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Sparsity and Sampling: Is This Relevant?

Lens Sensor array

Real world

(a) Camera image acquisition

(Sampling step size is normalized)

fl@y) —

PSF t(—z, ~y)

— g[m.n]

(b) Equivalent formulation

Digital image

» The lens blurs the image.

» The image is sampled (‘pixelized’) by the CCD array.

» You want sharper and higher resolution images given the available pixels
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Motivation: Image Resolution Enhancement

pixels interpolation enhancement with sparsity priors
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Motivation: Application in Neuroscience

Time resolution enhancement and calcium transient detection in multi-photon
calcium imaging.
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Motivation: Brain Machine Interface

Applications in Neuroscience: Spike Sorting at sub-Nyquist rates

Neuroprosthesis

ADC
20KHz < fs < 30KH?|
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Motivation: Sensor Networks

& NUGLEAR FALI_'E;)UT MAPS = R
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» Can we localise diffusion sources and estimate their activation time
using sensor networks?
» Application:
1. Check whether your government is lying ;-)
2. Monitor dispersion in factories producing bio-chemicals
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Problem Statement

What do all these problems have in common?

> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy)

> Measurements are discrete (e.g., pixels in a camera, sensors
measurements)

> The observation process involves deterministic smoothing functions
normally known a priori (e.g., point spread function in a camera, the
diffusion kernel for diffusion fields)
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Problem Statement

What do all these problems have in common?

> The source in normally continuous in time and/or space (discretising it
might not be an effective strategy)

> Measurements are discrete (e.g., pixels in a camera, sensors
measurements)

» The observation process involves deterministic smoothing functions
normally known a priori (e.g., point spread function in a camera, the
diffusion kernel for diffusion fields)

Our Approach

» From the samples, using the knowledge of the observation process,
estimate proper integral measurements of the source (e.g., estimate the
Fourier transform at specific frequencies)

> Given the integral measurements (e.g., partial Fourier transform), solve
the inverse problem using sparsity priors
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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements y, = (x(t), o(t/ T — n)), you want to reconstruct x(t).

x© ho=g-vr | YO 7T< Yi=<X(0.(UT-n)>

Acquisition Device

Natural questions:
> When is there a one-to-one mapping between x(t) and y,?
» What signals can be sampled and what kernels ((t) can be used?

» What reconstruction algorithm?
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Signals with Finite Rate of Innovation
Consider a signal of the form:

x(t) = 3 gt - 1), (1)

keZ

> Given g(t), the signal is completely specified by v« and tx.

> Key intuition: if the number of samples is larger than the number of
parameters then reconstruction is possible

» This is an ‘analogue’ sparsity model
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Signals with Finite Rate of Innovation

Consider a signal of the form:

x(t) = 3 et - t). (2)

kEZ

The rate of innovation of x(t) is then defined as
1 T T
= lim ~G.(-2.7), 3
p Tl—>moo T 2 2 ( )
where C.(—7/2,7/2) is a function counting the number of free parameters in
the interval 7.
Definition [VetterliMB:02] A signal with a finite rate of innovation is a signal

whose parametric representation is given in (2) and with a finite p as defined
in (3).
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Examples of Signals with Finite Rate of Innovation

EQ E o 3 3 0 02 04 06 08
t[s]

Filtered Streams of Diracs Decaying Exponentials

1
D{\/\/\W
-1

0 02 04 06 08 1
tls]

Piecewise Sinusoidal Signals Mondrian paintings ;-)
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Sampling Kernels

2O ] h=gevn) Yo 7T< Yi=<x (1), (t/T-n)>

Acquisition Device

> Given by nature

> Diffusion equation, Green function. Ex: sensor networks.
» Given by the set-up

> Designed by somebody else. Ex: Hubble telescope, digital cameras.
> Given by design

> Pick the best kernel. Ex: engineered systems.
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Sampling Kernels

Any kernel (t) that can reproduce exponentials:

Zcm,,,go(t—n):eo‘"”"h7 am=ay+miand m=0,1,..., L.
n

This includes any composite kernel of the form ~(t) * 85(t) where
Ba(t) = Bag(t) * Bay (t) * ... ¥ Ba, (t) and Ba;(t) is an Exponential Spline of first order
[UnserB:05].

