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Motivation

• Goal of Neuroscience: to study how information is processed in the brain
• Neurons  communicate through pulses  called Action Potentials (AP)
• Need to measure in-vivo the activity of large populations of neurons at cellular 

level resolution
• Two-photon microscopy combined with calcium indicators is the most promising 

technology to achieve that 

Chapter 2. Background

Figure 2.4: Example of in-vivo two-photon calcium imaging data. The
excitation laser scans the field of view once to produce a single frame of the video
(A). In the mean image, which displays the mean of each pixel’s activity, bright spots
correspond to cells with high baseline fluorescence and dark spots correspond to blood
vessels (B). In the correlation image, which displays, at each pixel, the average corre-
lation between that pixel and its neighbours, active cells are visible (C). In D, E and
F, respectively, we plot the activity of the cell, blood vessel and background region
highlighted in B and C. The average activity from the pixels inside the indicated con-
tour are plotted, along with the activity of a single pixel. The data presented in this
figure was collected by Svoboda et al. [96].

2.4.3 Fluorescence collection

As the spatial density of scattered photons is generally low, it can be assumed that

they do not excite significant fluorescence. The majority of emitted photons, therefore,

can be assumed to originate from the vicinity of the focal spot. Consequently, a two-

photon microscope collects all emitted photons, regardless of the angle from which

they appear to originate [51].

To generate an image, the focal spot is typically scanned in a raster pattern across

the field-of-view (Fig. 2.3B). The scanning is performed discretely; after dwelling �t

seconds in one location, the laser either moves �x microns in the x-direction or starts

a new row. Generally the field-of-view is square, the between-row spacing is equal to
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Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites 

fluorescence from sensors
• Photons emitted from tissue are 

collected
• Focal spot sequentially scanned 

across samples to form image
• Two-photon microscopes can go 

deeper in the tissue than single-
photon microscope 
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Calcium ImagingCalcium imaging

• The calcium concentration of a 
cell is a reliable indicator of 
spiking activity.

• Calcium imaging uses 
fluorescent indicators whose 
fluorescence intensity reads 
out calcium concentration.  

• Can monitor 100s of neurons 
simultaneously.

• Know the spatial relationships 
between neurons.

1 Betley, J. Nicholas, et al. "Neurons for hunger and thirst transmit a negative-valence teaching signal." Nature 521.7551 (2015): 180-185.



Advantages of Calcium Imaging

BUT the datasets present challenging 
signal processing problems:
1. Low-time resolution
2. Need to segment automatically regions of 

interest



Outline

• Motivation

• Sparse Sampling for calcium transient detection at high-temporal 
resolution 

• Variation of Level-Set Method for Cell Localization and 
Segmentation

• Conclusions and Future Work



Calcium Transient Detection 



Calcium Transient Detection and Sparse Sampling 

• Signal Model: Stream of decaying exponentials

• This type of signal is well understood in the context of 
sparse sampling theory (Vetterli-Dragotti-Blu), where 
reconstruction is possible at very low sampling rate 

Stream of Decaying Exponentials

10 Jon Oñativia, Pier Luigi Dragotti
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Fig. 9: Sampling of a stream of decaying exponentials and perfect reconstruction. Since x(t) is an infinite duration signal,
samples yn are nonzero for n � n0, for some n0 that depends on the location of the first decaying exponential. However, if
the number of decaying exponentials is finite, the number of nonzero samples zn = yn � yn�1 e

�↵T is also finite since they are
equivalent to sampling a stream of Diracs with a compact support kernel.

hx(t) , '(t/T � n)i are su�cient to characterise x(t)
uniquely.

Fig. 8 illustrates the entire sampling process. Note
that, since the sampling kernel is of compact support
and the stream of Diracs is localised in time, there are
only a small number of samples yn that are nonzero.
From Fig. 8(e) it is clear that the signal is not bandlim-
ited. Furthermore, in the classical sampling setup, in or-
der to sample a continuous-time signal at rate T�1 Hz,
an antialiasing filter that sets to zero x̂(!) for |!| � ⇡/T
has to be applied before acquisition. The FRI frame-
work does not impose this stringent condition since the
sampling kernel is not necessarily equal to zero for all
|!| � ⇡/T .

