

# Approximate Strang-Fix: Sparse Sampling with any Acquisition Device

Pier Luigi Dragotti

June 10, 2013<sup>1</sup>

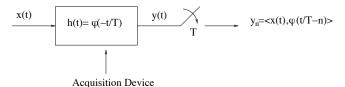
<sup>1</sup>This research is supported by European Research Council ERC, project 277800 (RecoSamp)



< 同 > < 三 > < 三 >

### **Problem Statement**

You are given a class of functions. You have a sampling device. Given the measurements  $y_n = \langle x(t), \varphi(t/T - n) \rangle$ , you want to reconstruct x(t).



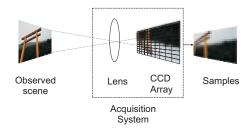
Natural questions:

- When is there a one-to-one mapping between x(t) and  $y_n$ ?
- What signals can be sampled and what kernels  $\varphi(t)$  can be used?
- What reconstruction algorithm?



< ∃ →

### **Problem Statement**

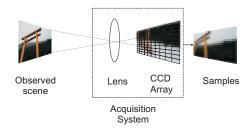


- The low-quality lens blurs the images.
- The images are sampled by the CCD array. images.



.⊒ . ►

### **Problem Statement**



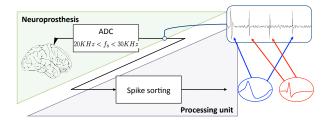
- The world is analogue (audio, images, sound, brain), but computation is digital
- If you like sparsity, you need 'analogue' sparsity models
- The sampling kernel is the bridge between these two worlds





### Motivation: Sampling Everywhere

Applications in Neuroscience

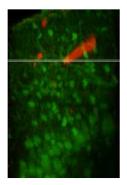


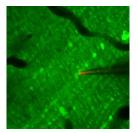
< 一型

Image: A Image: A



#### Neural Activity Detection





◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▼ ● ● ● ●

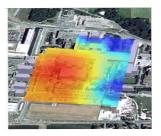




A = A A = A

### Motivation: Sampling Everywhere

Sensor networks



- ▶ The source (phenomenon) is distributed in space and time.
- The phenomenon is sampled in space (finite number of sensors) and time.





### Motivation: Free Viewpoint Video

Multiple cameras are used to record a scene or an event. Users can freely choose an arbitrary viewpoint for 3D viewing.



This is a multi-dimensional sampling and interpolation problem.



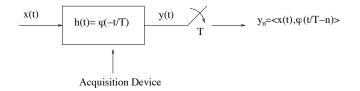
→ 3 → < 3</p>

### Outline

- Sampling Kernels and Strang-Fix Conditions
- From Samples to Signals
  - Traditional FRI Sampling
  - e-MOMS (Maximum Order Minimum Support Kernels)
  - Applications in Image Super-Resolution
- Approximate Strang-Fix
- Sparse Sampling with any Kernel
- Application in Neuroscience
- Conclusions and Outlook



### Sampling Kernels



- Given by nature
  - Diffusion equation, Green function. Ex: sensor networks.
- Given by the set-up
  - Designed by somebody else. Ex: Hubble telescope, digital cameras.
- Given by design
  - Pick the best kernel. Ex: engineered systems.



э

### Sampling Kernels

Any kernel  $\varphi(t)$  that can reproduce exponentials:

$$\sum_{n} c_{m,n} \varphi(t-n) = e^{\alpha_m t}, \qquad \alpha_m = \alpha_0 + m\lambda \text{ and } m = 0, 1, ..., L.$$

This includes any composite kernel of the form  $\gamma(t) * \beta_{\vec{\alpha}}(t)$  where  $\beta_{\vec{\alpha}}(t) = \beta_{\alpha_0}(t) * \beta_{\alpha_1}(t) * ... * \beta_{\alpha_i}(t)$  and  $\beta_{\alpha_i}(t)$  is an Exponential Spline of first order [UnserB:05].



