

Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks

Pier Luigi Dragotti

April 24, 20141

¹This research is supported by European Research Council ERC, project 277800 (RecoSamp)

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Problem Statement

You are given a class of functions. You have a sampling device. Given the measurements $y_n = \langle x(t), \varphi(t/T - n) \rangle$, you want to reconstruct x(t).

Natural questions:

- When is there a one-to-one mapping between x(t) and y_n ?
- What signals can be sampled and what kernels $\varphi(t)$ can be used?
- What reconstruction algorithm?

The Information Acquisition Process

- The lens blurs the image.
- The image is sampled ('pixelized') by the CCD array.
- You want to develop techniques that give you the sharpest and highest possible resolution images given the available acquisition device

Motivation: Sampling Everywhere

Applications in Neuroscience

A = A A = A

< 合型

Neural Activity Detection

- ▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 • ⑦ � @ ▶

Motivation: Sensor Networks

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ The source (phenomenon) is distributed in space and time.
- ► The phenomenon is sampled in space and time.
- How many sensors? How can we localise the diffusion source?

Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely choose an arbitrary viewpoint for 3D viewing.

This is a multi-dimensional sampling and interpolation problem.

< ∃ > < ∃

Outline

- Classical Sampling Formulation and Signals with FRI
- Sampling Kernels and Approximate Strang-Fix Conditions
- From Samples to Signals
- Robust and Universal Sparse Sampling
- Applications in
 - Image Super-Resolution
 - Neuroscience
 - Sensor Networks
- Conclusions and Outlook

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Classical Sampling Formulation

- Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant subspace V = span{φ(t/T − n)}_{n∈ℤ}.
- If $x(t) \in V$, perfect reconstruction is possible.
- Reconstruction process is linear: $\hat{x}(t) = \sum_{n} y_n \varphi(t/T n)$.
- For bandlimited signals $\varphi(t) = \operatorname{sinc}(t)$.

Nyquist Sampling Rate vs Rate of Information

Here, $x_1(t)$ and $x_2(t)$ have the same rate of innovation. However, one discontinuity and no sampling theorems ;-)

Signals with Finite Rate of Innovation

- The signal x(t) = ∑_n y_nφ(t/T − n) is exactly specified by one parameter y_n every T seconds, x(t) has a finite number ρ = 1/T of degrees of freedom per unit of time.
- In the classical formulation, innovation is uniform. How about signals where the rate of innovation is finite but non-uniform? E.g.
 - Piecewise sinusoidal signals (Frequency Hopping modulation)
 - Pulse position modulation (UWB)
 - Edges in images

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Signals with Finite Rate of Innovation

Consider a signal of the form:

$$x(t) = \sum_{k \in \mathbb{Z}} \gamma_k \varphi(t - t_k).$$
 (1)

The rate of innovation of x(t) is then defined as

$$\rho = \lim_{\tau \to \infty} \frac{1}{\tau} C_x \left(-\frac{\tau}{2}, \frac{\tau}{2} \right), \tag{2}$$

(日) (同) (三) (三)

where $C_x(-\tau/2, \tau/2)$ is a function counting the number of free parameters in the interval τ .

Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal whose parametric representation is given in (1) and with a finite ρ as defined in (2).

Examples of Signals with Finite Rate of Innovation

Filtered Streams of Diracs

Piecewise Sinusoidal Signals

Decaying Exponentials

Mondrian paintings ;-)

A B > A B >

Sampling Kernels

- Given by nature
 - Diffusion equation, Green function. Ex: sensor networks.
- Given by the set-up
 - Designed by somebody else. Ex: Hubble telescope, digital cameras.
- Given by design
 - Pick the best kernel. Ex: engineered systems.

