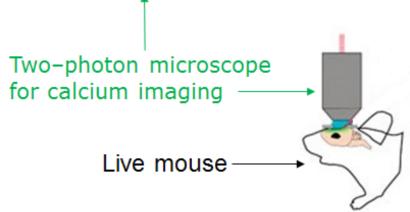
- Fluorescent sensors within tissues
- Highly localized laser excites
 fluorescence from sensors
- Photons emitted from tissue are collected
- Focal spot sequentially scanned across samples to form image
- Two-photon microscopes can go deeper in the tissue than single-photon microscope

Point scanning (2PLSM)



Calcium Imaging





- The calcium concentration of a cell is a reliable indicator of spiking activity.
- Calcium imaging uses fluorescent indicators whose fluorescence intensity reads out calcium concentration.
- Can monitor 100s of neurons simultaneously.
- Know the spatial relationships between neurons.

Advantages of Calcium Imaging

- Can monitor activity of 100s 1000s of neurons simultaneously, at single cell resolution.
- Can image *in vivo* in behaving animals.
- Can image same cell populations over multiple months.

BUT the datasets present challenging signal processing problems:

- 1. Low-time resolution
- 2. Need to segment automatically regions of interest

Outline

- Motivation
- Sparse Sampling for calcium transient detection at high-temporal resolution

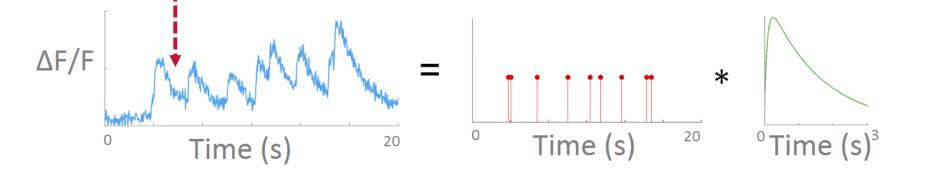
 Variation of Level-Set Method for Cell Localization and Segmentation

• Conclusions and Future Work

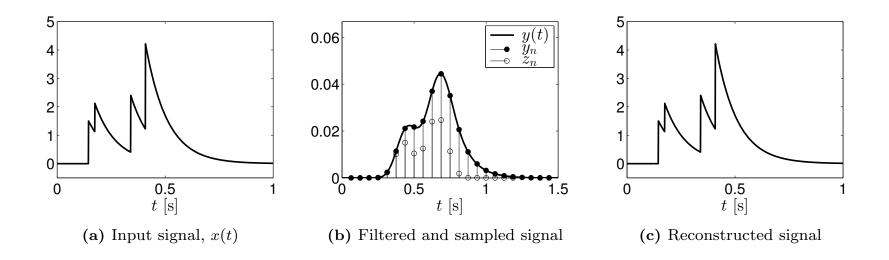
Calcium Transient Detection

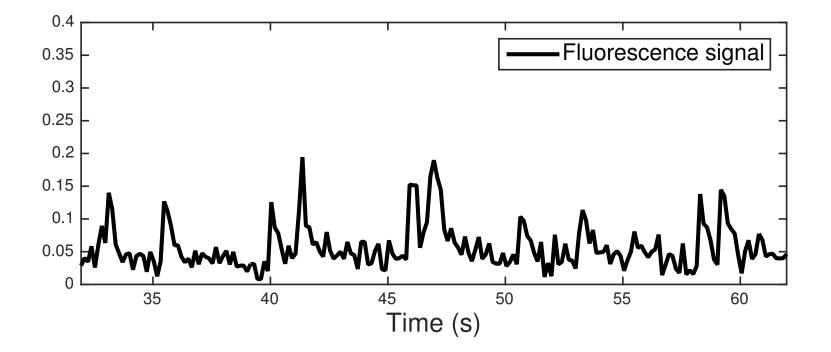
The signal from one neuron can be modelled as that neurons spike train convolved with a characteristic pulse shape:

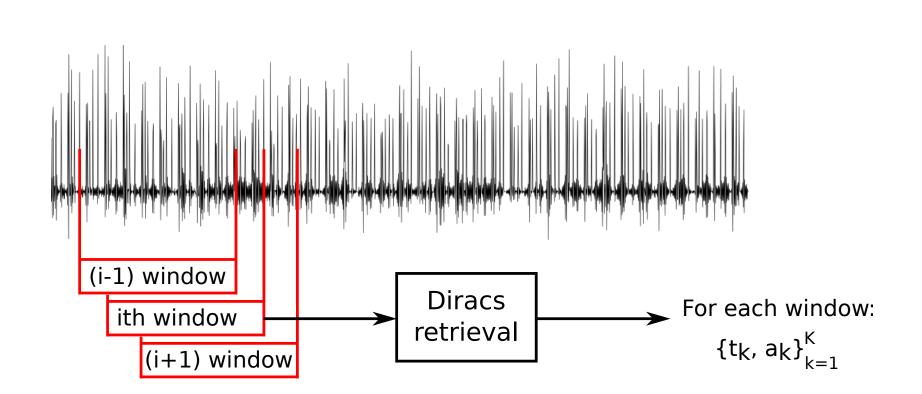
$$f(t) = \frac{x(t)}{k} * p(t) = \sum_{k=1}^{K} a_k \delta(t - t_k) * (e^{-\alpha t} - e^{-\gamma t}) \mathbf{1}_{t \ge 0}$$

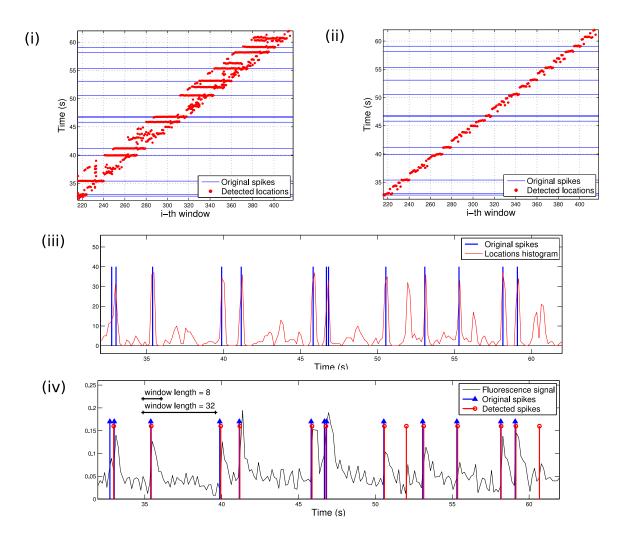


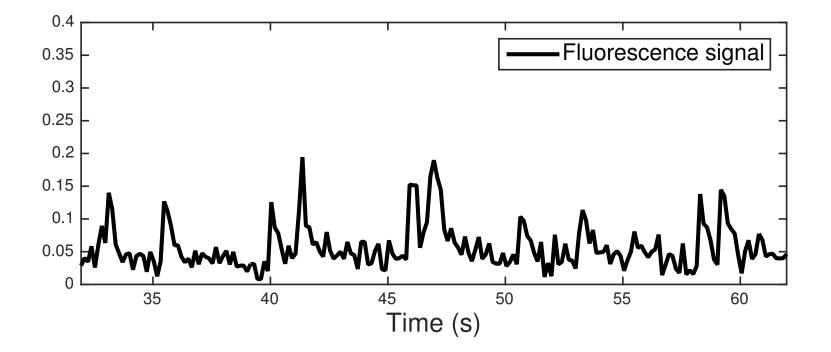
- Signal Model: Stream of decaying exponentials
- This type of signal is well understood in the context of sparse sampling theory (Vetterli-Dragotti-Blu), where reconstruction is possible at very low sampling rate