3.2.2 Perfect reconstruction of a stream of decaying
exponentials

Streams of Diracs are an idealization of streams of pulses.
Although this example may seem limited, the frame-
work presented to reconstruct them can be applied to
other classes of functions that model a variety of sig-
nals. For instance, calcium concentration measurements
obtained from two-photon imaging to track the activ-
ity of individual neurons can be modeled with a stream
of decaying exponentials. In this model, the time delays
correspond to the activation time of the tracked neuron,
that is, the action potentials (AP).

Let x(t) be a stream of K decaying exponentials,
that is

x(t) =
KX

k=1

ak e�↵(t�tk) 1t�tk =
KX

k=1

ak ⇢↵(t� tk), (28)

where ⇢↵(t) := e�↵t 1t�0. See Fig. 9(a) for an example
of such signal. This is also an FRI signal since x(t) is

perfectly determined by a finite number of parameters:
{(tk, ak)}K

k=1. Let us assume that x(t) is sampled with
the acquisition device described in 3.2.1, that is, an ex-
ponential reproducing kernel h(t) = '(�t/T ), followed
by a sampling stage. We thus have that '(t) satisfies
(9) and the resulting samples yn can be expressed as
the inner product between x(t) and '(t/T � n) as in
(8).

The reproduced exponentials ei!mt also satisfy the
same conditions as in 3.2.1. It can be shown that sam-
pling the signal in (28) with '(�t/T ) and computing
the following finite di↵erences

zn = yn � yn�1 e�↵T , (29)

is equivalent to the sequence that results from sampling
the stream of Diracs s(t) =

PK
k=1 ak �(t � tk) with the

following kernel

 (t) = �↵T (�t) ⇤ '(t) (30)

where �↵T (�t) is a zero order E-spline with parameter
↵T (Oñativia et al, 2013a). We thus have that

zn = hs(t) ,  (t/T � n)i . (31)

Since convolution preserves the exponential repro-
ducing property,  (t) reproduces the same exponentials
as '(t). Thus, we can find the coe�cients dm,n such that

X

n2Z
dm,n  (t� n) = ei!mt, m = 0, 1, . . . , P. (32)

We now have all the elements to perfectly recon-
truct the stream of decaying exponentials x(t) from
samples yn, that is, estimate the set of pairs of param-
eters {(tk, ak)}K

k=1. By combining the sequence zn with

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



Calcium Transient Detection and Sparse Sampling 
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Calcium Transient Detection and Sparse Sampling 

Calcium Transient Detection

Diracs 
retrieval 

{tk, ak}
k=1

K

For each window:
(i-1) window

(i+1) window

ith window

I Retrieve Diracs using a sliding window

I Locations of true Diracs are consistent across windows
[Onativia-Uriguen-Dragotti-13]

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



Calcium Transient Detection and Sparse Sampling Calcium Transient Detection

Figure 6: Double consistency spike search. (i) and (ii) show the detected locations in red and the locations of the
original spikes in green for two di↵erent window sizes. In (i) the algorithm runs estimating the number of spikes
within the sliding window. In (ii) the algorithm runs assuming a fixed number of spikes equal to one for each position
of the sliding window. (iii) shows the joint histogram of the detected locations. (iv) shows the fluorescence signal in
blue with the original spikes in green and the detected spikes in red.

2.4 Generating surrogate data

We generated surrogate data with similar properties to the experimental data, in order to investigate the

changes in performance of the spike detection algorithm in terms of parameters such as data signal to noise

ratio and the sampling frequency. We assume that the spike occurrence follows a Poisson distribution with

parameter � spikes/s. Experimental data presents occurrences between 0.45 and 0.5 spikes per second. The

probability of having k spikes in the interval considered in parameter � (one second) is given by the probability

mass function of the Poisson distribution:

f�pkq “
�ke´�

k!
. (17)

To generate a spike train for a time interval L we divide this interval in N slots. Each slot corresponds to

a time interval of �t “ L
N seconds. The �1 parameter that corresponds to this new time interval is �1 “ � ¨�t.