э

Sampling Kernels

Any kernel $\varphi(t)$ that can reproduce exponentials:

$$\sum_{n} c_{m,n} \varphi(t-n) = e^{\alpha_m t}, \qquad \alpha_m = \alpha_0 + m\lambda \text{ and } m = 0, 1, ..., L.$$

This includes any composite kernel of the form $\gamma(t) * \beta_{\vec{\alpha}}(t)$ where $\beta_{\vec{\alpha}}(t) = \beta_{\alpha_0}(t) * \beta_{\alpha_1}(t) * \dots * \beta_{\alpha_i}(t)$ and $\beta_{\alpha_i}(t)$ is an Exponential Spline of first order [UnserB:05].

$$eta_lpha(t) \Leftrightarrow \hateta(\omega) = rac{1-e^{lpha-j\omega}}{j\omega-lpha}$$

Notice[.]

- $\triangleright \alpha$ can be complex.
- E-Spline is of compact support.
- E-Spline reduces to the classical polynomial spline when $\alpha = 0$. < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponential Reproducing Kernels

The E-spline of first order $\beta_{\alpha_0}(t)$ reproduces the exponential $e^{\alpha_0 t}$:

$$\sum_{n} c_{0,n} \beta_{\alpha_0}(t-n) = e^{\alpha_0 t}.$$

In this case $c_{0,n} = e^{\alpha_0 n}$. In general, $c_{m,n} = c_{m,0}e^{\alpha_m n}$.

A B A A B A

Exponential Reproducing Kernels

Here the E-spline is of second order and reproduces the exponential $e^{\alpha_0 t}$, $e^{\alpha_1 t}$: with $\alpha_0 = -0.06$ and $\alpha_1 = 0.5$.

Exponential Reproducing Kernels

- The exponent α of the E-splines can be complex. This means $\beta_{\alpha}(t)$ can be a complex function.
- However if pairs of exponents are chosen to be complex conjugate then the spline stays real.
- Example:

$$eta_{lpha_0+j\omega_0}(t)*eta_{lpha_0-j\omega_0}(t) = \left\{egin{array}{cc} rac{\sin \omega_0 t}{\omega_0} e^{lpha_0 t} & 0 \leq t < 1 \ -rac{\sin \omega_0 (t-2)}{\omega_0} e^{lpha_0 t} & 1 \leq t < 2 \ 0 & ext{Otherwise} \end{array}
ight.$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

When $\alpha_0 = 0$ (i.e., purely imaginary exponents), the spline is called trigonometric spline.

Exponential Reproducing Kernels

Here $\vec{\alpha} = (-j\omega_0, j\omega_0)$ and $\omega_0 = 0.2$. $\sum_n c_{n,m}\beta_{\vec{\alpha}}(t-n) = e^{jm\omega_0}$ m = -1, 1. Notice: $\beta_{\vec{\alpha}}(t)$ is a real function, but the coefficients $c_{m,n}$ are complex, $\vec{\alpha} = -1, 1$.

Generalised Strang-Fix Conditions

A function $\varphi(t)$ can reproduce the exponential:

$$e^{j\omega_m t} = \sum_n c_{m,n} \varphi(t-n)$$

if and only if

$$\hat{\varphi}(j\omega_m) \neq 0 \text{ and } \hat{\varphi}(j\omega_m + j2\pi I) = 0 \quad I \in \mathbb{Z} \setminus \{0\}$$

where $\hat{\varphi}(\cdot)$ is the Fourier transform of $\varphi(t)$.

Also note that $c_{m,n} = c_{m,0}e^{j\omega_m n}$ with $c_{m,0} = \hat{\varphi}(j\omega_m)^{-1}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Generalised Strang-Fix Conditions

From Samples to Signals

- Consider any x(t) with t ∈ [0, N) and sampling period T = 1.
- The sampling kernel $\varphi(t)$ satisfies

$$\sum_{n} c_{m,n} \varphi(t-n) = e^{j\omega_{m}t} \quad m = 1, ..., L,$$

A I A A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• We want to retrieve x(t), from the samples $y_n = \langle x(t), \varphi(t-n) \rangle$, n = 0, 1, ..., N - 1.