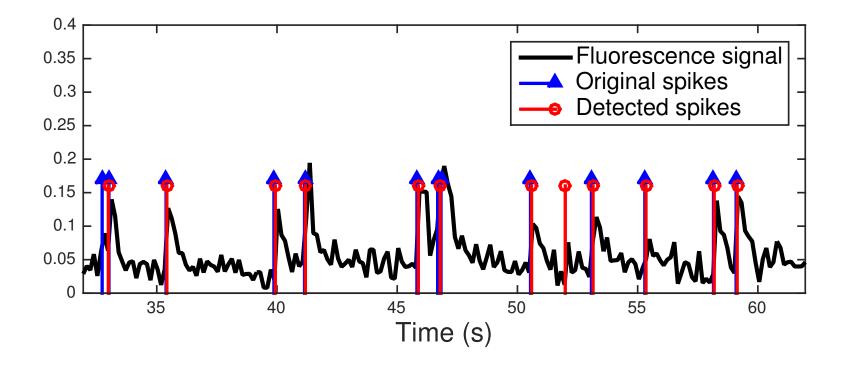




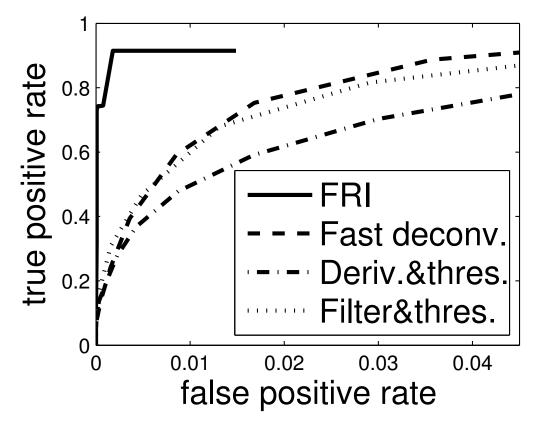








Sparse Sampling and Neuroscience



- The algorithm outperforms state-of-the art methods
- Can operate in real-time simultaneously on 80 streams
- Increase in resolution by factor 3

Outline

- Motivation
- Sparse Sampling for calcium transient detection at high-temporal resolution

 Variation of Level-Set Method for Cell Localization and Segmentation

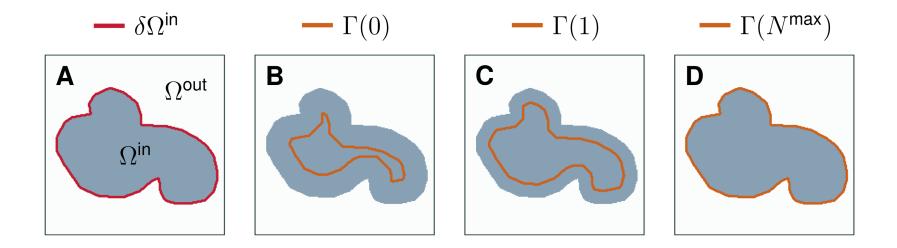
Conclusions and Future Work

Segmentation by energy minimisation: 2D example

We search for the **partition** of Ω which **minimises** this energy:

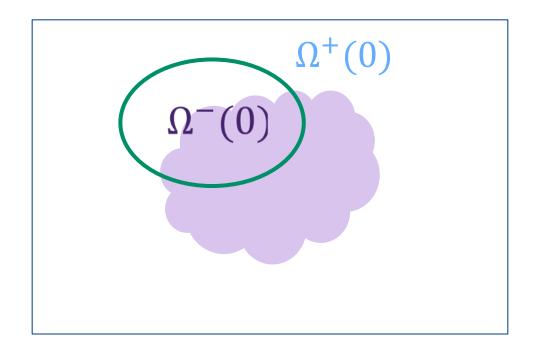
$$E(\Omega^+, \Omega^-) = \int_{\Omega^+} |V(\mathbf{x}) - c^+|^2 d\mathbf{x} + \int_{\Omega^-} |V(\mathbf{x}) - c^-|^2 d\mathbf{x}.$$

We update $\Omega^+(\tau)$ and $\Omega^-(\tau)$ at each iteration τ and calculate $c^+(\tau)$ and $c^-(\tau)$ as the average within each region, respectively.



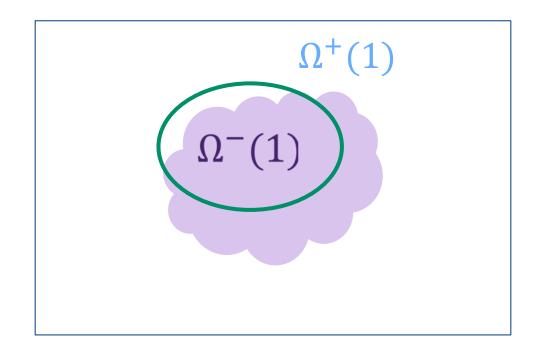
Iteration $\tau = 0$:

$$E(\Omega^{+}(0), \Omega^{-}(0)) = \int_{\Omega^{+}(0)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(0)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x}$$