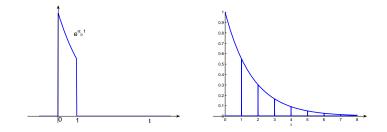
$$eta_lpha(t) \Leftrightarrow \hateta(\omega) = rac{1-e^{lpha-j\omega}}{j\omega-lpha}$$

Notice<sup>.</sup>

- $\triangleright \alpha$  can be complex.
- E-Spline is of compact support.
- E-Spline reduces to the classical polynomial spline when  $\alpha = 0$ . < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



## Exponential Reproducing Kernels



The E-spline of first order  $\beta_{\alpha_0}(t)$  reproduces the exponential  $e^{\alpha_0 t}$ :

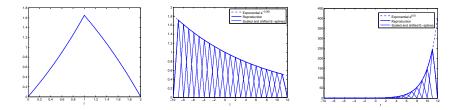
$$\sum_{n} c_{0,n} \beta_{\alpha_0}(t-n) = e^{\alpha_0 t}.$$

In this case  $c_{0,n} = e^{\alpha_0 n}$ . In general,  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ .



A B A A B A

#### Exponential Reproducing Kernels



Here the E-spline is of second order and reproduces the exponential  $e^{\alpha_0 t}$ ,  $e^{\alpha_1 t}$ : with  $\alpha_0 = -0.06$  and  $\alpha_1 = 0.5$ .





### Exponential Reproducing Kernels

- The exponent  $\alpha$  of the E-splines can be complex. This means  $\beta_{\alpha}(t)$  can be a complex function.
- However if pairs of exponents are chosen to be complex conjugate then the spline stays real.
- Example:

$$eta_{lpha_0+j\omega_0}(t)*eta_{lpha_0-j\omega_0}(t) = \left\{egin{array}{cc} rac{\sin \omega_0 t}{\omega_0} e^{lpha_0 t} & 0 \leq t < 1 \ -rac{\sin \omega_0 (t-2)}{\omega_0} e^{lpha_0 t} & 1 \leq t < 2 \ 0 & ext{Otherwise} \end{array}
ight.$$

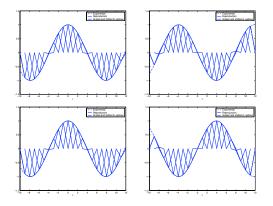
< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When  $\alpha_0 = 0$  (i.e., purely imaginary exponents), the spline is called trigonometric spline.





#### Exponential Reproducing Kernels



Here  $\vec{\alpha} = (-j\omega_0, j\omega_0)$  and  $\omega_0 = 0.2$ .  $\sum_n c_{n,m}\beta_{\vec{\alpha}}(t-n) = e^{jm\omega_0}$  m = -1, 1. Notice:  $\beta_{\vec{\alpha}}(t)$  is a real function, but the coefficients  $c_{m,n}$  are complex.





### Generalised Strang-Fix Conditions

A function  $\varphi(t)$  can reproduce the exponential:

$$e^{\alpha_m t} = \sum_n c_{m,n} \varphi(t-n)$$

if and only if

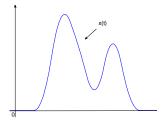
$$\hat{\varphi}(\alpha_m) \neq 0 \text{ and } \hat{\varphi}(\alpha_m + j2\pi I) = 0 \quad I \in \mathbb{Z} \setminus \{0\}$$

where  $\hat{\varphi}(s)$  is the bilateral Laplace transform of  $\varphi(t)$ .

Also note that  $c_{m,n} = c_{m,0}e^{\alpha_m n}$  with  $c_{m,0} = \hat{\varphi}(\alpha_m)^{-1}$ .



### From Samples to Signals



- Consider any x(t) with t ∈ [0, N) and sampling period T = 1.
- The sampling kernel  $\varphi(t)$  satisfies

$$\sum_{n} c_{m,n} \varphi(t-n) = e^{\alpha_{m}t} \quad m = 1, ..., L,$$

A I A A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• We want to retrieve x(t), from the samples  $y_n = \langle x(t), \varphi(t-n) \rangle$ , n = 0, 1, ..., N - 1.



э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### From Samples to Signals

We have that

$$s_m = \sum_{n=0}^{N-1} c_{m,n} y_n$$
  
=  $\langle x(t), \sum_{n=0}^{N-1} c_{m,n} \varphi(t-n) \rangle$   
=  $\int_{-\infty}^{\infty} x(t) e^{\alpha_m t} dt, \quad m = 1, ..., L.$ 

- ▶  $s_m$  is the bilateral Laplace transform of x(t) evaluated at  $\alpha_m$ .
- When α<sub>m</sub> = jω<sub>m</sub> then s<sub>m</sub> = x̂(jω<sub>m</sub>) where x̂(jω) is the Fourier transform of x(t).