We then generate a vector k “ pk1, . . . , kN q of size 1 ˆ N where each ki „ Poisp�1q are independent random

variables. The i-th element of this vector, ki, gives the number of spikes that occurred during the i-th time

slot. We then have to generate the precise instant of time when the spike occured. For a given time slot, we

generate the ki spike instants according to a uniform distribution. The total number of spikes in the time

interval L is K “
řN

i“1 ki. Once we have generated the locations of the K spikes ptkqK
k“1 the waveform given

11

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



Calcium Transient Detection and Sparse Sampling 
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Calcium Transient Detection and Sparse Sampling 
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Sparse Sampling and Neuroscience 
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• The algorithm outperforms
state-of-the art methods

• Can operate in real-time 
simultaneously on 80 
streams

• Increase in resolution by 
factor 3



Outline

• Motivation

• Sparse Sampling for calcium transient detection at high-temporal 
resolution 

• Variation of Level-Set Method for Cell Localization and 
Segmentation

• Conclusions and Future Work



Segmentation by energy minimisation: 2D example 

3.2. Active contours

Figure 3.1: Illustrative example of an active contour segmenting a piecewise smooth
image. The image consists of an object, ⌦in, and a background, ⌦out (A). An active
contour, �, evolves guided by a cost function that is minimised when it is located at
the true object boundary, �⌦in (B - D). After Nmax iterations, the contour converges
at the true object boundary.

with more than two spatial dimensions. This is fitting for calcium imaging data, which

is starting to be collected in three spatial dimensions [2]. This is the framework we

adopt for our segmentation algorithm, which we introduce in more detail in Section

3.3.

The evolution of an active contour is guided by a cost function, which is designed to be

minimised when the contour is located at the true object boundary. The cost function

is formed of two components: one relating to the image, which is referred to as the

external energy, and another relating to the properties of the contour itself, which

we refer to as the regulariser. Both components are weighted by scalar parameters,

µ,� 2 R, to form the cost function:

E(�) = � Eext(�) + µ Ereg(�), (3.2)

where Eext is the external energy and Ereg is the regulariser. The external energy, which
we discuss in the following section, incorporates assumptions about the properties of

the object to be detected. The regulariser, which we discuss in Section 3.3.2, encourages

the object boundary to conform to a set of pre-ordained conditions. For example,

jagged edges or excessively long boundaries may be penalised.

3.2.1 External energy

To construct the external energy, quantitative image features are computed. The

features are typically one of two types: boundary-based and region-based features. As

objects in calcium imaging videos tend not to possess sharp edges (see Section 2.4.5),

we focus on the latter approach. Two features f in 2 Rm and fout 2 Rm are derived

from values of the image in the interior and exterior of �, respectively. These features,
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Segmentation by energy minimisation: 2D example 
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Segmentation by energy minimisation: 2D example 
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Segmentation by energy minimisation: 2D example 
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Segmentation using Active Contours

• This approach based on evolving the curve is known as active contour

• The contour can be modelled parametrically or implicitly

• The level-set method models the contour implicitly  

• Several advantages in using the level-set method: 
• Easier to evolve 
• Allows changes of topology (split or merge)
• No prior on the shape of the region to be segmented
• Naturally scale to higher dimensions



3.3. Level set method

Figure 3.2: Illustration of a level set function (LSF). The active contour (A) is
encoded as the zero level set of the LSF (B). The LSF is positive in pixels inside the
contour, negative outside and zero on the contour.

seek the LSF that minimises the analogous cost function:

E(�) = � Eext(�) + µ Ereg(�), (3.5)

where we have replaced � with �. As it is in general not possible to minimise this cost

function directly, a standard way to obtain the LSF that minimises Eq. (3.5) is to find

the steady-state solution to the gradient flow equation [6]:

@�

@⌧
= �@E

@�
. (3.6)

As artificial time, denoted by ⌧ , advances, the LSF is thus evolved in the image plane

in a manner that yields the sharpest decrease in the cost function. From Eq. (3.5),

this partial di↵erential equation (PDE) becomes

@�

@⌧
= �

✓
�
@Eext
@�

+ µ
@Ereg
@�

◆
. (3.7)

The evolution of the LSF is driven by two components: the former provides the impetus

from the image data and the latter the impetus from the regulariser. In Sections 3.3.1

and 3.3.2, we discuss the computation of each component.