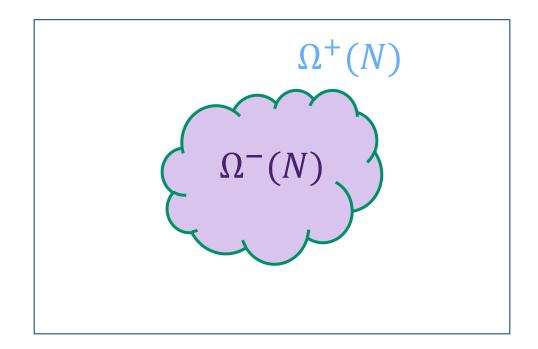
Iteration $\tau = 1$:

$$E(\Omega^{+}(1), \Omega^{-}(1)) = \int_{\Omega^{+}(1)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(1)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x}$$



Final iteration, $\tau = N$:

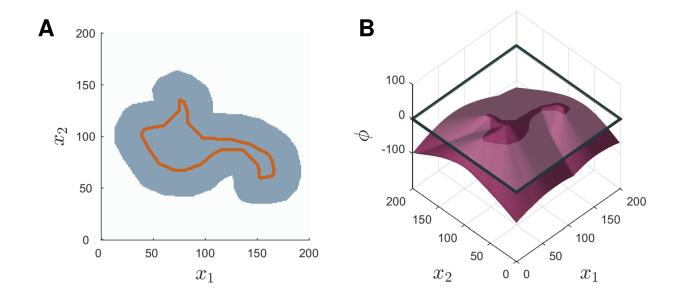
$$E(\Omega^{+}(N), \Omega^{-}(N)) = \int_{\Omega^{+}(N)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(N)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x} = \mathbf{0}$$



Segmentation using Active Contours

- This approach based on evolving the curve is known as active contour
- The contour can be modelled parametrically or implicitly
- The level-set method models the contour implicitly
- Several advantages in using the level-set method:
 - Easier to evolve
 - Allows changes of topology (split or merge)
 - No prior on the shape of the region to be segmented
 - Naturally scale to higher dimensions

Simplification: define regions by single function ϕ



Define $\phi: \Omega \to \mathbb{R}$, such that

$$\phi(x) < 0 \quad \leftrightarrow \quad x \in \Omega^{-}$$

$$\phi(x) > 0 \quad \leftrightarrow \quad x \in \Omega^{+}$$

$$\phi(x) = 0 \quad \leftrightarrow \quad x \in \delta\Omega^{-}$$

Segmentation by energy minimisation

Write the minimisation in terms of ϕ

$$\phi^* = \operatorname{argmin}_{\phi} \{ E(\phi) \},$$

and evolve ϕ by gradient descent to minimise $E(\phi)$

$$\frac{\partial \phi}{\partial \tau} = - \frac{\partial E}{\partial \phi} + \mu \frac{\partial R}{\partial \phi}.$$

We add a smoothing term to keep ϕ well conditioned.

We then solve this PDE numerically:

$$\frac{\phi^{\tau+1} - \phi^{\tau}}{\Delta \tau} = - \frac{\partial E(\tau)}{\partial \phi} + \mu \frac{\partial R(\tau)}{\partial \phi} .$$

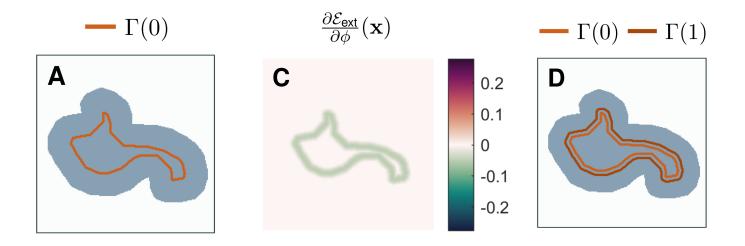
Segmentation by energy minimisation

We evolve ϕ as follows:

$$\phi(\tau + \Delta \tau) = \phi(\tau) - \Delta \tau (\lambda \frac{\partial E}{\partial \phi} + \mu \frac{\partial R}{\partial \phi})$$