### From Samples to Signals

- Consider signals which are completely specified by a finite number of free parameters
- ► This is an 'analogue' sparsity model
- For classes of parametrically sparse signals there is a one-to-one mapping between samples and signal:

$$x(t) \Leftrightarrow \hat{x}(j\omega_m) \quad m = 1, 2, ..., L$$

• The number d of degrees of freedom of the signal must satisfy  $d \leq L$ 



### Sampling Streams of Diracs

- Assume x(t) is a stream of K Diracs on the interval of size N:  $x(t) = \sum_{k=0}^{K-1} x_k \delta(t - t_k), \ t_k \in [0, N).$
- We restrict  $\alpha_m = \alpha_0 + m\lambda$  m = 1, ..., L and  $L \ge 2K$ .
- We have N samples:  $y_n = \langle x(t), \varphi(t-n) \rangle$ , n = 0, 1, ..., N 1:
- We obtain

$$s_{m} = \sum_{n=0}^{N-1} c_{m,n} y_{n}$$
  
=  $\int_{-\infty}^{\infty} x(t) e^{\alpha_{m} t} dt,$   
=  $\sum_{k=0}^{K-1} x_{k} e^{\alpha_{m} t_{k}}$   
=  $\sum_{k=0}^{K-1} \hat{x}_{k} e^{\lambda m t_{k}} = \sum_{k=0}^{K-1} \hat{x}_{k} u_{k}^{m}, \quad m = 1, ..., L.$ 

イロト 不得 トイヨト イヨト 二日



### Prony's Method

The quantity

$$s_m = \sum_{k=0}^{K-1} \hat{x}_k u_k^m, \quad m = 1, ..., L$$

is a sum of exponentials.

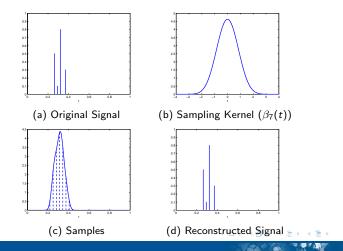
▶ Retrieving the locations u<sub>k</sub> and the amplitudes x̂<sub>k</sub> from {s<sub>m</sub>}<sup>L</sup><sub>m=1</sub> is a classical problem in spectral estimation and was first solved by Gaspard de Prony in 1795.

<ロト < 部 > < 注 > < 注 >

• Given the pairs  $\{u_k, \hat{x}_k\}$ , then  $t_k = (\ln u_k)/\lambda$  and  $x_k = \hat{x}_k/e^{\alpha_0 t_k}$ .



### Sampling Streams of Diracs: Numerical Example



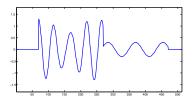




< ∃ →

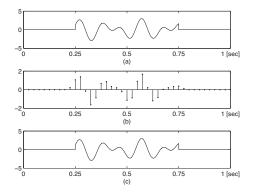
### Sparse Sampling: Extensions

Using variations of Prony's method other signals can be sampled such as for example piecewise sinusoidal signals [BerentDragotti:10].





### Numerical Example

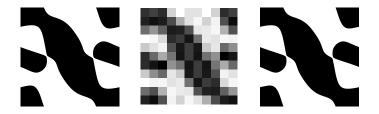


|ロト・日本・ 日本・ 日本・ クタイト



3 N

### Sampling 2-D domains



The curve is implicitly defined through the equation [PanBluDragotti:11]:

$$f(x,y) = \sum_{k=1}^{K} \sum_{i=1}^{I} b_{k,i} e^{-j2\pi x k/M} e^{-j2\pi y i/N} = 0.$$

The coefficients  $b_{k,i}$  are the only free parameters in the model.



### Sampling 2-D domains





samples

#### interpolation

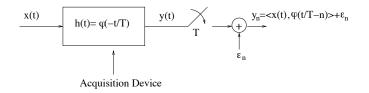
inter+ curve constraint

3 N



→ 3 → < 3</p>

### Robust Sparse Sampling



- ▶ The measurements are noisy
- The noise is additive and i.i.d. Gaussian
- Many robust versions of Prony's method exist (e.g., Cadzow, matrix pencil)





### Robust Sparse Sampling: Best Kernel

The exponential reproducing kernel has the following form

$$\varphi(t) = \gamma(t) * \beta_{\vec{\alpha}}(t).$$

How should we choose  $\gamma(t)$  and  $\alpha_m$ , m = 1, ..., L so as to minimize the effect of noise? Let  $Y = (y_0, y_1, ..., y_{N-1})^T$  and  $S = (s_1, s_2, ..., s_L)^T$ , in the noiseless case:  $S = \mathbf{C}Y$ .