ヘロン 人間 とくほど 人間 とう

3

From Samples to Signals

We have that

$$s_m = \sum_{n=0}^{N-1} c_{m,n} y_n$$

= $\langle x(t), \sum_{n=0}^{N-1} c_{m,n} \varphi(t-n) \rangle$
= $\int_{-\infty}^{\infty} x(t) e^{j\omega_m t} dt, \quad m = 1, ..., L.$

• Note that s_m is the Fourier transform of x(t) evaluated at $j\omega_m$.

From Samples to Signals

- Consider FRI signals which are completely specified by a finite number of free parameters
- ► This is an 'analogue' sparsity model
- For classes of parametrically sparse signals there is a one-to-one mapping between samples and signal:

$$x(t) \Leftrightarrow \hat{x}(j\omega_m) \quad m = 1, 2, ..., L$$

• The number d of degrees of freedom of the signal must satisfy $d \leq L$

A = A A = A

Sampling Streams of Diracs

- Assume x(t) is a stream of K Diracs on the interval of size N: $x(t) = \sum_{k=0}^{K-1} x_k \delta(t - t_k), \ t_k \in [0, N).$
- We restrict $j\omega_m = j\omega_0 + jm\lambda$ m = 1, ..., L and $L \ge 2K$.
- We have N samples: $y_n = \langle x(t), \varphi(t-n) \rangle$, n = 0, 1, ..., N 1:
- We obtain

$$s_{m} = \sum_{n=0}^{N-1} c_{m,n} y_{n}$$

= $\int_{-\infty}^{\infty} x(t) e^{j\omega_{m}t} dt$,
= $\sum_{k=0}^{K-1} x_{k} e^{j\omega_{m}t_{k}}$
= $\sum_{k=0}^{K-1} \hat{x}_{k} e^{j\lambda mt_{k}} = \sum_{k=0}^{K-1} \hat{x}_{k} u_{k}^{m}$, $m = 1, ..., L$.

Prony's Method

The quantity

$$s_m = \sum_{k=0}^{K-1} \hat{x}_k u_k^m, \quad m = 1, ..., L$$

is a sum of exponentials.

▶ Retrieving the locations u_k and the amplitudes x̂_k from {s_m}^L_{m=1} is a classical problem in spectral estimation and was first solved by Gaspard de Prony in 1795.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Given the pairs $\{u_k, \hat{x}_k\}$, then $t_k = (\ln u_k)/\lambda$ and $x_k = \hat{x}_k/e^{\alpha_0 t_k}$.

Overview of Prony's Method

Assume: $y_n = \sum_{k=0}^{K-1} \alpha_k u_k^m$ and consider the polynomial:

$$P(x) = \prod_{k=1}^{K} (x - u_k) = x^{K} + h_1 x^{K-1} + h_2 x^{K-2} + \ldots + h_{K-1} x + h_K.$$

It is easy to verify that

$$y_{n+K} + h_1 y_{n+K-1} + h_2 y_{n+K-2} + \ldots + h_K y_n = \sum_{1 \le k \le K} \alpha_k u_k^n P(u_k) = 0.$$

In matrix-vector form for indices n such that $\ell \leq n < \ell + K$, we get

$$\begin{bmatrix} y_{\ell+K} & y_{\ell+K-1} & \cdots & y_{\ell} \\ y_{\ell+K+1} & y_{\ell+K} & \cdots & y_{\ell+1} \\ \vdots & \ddots & \ddots & \vdots \\ y_{\ell+2K-2} & \ddots & \ddots & \vdots \\ y_{\ell+2K-1} & y_{\ell+2K-2} & \cdots & y_{\ell+K-1} \end{bmatrix} \begin{bmatrix} 1 \\ h_1 \\ h_2 \\ \vdots \\ h_K \end{bmatrix} = \mathbf{T}_{K,\ell} \mathbf{h} = \mathbf{0}$$

<ロト <得ト < 3 × 4

э

Pier Luigi Dragotti Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks

Overview of Prony's Method

The vector of polynomial coefficients $\mathbf{h} = [1, h_1, ..., h_K]^T$ is in the null space of $\mathbf{T}_{K,\ell}$. Moreover, $\mathbf{T}_{K,\ell}$ has size $K \times (K+1)$ and has full row rank when the u_k 's are distinct. Therefore \mathbf{h} is unique.