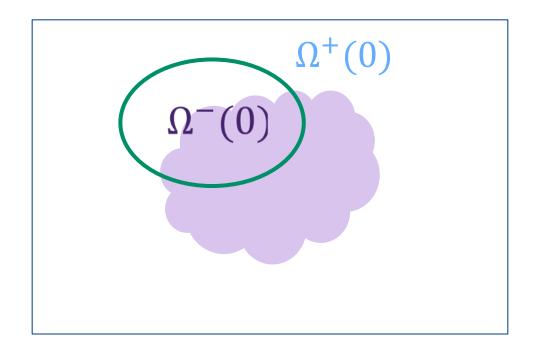
with

$$\frac{\partial E}{\partial \phi}(x) = \delta_{\varepsilon}(\phi(x))\{|V(x) - c^+|^2 - |V(x) - c^-|^2\}$$



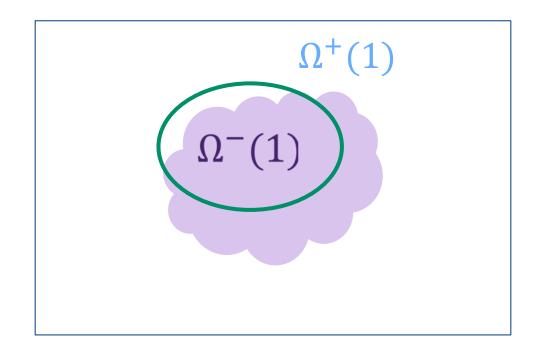
Iteration $\tau = 0$:

$$E(\Omega^{+}(0), \Omega^{-}(0)) = \int_{\Omega^{+}(0)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(0)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x}$$



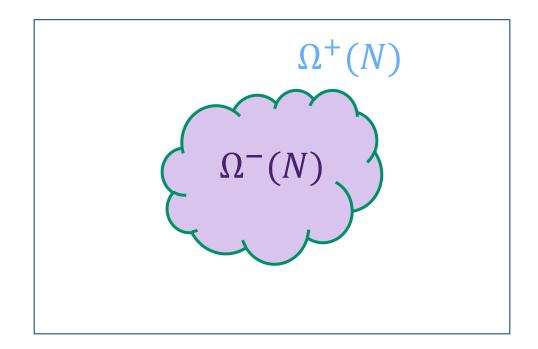
Iteration $\tau = 1$:

$$E(\Omega^{+}(1), \Omega^{-}(1)) = \int_{\Omega^{+}(1)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(1)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x}$$



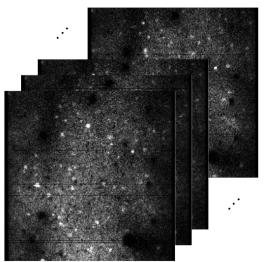
Final iteration, $\tau = N$:

$$E(\Omega^{+}(N), \Omega^{-}(N)) = \int_{\Omega^{+}(N)} |V(\mathbf{x}) - c^{+}|^{2} d\mathbf{x} + \int_{\Omega^{-}(N)} |V(\mathbf{x}) - c^{-}|^{2} d\mathbf{x} = \mathbf{0}$$



Level-Set Method for Calcium Imaging Data

- We need to perform 2-D segmentation but the data is 3-D (2-D+t)
- Dissimilarity metric decided according to the type of dye
- Typical choice is the Euclidean distance



We evolve ϕ at each pixel x according to

$$\frac{\partial \phi}{\partial \tau}(\mathbf{x}) = -\frac{\partial E}{\partial \phi}(\mathbf{x}) = \delta_{\epsilon}(\phi(\mathbf{x}))\{|V(\mathbf{x},t) - c^{-}(t)|^{2} - |V(\mathbf{x},t) - c^{+}(t)|^{2}\}.$$