When additive noise is present

$$\hat{S} = \mathbf{C}Y + \mathbf{C}\epsilon.$$

Here **C** is the  $L \times N$  matrix of the exponential reproducing coefficients  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ .



### Robust Sparse Sampling: Best Kernel (cont'd)

- ▶ We want a well-conditioned **C**.
- Since  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ :

$$\mathbf{C} = \begin{pmatrix} c_{1,0} & 0 & \cdots & 0 \\ 0 & c_{2,0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{L,0} \end{pmatrix} \begin{pmatrix} 1 & e^{\alpha_1} & \cdots & e^{\alpha_1(N-1)} \\ 1 & e^{\alpha_2} & \cdots & e^{\alpha_2(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{\alpha_L} & \cdots & e^{\alpha_L(N-1)} \end{pmatrix}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stability requires  $\alpha_m$  to be purely imaginary, specifically,  $\alpha_m = j\omega_m = j2\pi(m-1)/L$ , m = 1, 2, ..., L

• and 
$$|c_{m,0}| = 1, m = 1, 2, ..., L$$
.



### Robust Sparse Sampling: Best Kernel (cont'd)

- ► Since  $c_{m,0} = \hat{\varphi}(j\omega_m)$ ,  $|c_{m,0}| = 1$  is achieved by imposing  $|\hat{\gamma}(j\omega_m)\hat{\beta}_{\vec{\alpha}}(j\omega_m)| = 1$ , m = 1, ..., L.
- We pick the kernel with the shortest support:

$$arphi(t) = \sum_{\ell=0}^{L-1} d_\ell eta_{ec lpha}^{(\ell)}(t),$$

In frequency:

$$\hat{\varphi}(j\omega) = \hat{\beta}_{\vec{lpha}}(j\omega) \sum_{\ell=0}^{L-1} d_{\ell}(j\omega)^{\ell},$$

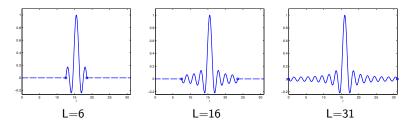
Therefore γ̂(jω) = ∑<sub>ℓ=0</sub><sup>L-1</sup> d<sub>ℓ</sub>(jω)<sup>ℓ</sup>. Thus the coefficients d<sub>ℓ</sub> are chosen so that the polynomial γ̂(jω) interpolates the points (jω<sub>m</sub>, |β<sub>α</sub>(jω<sub>m</sub>)|<sup>-1</sup>).





★ 3 → < 3</p>

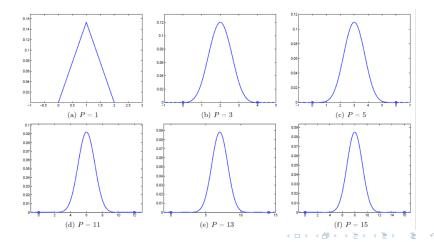
#### Examples of Best Kernels



- We call these kernels Exponential MOMS (e-MOMS), where MOMS stands for Maximum Order Minimum Support [Uriguen-Dragotti-Blu-11-13].
- They correspond to one period of the Dirichlet function
- ▶ SoS kernels [Eldar et al.-11] are a sub-set of eMOMS.



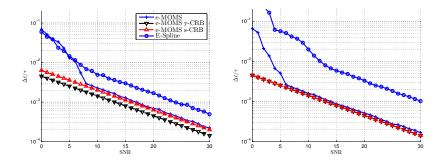
#### Examples of E-Splines Kernels







#### e-MOMS vs E-splines



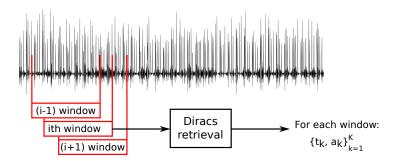
K = 2 and we measure the error in the retrieval of the location of the Diracs.