Prony's method summary:

- 1. Given the input y_n , build the Toeplitz matrix $\mathbf{T}_{K,\ell}$ and solve for **h**. This can be achieved by taking the SVD of $\mathbf{T}_{K,\ell}$.
- 2. Find the roots of $P(x) = 1 + \sum_{n=1}^{K} h_k x^{K-k}$. These roots are exactly the exponentials $\{u_k\}_{k=0}^{K-1}$.
- 3. Given the $\{u_k\}_{k=0}^{K-1}$, find the corresponding amplitudes $\{\alpha_k\}_{k=0}^{K-1}$ by solving K linear equations.

Sampling Streams of Diracs: Numerical Example

Pier Luigi Dragotti Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks

Sampling Streams of Diracs: Numerical Example

Pier Luigi Dragotti Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks) < C

Note on the proof

Linear vs Non-linear

- Problem is **Non-linear** in t_k , but **linear** in x_k given t_k
- The key to the solution is the separability of the non-linear from the linear problem using the annihilating filter.

The proof is based on a constructive algorithm:

- 1. Given the *N* samples y_n , compute the moments s_m using the exponential reproduction formula. In matrix vector form S = CY.
- 2. Solve a $K \times K$ Toeplitz system to find H(z)
- 3. Find the roots of H(z)
- 4. Solve a $K \times K$ Vandermonde system to find the a_k

Complexity

- 1. O(KN)
- 2. $O(K^2)$
- 3. $O(K^3)$
- 4. $O(K^2)$

Thus, the algorithm complexity is polynomial with the signation innovation in the signation in the second s

Sparse Sampling: Extensions

Using variations of Prony's method other signals can be sampled such as for example piecewise sinusoidal signals [BerentDragotti:10].

ロ * 《聞 * 《臣 * 《臣 * ○ ● ○ ●

< ∃ →

-

Stream of Decaying Exponentials

3 N

Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:

$$f(x,y) = \sum_{k=1}^{K} \sum_{i=1}^{I} b_{k,i} e^{-j2\pi x k/M} e^{-j2\pi y i/N} = 0.$$

The coefficients $b_{k,i}$ are the only free parameters in the model.

Sampling 2-D domains

samples

interpolation

inter+ curve constraint

3 N

- ₹ ∃ →

Robust and Universal Sparse Sampling

- The acquisition device is arbitrary
- The measurements are noisy
- The noise is additive and i.i.d. Gaussian
- Many robust versions of Prony's method exist (e.g., Cadzow, matrix pencil)

Approximate Strang-Fix

- How restrictive are the Strang-Fix conditions?
- Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c_n = c₀e^{jω_mn} such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong\mathrm{e}^{j\omega_m t}.$$

Approximation error

$$arepsilon(t)=f(t)-e^{j\omega_m t}=\mathrm{e}^{j\omega_m t}\left[1-c_0\sum_{l\in\mathbb{Z}}\hat{arphi}(j\omega_m+j2\pi l)\mathrm{e}^{j2\pi lt}
ight].$$

・ロト ・聞ト ・ヨト ・ヨト

э

▶ We only need $\hat{\varphi}(j\omega_m + j2\pi I) \cong 0$ $I \in \mathbb{Z} \setminus \{0\}$, which is satisfied when $\varphi(t)$ has an essential bandwidth of size 2π .