Α

Level-Set Method for Calcium Imaging Data

We evolve ϕ at each pixel \pmb{x} according to

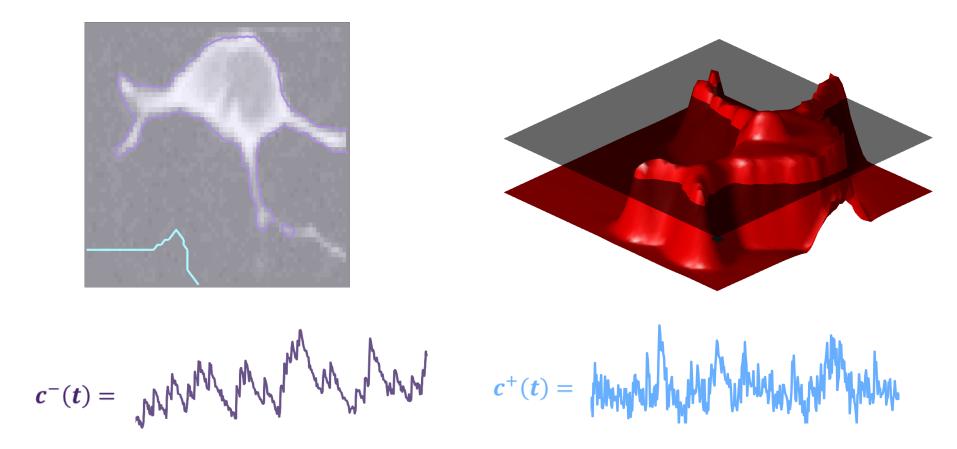
$$\frac{\partial \phi}{\partial \tau}(\mathbf{x}) = -\frac{\partial E}{\partial \phi}(\mathbf{x}) = \delta_{\epsilon} (\phi(\mathbf{x})) \{ |V(\mathbf{x},t) - c^{-}(t)|^{2} - |V(\mathbf{x},t) - c^{+}(t)|^{2} \}.$$

• Typical choice is the Euclidean distance

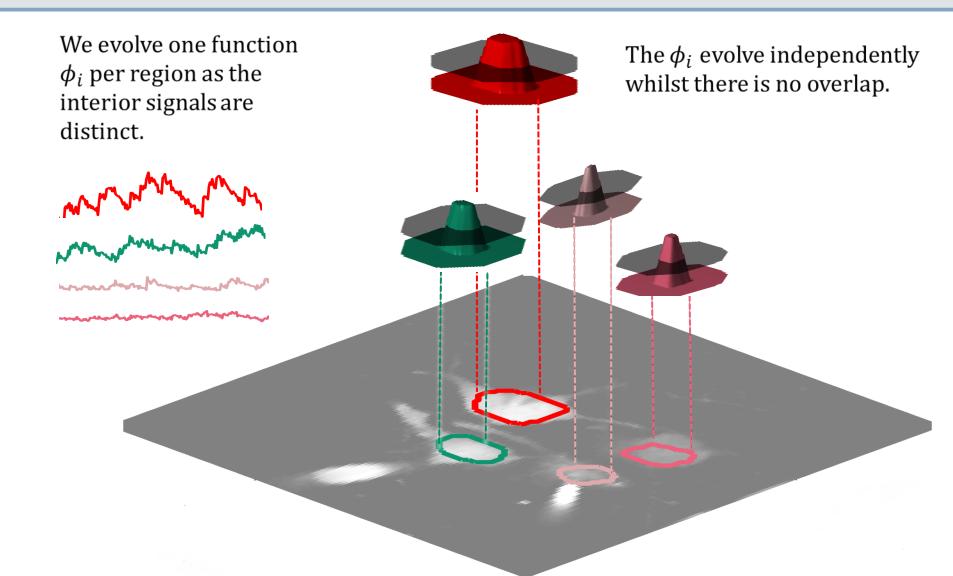
Segmentation result

Zero level and narrowband

Final ϕ : contour that minimises energy



Extension to multiple regions



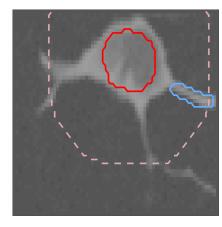
Coupling evolution in the case of overlap

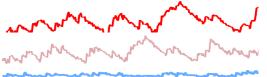
For pixels already in another cell we calculate the alternative velocity

$$\frac{\partial \phi}{\partial \tau}(\mathbf{x}) = \delta_{\epsilon}(\phi(\mathbf{x}))[V_{\text{out}} - V_{\text{in}}]$$