To solve the PDE numerically, it is necessary to discretise Eq. (3.7). We approximate

� by storing and updating its value on the uniformly-spaced image grid. The evolution

parameter ⌧ is also discretised, such that

�(⌧ +�⌧) = �(⌧)��⌧

✓
�
@Eext
@�

+ µ
@Ereg
@�

◆
. (3.8)

At every timestep ⌧ , the LSF is updated until a maximum number of iterations, Nmax,

49



Segmentation by energy minimisation



Segmentation by energy minimisation

We evolve ! as follows:

with
3.3. Level set method

Figure 3.3: The Chan-Vese active contours model. In A, we display the initial
estimate of the object boundary, �(0). The external velocity at each pixel is equal to
a data-based term, Ain(x) � Aout(x), multiplied by a localisation operator. In B, we
display the former, which is negative at pixels that are more similar to the interior than
the exterior of the active contour, and positive otherwise. The localisation operator
suppresses the contribution of the data-based term at pixels distant from the active
contour (C). In D, we plot the updated active contour, whose evolution is driven solely
by the external velocity in C.

vicinity of the active contour. The parameter ✏ determines the radius of the non-zero

band.

An example of the external velocity for the single-image Chan-Vese active contour

model is shown in Fig. 3.3. From Eq. (3.4), setting �in = �out = 1, we have

@Eext
@�

(x) = �✏(�(x))
�
kI(x)� f ink2 � kI(x)� foutk2

�
, (3.14)

where, in this case, f in and fout are the average intensity values within each subregion.

The contour is thus moved towards the pixels whose values are more similar to f in

than fout, and repelled by other pixels.

3.3.2 Regularisation

The external velocity updates the LSF only in the vicinity of the zero level set. As the

LSF is updated, the position of the zero level set is altered and the LSF is subsequently

updated at new locations. Consequently, it is beneficial to maintain an LSF that is

smoothly varying in that region. We use the regulariser of Li et al. [67], which has been

implemented in numerous medical imaging applications [66, 70, 141]. The goal of the

regulariser is to ensure that � approximates a signed distance function in the vicinity

of the contour and is flat elsewhere. In this context, a distance function satisfies:

d(x) = min
xc2�

kx� xck, (3.15)

45

3.3. Level set method

Figure 3.3: The Chan-Vese active contours model. In A, we display the initial
estimate of the object boundary, �(0). The external velocity at each pixel is equal to
a data-based term, Ain(x) � Aout(x), multiplied by a localisation operator. In B, we
display the former, which is negative at pixels that are more similar to the interior than
the exterior of the active contour, and positive otherwise. The localisation operator
suppresses the contribution of the data-based term at pixels distant from the active
contour (C). In D, we plot the updated active contour, whose evolution is driven solely
by the external velocity in C.

vicinity of the active contour. The parameter ✏ determines the radius of the non-zero

band.

An example of the external velocity for the single-image Chan-Vese active contour

model is shown in Fig. 3.3. From Eq. (3.4), setting �in = �out = 1, we have

@Eext
@�

(x) = �✏(�(x))
�
kI(x)� f ink2 � kI(x)� foutk2

�
, (3.14)

where, in this case, f in and fout are the average intensity values within each subregion.

The contour is thus moved towards the pixels whose values are more similar to f in

than fout, and repelled by other pixels.

3.3.2 Regularisation

The external velocity updates the LSF only in the vicinity of the zero level set. As the

LSF is updated, the position of the zero level set is altered and the LSF is subsequently

updated at new locations. Consequently, it is beneficial to maintain an LSF that is

smoothly varying in that region. We use the regulariser of Li et al. [67], which has been

implemented in numerous medical imaging applications [66, 70, 141]. The goal of the

regulariser is to ensure that � approximates a signed distance function in the vicinity

of the contour and is flat elsewhere. In this context, a distance function satisfies:

d(x) = min
xc2�

kx� xck, (3.15)
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Level-Set Method for Calcium Imaging Data

• We need to perform 2-D segmentation 
but the data is 3-D (2-D+t)