R 1— ea—jw
Ba(t) & Blw) = ———
Jjw —
Notice:
» « can be complex.
» E-Spline is of compact support.

» E-Spline reduces to the classical polynomial
Eoselne b, spline when a = 0.

ory and Applications
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Exponential Reproducing Kernels

The E-spline of first order Bq,(t) reproduces the exponential e®0t:

Z €0,nBaq (t — n) = €.
n

In this case cp,, = €*0”". In general, cm n = cm,0€*™".




Imperial College
London

Exponential Reproducing Kernels
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Here the E-spline is of second order and reproduces the exponential et e®1t: with
ag = —0.06 and a1 = 0.5.
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Exponential Reproducing Kernels

Here & = (—jwo, jwo) and wg = 0.2. 3°, cp,mBa(t — n) = &m0 m=-1,1.
Notice: 35(t) is a real function, but the coefficients ¢, are complex.
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Generalised Strang-Fix Conditions
A function ¢(t) can reproduce the exponential:

eemt = Z Cmnip(t — n)

if and only if
&(jwm) # 0 and @(jwm +j27l) =0 1€ Z\ {0}

where &(-) is the Fourier transform of o(t).

Also note that ¢mp = Cmoe/®™" with cmo = @(jwm) .
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Generalised Strang-Fix Conditions

» Strang-Fix conditions are not restrictive

> Any low-pass filter approximately satisfies them.

12

0.8
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—-6n —4n -2n 0 2m 4¢;
w [rad-s7!]

(a) |Ba (W)l with a =0
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Approximate Strang-Fix

> Strang-Fix conditions are not restrictive

» Any low-pass filter approximately satisfies them.

— Gaussian
- E-spline

K

32

2n

Sm/2
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From Samples to Integral Measurements

» Consider any x(t) with t € [0, N) and

0 sampling period T = 1.

> The sampling kernel ¢(t) satisfies

Z Cmnp(t—n) =" m=1,..1L,

o > We want to retrieve x(t), from the
samples y, = (x(t), p(t — n)),
n=0,1,..,N—1.
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From Samples to Integral Measurements
We have that

N—1
Sm = 2in—0 Cm.n¥n

= {x(t), 20 Cmap(t — n))

= [ x(t)eomtdt, m=1,..,L

—0o0

> Note that s, is the Fourier transform of x(t) evaluated at jwp,.

ory and Applications
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From Samples to Signals

» Consider FRI signals which are completely specified by a finite
number of free parameters

» For classes of parametrically sparse signals there is a one-to-one
mapping between samples and signal:

x(t) & X(jwn) m=1,2,..,L

» The number d of degrees of freedom of the signal must satisfy d < L

eory and Applications



Imperial College

London

v

v

v

v

Sampling Streams of Diracs

Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S5 g xd(t — ti), tx € [0, N).
We restrict jw, = jwo+jmA  m=1,...,L and L >2K.

We have N samples: y, = (x(t),¢(t —n)), n=0,1,..N —1:
We obtain
Sm = EnN:_()l Cm,nYn

75 x(t)ef“ntdt,

— 00

jwmtk
koxef'"

K—1, _jixmt, _ K—1 A .
ko Rk€ MM =375 KUy m=1,.. L
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Prony’'s Method

» The quantity

is a sum of exponentials.

» Retrieving the locations uy and the amplitudes X, from {s,}5_, is a
classical problem in spectral estimation and was first solved by
Gaspard de Prony in 1795.

» Given the pairs {uk, R}, then tx = (Inuk)/X and x = X, /e,

/ and Applications
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Sampling Streams of Diracs: Numerical Example
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Stream of Decaying Exponentials
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(a) Input signal, z(t) (b) Filtered and sampled signal

nd Applications

(c) Reconstructed signal
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Sampling 2-D domains

The curve is implicitly defined through the equation [PanBluDragotti:11,14]:

K

f(x,y) = Zzb —jamxk/M —j2myi/N _ o

k=1 i=1

The coefficients by ; are the only free parameters in the model.