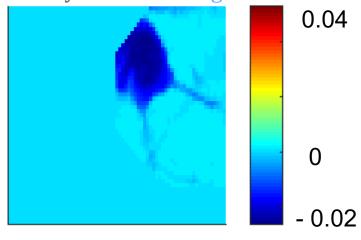
where

$$V_{out} = \min\{|V(x,t) - n|^2, |V(x,t) - b|^2\},\$$
$$V_{in} = \min\{|V(x,t) - a|^2, |V(x,t) - a - b|^2\}.$$



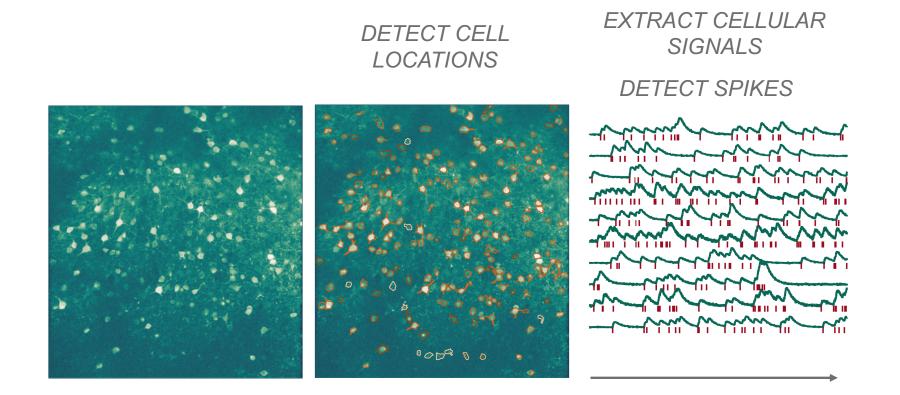


Velocity of smaller region:



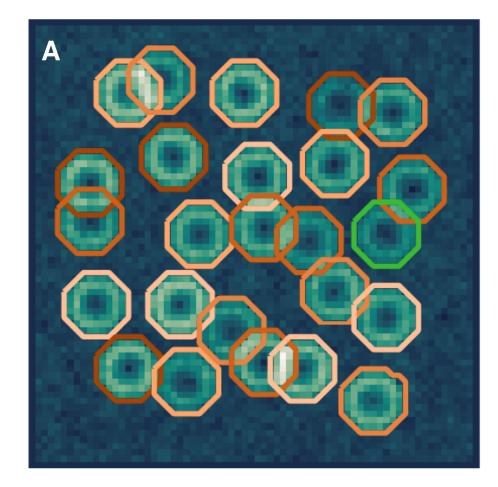
Results...

Detecting neuronal activity from calcium imaging data

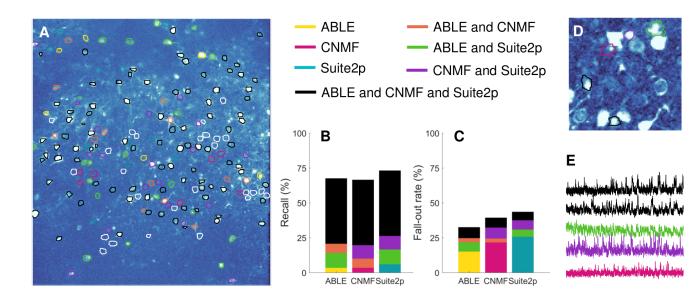


Time (s)

Segmentation of overlapping cells



Comparisons



	Success rate $(\%)$	Precision $(\%)$	Recall $(\%)$
ABLE	67.5	67.5	67.5
CNMF	63.4	60.7	66.5
Suite2p	63.7	56.5	73.1

Conclusions

- We have extended sparse sampling theory methods for calcium transient detection
- We have developed a segmentation algorithm for calcium imaging data based on the level set method.
- We have shown results on real data.

Future work

- Co-design of hardware and software to achieve fast scanning
- Inference of functional topology from large scale calcium imaging data (requires graph theory)

Main References

- S.Reynolds, Detecting Cells and Cellular Activity from Two-Photon Calcium Imaging Data, PhD thesis, Imperial College London 2018
- S.Reynolds et al. ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data, (open access), eNeuro, October 2017.
- Jon Onativia, Simon R. Schultz, and Pier Luigi Dragotti, A Finite Rate of Innovation algorithm for fast and accurate spike detection from two-photon calcium imaging, Journal of Neural Engineering, August 2013.

Thanks for listening!