• Dissimilarity metric decided according to 
the type of dye

• Typical choice is the Euclidean distance

Segmentation by energy minimisation: 3D scenario

Chapter 2. Background

Figure 2.4: Example of in-vivo two-photon calcium imaging data. The
excitation laser scans the field of view once to produce a single frame of the video
(A). In the mean image, which displays the mean of each pixel’s activity, bright spots
correspond to cells with high baseline fluorescence and dark spots correspond to blood
vessels (B). In the correlation image, which displays, at each pixel, the average corre-
lation between that pixel and its neighbours, active cells are visible (C). In D, E and
F, respectively, we plot the activity of the cell, blood vessel and background region
highlighted in B and C. The average activity from the pixels inside the indicated con-
tour are plotted, along with the activity of a single pixel. The data presented in this
figure was collected by Svoboda et al. [96].

2.4.3 Fluorescence collection

As the spatial density of scattered photons is generally low, it can be assumed that

they do not excite significant fluorescence. The majority of emitted photons, therefore,

can be assumed to originate from the vicinity of the focal spot. Consequently, a two-

photon microscope collects all emitted photons, regardless of the angle from which

they appear to originate [51].

To generate an image, the focal spot is typically scanned in a raster pattern across

the field-of-view (Fig. 2.3B). The scanning is performed discretely; after dwelling �t

seconds in one location, the laser either moves �x microns in the x-direction or starts

a new row. Generally the field-of-view is square, the between-row spacing is equal to
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Level-Set Method for Calcium Imaging Data

• Typical choice is the Euclidean distance

Segmentation by energy minimisation: 3D scenario



Segmentation result
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Extension to multiple regions



Coupling evolution in the case of overlap

0.04

- 0.02

0

Velocity	of	smaller	region:

For	pixels	already	in	another	cell	we	calculate	the	alternative	velocity

:;

:<
= = ?@(; = ) CDEF − CHI

where	

CJKL= min |C N, P − Q|R, |C N, P − S|R ,	

CTU= min |C N, P − V|R, |C N, P − V − S|R .
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Segmentation of overlapping cellsChapter 3. ABLE: an activity-based level set segmentation algorithm

Figure 3.7: Segmentation results on simulated data containing overlapping
cells. ABLE detected the true boundaries of overlapping cells from noisy simulated
data. The detected contours for one realization of noise with standard deviation (�)
equal to 60 are plotted on the correlation image in A. Given an initialisation on a
fixed grid, the true cell boundaries are detected with success rate of at least 99% for
� < 90 (B). The central marker and box edges in B indicate the median and the 25th

and 75th percentiles, respectively. For noise level reference, we plot the average time
course from inside the green contour in A at various levels (C). In D, we plot the
initialisation, which was on a fixed grid, on the mean image of the video.

3.6.2 Demixing overlapping cells

When imaging through scattering tissue, a two-photon microscope can have relatively

low axial resolution (on the order of ten microns) in comparison to its excellent lateral

resolution. As a consequence, the photons collected at one pixel can in some cases

originate from multiple cells in a range of z-planes. For this reason, cells can appear to

overlap in an imaging video. It is crucial that segmentation algorithms can delineate

the true boundary of apparently overlapping cells, so that the functional activity of

each cell can be correctly extracted and analysed.

On synthetic data containing 25 cells, 17 of which had some overlap with another

cell, we measured the success rate of ABLE’s segmentation compared to the ground

truth cell locations (Fig. 3.7). For more detail on the performance metric, see Section

3.5.4. Cells were simulated with uneven brightness to mimic the ‘doughnut’ cells

generated by some genetically encoded indicators that are excluded from the nucleus.

Consequently, pixels within the same cell had the same pattern of temporal activity

but vastly di↵erent baseline fluorescence, as is apparent in the mean image in Fig.