Generalised Strang-Fix Conditions

Approximate Strang-Fix

-

Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c_n = c₀e^{jωmn} such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong \mathrm{e}^{j\omega_m t}.$$

Approximation error

$$arepsilon(t) = f(t) - e^{j\omega_m t} = \mathrm{e}^{j\omega_m t} \left[1 - c_0 \sum_{I \in \mathbb{Z}} \hat{\varphi}(j\omega_m + j2\pi I) \mathrm{e}^{j2\pi I t} \right]$$

Constant Least-squares approximation

$$c_0 = \hat{\varphi}(j\omega_m)^{-1} \Rightarrow c_n = \hat{\varphi}(j\omega_m)^{-1}e^{j\omega_m n}$$

< A

- 4 B b - 4 B b

• Advantage: only need to know the Fourier transform of $\varphi(t)$ at $j\omega_m$.

Approximate vs Exact Strang-Fix

Exact

- Any device with unit input response of the form $\gamma(t) * \beta_{\vec{\alpha}}(t)$ where $\beta_{\vec{\alpha}}(t)$ is an E-spline of order *L*
- ► The order L and the exponents \(\alpha_0, \alpha_1, ..., \alpha_L\) are decided a-priori and cannot be changed.

Approximate

- Any acquisition device h(t) can be used within this framework
- The essential bandwidth of $h(t) = \varphi(-t/T)$ must be at most $2\pi/T$
- ▶ We do not need to know h(t) exactly. We only need to know $\hat{h}(j\omega_m)$ m = 0, 1, ..., L

(日) (同) (三) (三)

► The number *L* of exponentials reproduced is arbitrary

A = A A = A

Approximate FRI recovery: Numerical Example

Gaussian Kernel

Approximate FRI with the Gaussian kernel. K = 5, N = 61, SNR=25dB. Recovery using the approximate method with $\alpha_m = j \frac{\pi}{3.5(P+1)}(2m-P)$, $m = 0, \dots, P$ where P + 1 = 21.

Imperial College London Approximate Strang-Fix: when 'Mr Approximate' is

伺 ト イヨト イヨト

better than 'Mr Exact'

Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31. (b) Default polynomial recovery. (c) Approximate recovery with $\alpha_m = j \frac{\pi}{1.5(P+1)} (2m - P)$, m = 0, ..., P where P + 1 = 21, SNR=25dB.

伺 ト イヨト イヨト

Retrieving 1000 Diracs with Strang-Fix Kernels

- Retrieve Diracs using a sliding window
- Locations of true Diracs are consistent across windows [Onativia-Uriguen-Dragotti-13]

Retrieving 1000 Diracs with Strang-Fix kernels

Retrieving 1000 Diracs with Strang-Fix Kernels

- K = 1000 Diracs in an interval of 630 seconds, $N = 10^5$ samples, T = 0.06 and SNR = 10dB
- ▶ 9997 Diracs retrieved with an error $\epsilon < T/2$
- Average accuracy $\Delta t = 0.005$, execution time 105 seconds.

Application: Image Super-Resolution [BaboulazD:09]

Super-Resolution is a multichannel sampling problem with unknown shifts. Use moments to retrieve the shifts or the geometric transformation between images.

Forty low-resolution and shifted versions of the original.

- The disparity between images has a finite rate of innovation and can be retrieved.
- Accurate registration is achieved by retrieving the continuous moments of the

Application: Image Super-Resolution

Image super-resolution basic building blocks

Application: Image Super-Resolution

For each blurred image I(x, y):

• A pixel $P_{m,n}$ in the blurred image is given by

$$P_{m,n} = \langle I(x,y), \varphi(x/T - n, y/T - m) \rangle,$$

where $\varphi(t)$ represents the point spread function of the lens.

• We assume $\varphi(t)$ is a spline that can reproduce polynomials:

$$\sum_{n} \sum_{m} c_{m,n}^{(l,j)} \varphi(x-n,y-m) = x^{l} y^{j} \qquad l = 0, 1, ..., N; j = 0, 1, ..., N.$$

• We retrieve the exact moments of I(x, y) from $P_{m,n}$:

$$\tau_{I,j} = \sum_{n} \sum_{m} c_{m,n}^{(I,j)} P_{m,n} = \int \int I(x,y) x^{I} y^{j} dx dy.$$

Given the moments from two or more images, we estimate the geometrical transformation and register them. Notice that moments of up to order three along the x and y coordinates allows the estimation of an affine transformation.