Pier Luigi Dragotti
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Sampling 2-D domains

i

samples interpolation inter+ curve constraint

d Applications
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Application: Image Super-Resolution
[BaboulazD:09]

Acquisition with Nikon D70

(a)Original (2014 x 3040) (b) ROI (128 x 128)  (b) Super-res (1024 x 1024)

Pier Luigi Dragotti
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Application: Image Super-Resolution

(a)Original (48 x 48) (b) Super-res (480 x 480)
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Neural Activity Detection [OnativiaSD:13]

Pier Luigi Dragotti
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Calcium Transient Detection

i=th window

i~th window

i) f j j j ) — orgnalspies
—Locaions istogram|

ji an ] ,/\/\’J\ L/\ NL:

Time (<)
(iv) o=F T ; . — ‘
window lengih - & = Foresconc ina
ol Window lengih = 32 —4 Orgial sl
B i C " L
Time (5)
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Calcium Transient Detection

A

\ FRI 7

™ - - - Fast deconv.
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Localisation of Diffusion Sources using Sensor
Networks [Murray-BruceD:14]

& NUGIEAR FALLOUT MAPS &= A
3000/RADS | % .
1500,RADS’

I 750/RADS

» The diffusion equation models the dispersion of chemical plumes, smoke from
forest fires, radioactive materials

» The phenomenon is sampled in space and time using a sensor network.

» Sources often localised in space. Can we retrieve their location and the time of
activation?
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Localisation of Diffusion Sources using Sensor
Networks
Locations
1
o . S
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measurements in time and space o 02 0% 05 o8 i
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Localisation of Diffusion Sources using Sensor
Networks
, Locations
0 o By somos
New Boundary (9Q)
0.8 New Domain (@)
Good news: o6
» When sources are localised in space >05
and time, the field inversion is 04
equivalent to a sparse sampling 03
problem 0

> Proper linear combinations of sensors

measurements in time and space o 02 0e o5 o5 i
leads to a Prony-type problem
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Localisation of Diffusion Sources: Numerical Results

Locations Activation Time Estimates
2% o %o 14l 4
o o
0.25
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(b) 100 independent trials using noisy sensor measurement samples (SNR=15dB).
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Conclusions

Sampling signals using sparsity models:

» New framework that allows the sampling and reconstruction of
continuous-time non-bandlimited signals.

» Use the knowledge of the acquisition process to map discrete
measurements to specific integral measurements

» Use sparsity priors to reconstruct the original signal

Outlook:
» Promising applications in neuroscience, sensor networks, super-resolution
imaging
» No . Same framework but you need to fit the right model

and carve the right solution for your problem: continuous/discrete, fast/
complex, redundant/ not-redundant

Still many open questions from theory to practice!
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Overview of Prony’s Method

Assume: y, = Zf;ol ayup’ and consider the polynomial:
K

P(x) = H(X —u) = XK xR 4 moxK =2 L b gx o+ i
k=1

It is easy to verify that

Ynik + MYnik—1+ maYnik—2+ ..+ heyn = > opupP(u) =0.

1<k<K
In matrix-vector form for indices n such that £ < n < £+ K, we get

Ye+K Ye+K—1 cee ye 1
Ye+K+1 Ye+k Ye+1 h
. . ho —Teeh=0
Yer2K—2 : h.
K
Ye+2K—1  Ye+2K—2 Ye+K—1
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Overview of Prony's Method

The vector of polynomial coefficients h = [1, hy, ..., hk]T is in the null space of Tk
Moreover, Tk ; has size K x (K + 1) and has full row rank when the uy’'s are distinct.
Therefore h is unique.
O
Prony’s method summary:
1. Given the input y,, build the Toeplitz matrix T , and solve for h. This can be
achieved by taking the SVD of Tk ,.
2. Find the roots of P(x) =1+ ZHKZI hixX—k. These roots are exactly the
exponentials {uk}kK;OI.
3. Given the {uk}fgol, find the corresponding amplitudes {ak}f;Ol by solving K
linear equations.

i
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