3.8D. To segment the data, therefore, we applied ABLE with the correlation-based

dissimilarity metric. As can be seen in the example in Fig. 3.8A, despite uneven

fluorescence and the prevalence of cellular overlap, pixels were reliably incorporated
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Comparisons 
Chapter 3. ABLE: an activity-based level set segmentation algorithm

Figure 3.9: Algorithm comparison on a manually labelled dataset. We
compare the segmentation results of ABLE, CNMF and Suite2p on a manually labelled
dataset. On the correlation image we plot the boundaries of the manually labelled cells
colour-coded by the combination of algorithms that detected them (A), undetected
cells are indicated by a white contour. Suite2p detected the highest proportion of
manually labelled cells (B), whereas ABLE had the lowest fall-out rate (C), which is
the percentage of detected regions not present in the manual labels. Some algorithm-
detected ROIs that were not present in the manual labels are detected by multiple
algorithms (D) and have time courses which exhibit stereotypical calcium transient
activity (E). The correlation image in D is thresholded to enhance visibility of local
peaks in correlation. In E, we plot the extracted time courses of the ROIs in D.

As a consequence, the algorithm was able to segment cells whose activity was highly

correlated with the background activity (Fig. 3.8B). Furthermore, inactive cells were

detected when their baseline fluorescence allowed them to be identified from the back-

ground (Fig. 3.8 F-H). In Fig. 3.8C-E, we display an example of an active cell that

was detected. We note that each of the four visible activity peaks in this figure corre-

sponds to twenty calcium transients that were induced by the electrical stimulations.

The relatively low amplitude of these peaks reflects the low SNR of this data. As a

result, only a small amount of spontaneous activity is visible in the activity plot of

Fig. 3.8B.

3.6.4 Algorithm comparison on manually labelled dataset

We compared the performance of ABLE with two state of the art calcium imaging seg-

mentation algorithms, CNMF [102] and Suite2p [91], on a manually labelled dataset,

see Fig. 3.9. We apply ABLE with the correlation-based dissimilarity metric, Eq.

(3.21), which is well suited to neurons with low baseline fluorescence and uneven

brightness. As the dataset is large enough (512x512x8000 pixels) to present mem-

58

3.7. Summary

Success rate (%) Precision (%) Recall (%)
ABLE 67.5 67.5 67.5
CNMF 63.4 60.7 66.5
Suite2p 63.7 56.5 73.1

Table 3.2: Algorithm success rate on a manually labelled dataset. We
compare the performance of three segmentation algorithms: ABLE, CNMF [102] and
Suite2p [91], using the manual labels as ground truth.

ory issues on a standard laptop, we ran the patch-based implementation of CNMF,

which processes spatially-overlapping patches of the dataset in parallel. We optimised

the performance of each algorithm by selecting a range of values for each of a set of

tuning parameters and generating segmentation results for all combinations of the pa-

rameter set. The results were visualised on the correlation image and the parameter

set that presented the best match to the correlation image was selected. This process

is representative of what a user may do in practise when applying an algorithm to a

new dataset.

ABLE achieved the highest success rate (67.5%) when compared to the manual labels,

see Table 3.2. For a definition of the success rate and other performance metrics

used, see Section 3.5.4. ABLE achieved a lower fall-out rate than Suite2p and CNMF

(Fig. 3.9C) — 67.5% of the ROIs it detected matched with the manually labelled

cells. Some of the ‘false detections’ were consistent among algorithms (Fig. 3.9C)

and corresponded to local peaks in the correlation image (Fig. 3.9D), whose extracted

time courses displayed stereotypical calcium transient activity (Fig. 3.9E). A subset of

these ROIs may thus correspond to cells omitted by the manual operator. The highest

proportion of the manually labelled cells were detected by Suite2p, which detected the

greatest number of cells not detected by any other algorithm (Fig. 3.9B). A small

proportion (13.2%) of cells were detected by none of the algorithms. As can be seen

from Fig. 3.9A, these do not correspond to peaks in the correlation image, and may

reflect inactive cells detected by the manual operator.

3.7 Summary

In this chapter, we presented a novel approach to the problem of detecting cells from

calcium imaging data. Our approach uses multiple coupled active contours to identify

cell boundaries. The core assumption is that the local region around a single cell can

be well-approximated by two subregions, the cell interior and exterior. The average

time course of the respective subregions is used as a feature with which to classify
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Conclusions

• We have extended sparse sampling theory methods for calcium 
transient detection 

• We have developed a segmentation algorithm for calcium 
imaging data based on the level set method.

• We have shown results on real data.

Future work

• Co-design of hardware and software to achieve fast scanning
• Inference of functional topology from large scale calcium 

imaging data (requires graph theory)
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