Application: Image Super-Resolution

(a)Original (2014 \times 3040)

Acquisition with Nikon D70

(b) ROI (128 imes 128)

(b) Super-res (1024 \times 1024)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Application: Image Super-Resolution

(a)Original (48 \times 48)

(b) Super-res (480 \times 480)

< ∃ →

Neural Activity Detection [OnativiaSD:13]

- ▲日を ▲聞を ▲国を ▲国を 一回 - ろんの

Calcium Transient Detection

Pier Luigi Dragotti Parametric Sparse Sampling and its Applications in Neuroscience and Sensor Networks

Calcium Transient Detection

Imperial College London Localisation of Diffusion Sources using Sensor Networks [Murray-BruceD:14]

erc

- The diffusion equation models the dispersion of chemical plumes, smoke from forest fires, radioactive materials
- The phenomenon is sampled in space and time using a sensor network.
- Sources often localised in space. Can we retrieve their location and the time of activation?

Imperial College

Localisation of Diffusion Sources using Sensor Networks

Good news:

- When sources are localised in space and time, the field inversion is equivalent to an FRI problem
- Proper linear combinations of sensors measurements in time and space leads to a Prony-type problem

.⊒ . ►

< ∃ →

Localisation of Diffusion Sources: Numerical Results

(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).

Conclusions

Sampling signals using sparsity models:

- New framework that allows the sampling and reconstruction of infinite-dimensional continuous-time signals at a rate smaller than Nyquist rate.
- It is a non-linear problem
- Different possible algorithms with various degrees of efficiency and robustness
- Approximate Strang-Fix method: universal and robust to noise

Outlook:

- Promising applications in neuroscience
- Applications to the inversion of physical fields from sensors' measurements

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Still many open questions from theory to practice!

References

On sampling

- J. Uriguen, T. Blu, and P.L. Dragotti 'FRI Sampling with Arbitrary Kernels', IEEE Trans. on Signal Processing, November 2013
- T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano and L. Coulot 'Sparse Sampling of Signal Innovations: Theory, Algorithms and Performance Bounds,' IEEE Signal Processing Magazine, vol. 25(2), pp. 31-40, March 2008
- P.L. Dragotti, M. Vetterli and T. Blu, 'Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon meets Strang-Fix', IEEE Trans. on Signal Processing, vol.55 (5), pp.1741-1757, May 2007.
- J.Berent and P.L. Dragotti, and T. Blu, 'Sampling Piecewise Sinusoidal Signals with Finite Rate of Innovation Methods,' IEEE Transactions on Signal Processing, Vol. 58(2),pp. 613-625, February 2010.
- J. Uriguen, P.L. Dragotti and T. Blu, 'On the Exponential Reproducing Kernels for Sampling Signals with Finite Rate of Innovation' in Proc. of Sampling Theory and Application Conference, Singapore, May 2011.
- H. Pan, T. Blu, and P.L. Dragotti, 'Sampling Curves with Finite Rate of Innovation' IEEE Trans. on Signal Processing, January 2014.

References (cont'd)

On Image Super-Resolution

 L. Baboulaz and P.L. Dragotti, 'Exact Feature Extraction using Finite Rate of Innovation Principles with an Application to Image Super-Resolution', IEEE Trans. on Image Processing, vol.18(2), pp. 281-298, February 2009.

On Calcium Transient Detection

Jon Onativia, Simon R. Schultz, and Pier Luigi Dragotti, A Finite Rate of Innovation algorithm for fast and accurate spike detection from two-photon calcium imaging, Journal of Neural Engineering, August 2013.

On Diffusion Fields and Sensor Networks

John Murray-Bruce and Pier Luigi Dragotti, Spatio-Temporal Sampling and Reconstruction of Diffusion Fields induced by Point Sources, to be presented at ICASSP, Florence (It), May 2014.

- 4 同 🕨 - 4 🖻 🕨 - 4