直 ト イヨ ト イヨト

### Retrieving 1000 Diracs with e-MOMS



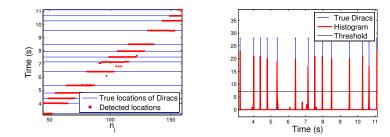
- Retrieve Diracs using a sliding window
- Locations of true Diracs are consistent across windows [Onativia-Uriguen-Dragotti-13]



- ₹ ∃ ►

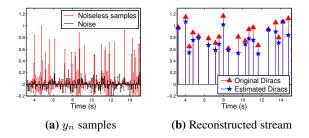
-

#### Retrieving 1000 Diracs with e-MOMS





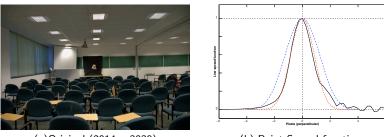
### Retrieving 1000 Diracs with e-MOMS



- K = 1000 Diracs in an interval of 630 seconds,  $N = 10^5$  samples, T = 0.06 and SNR = 10dB
- ▶ 9997 Diracs retrieved with an error  $\epsilon < T/2$
- Average accuracy  $\Delta t = 0.005$ , execution time 105 seconds.



# Application: Image Super-Resolution [Baboulaz-D-09]



(a)Original (2014  $\times$  3039)

(b) Point Spread function

Image: A = 1



# Application: Image Super-Resolution



(a)Original (2014  $\times$  3040)

Acquisition with Nikon D70



(b) ROI (128 imes 128)



(b) Super-res (1024  $\times$  1024)

- \* ロ \* \* 御 \* \* 画 \* \* 画 \* \* の < @



# Application: Image Super-Resolution



(a)Original (48  $\times$  48)

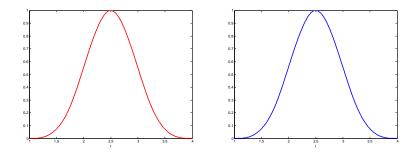
(b) Super-res (480  $\times$  480)

< ∃ →





### Spot the Difference



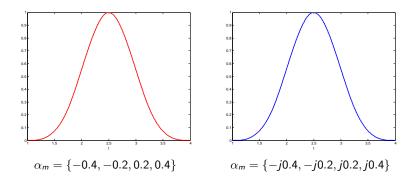
Pier Luigi Dragotti Approximate Strang-Fix: Sparse Sampling with any Acquisition Device ▲口▶▲圖▶▲圖▶▲圖▶ ▲国▶ ④�?



・ 同 ト ・ ヨ ト ・ ヨ ト

э

### Spot the Difference

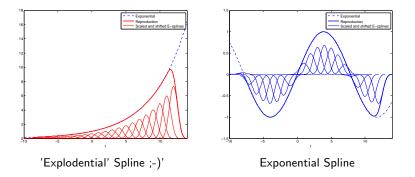




• • = • • = •

< 一型

### Spot the Difference







# Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c<sub>n</sub> = c<sub>0</sub>e<sup>αt</sup> such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong\mathrm{e}^{\alpha t}.$$





▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

# Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c<sub>n</sub> = c<sub>0</sub>e<sup>αt</sup> such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong\mathrm{e}^{\alpha t}.$$

Approximation error

$$arepsilon(t) = f(t) - e^{lpha t} = \mathrm{e}^{lpha t} \left[ 1 - c_0 \sum_{l \in \mathbb{Z}} \hat{arphi}(lpha + j2\pi l) \mathrm{e}^{j2\pi l t} 
ight].$$



# Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c<sub>n</sub> = c<sub>0</sub>e<sup>αt</sup> such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong \mathrm{e}^{\alpha t}.$$

Approximation error

$$arepsilon(t) = f(t) - e^{lpha t} = \mathrm{e}^{lpha t} \left[ 1 - c_0 \sum_{l \in \mathbb{Z}} \hat{\varphi}(lpha + j2\pi l) \mathrm{e}^{j2\pi l t} \right]$$

• Least-squares approximation  $(e^{\alpha t} \text{ orthogonal to } span\{\varphi(t-n)\}_{n\in\mathbb{Z}})$ 

$$c_n = rac{\hat{\varphi}(-lpha)}{\hat{a}_{\varphi}(\mathrm{e}^{lpha})} \mathrm{e}^{lpha n},$$

where  $\hat{a}_{\varphi}(e^{\alpha}) = \sum_{l \in \mathbb{Z}} a_{\varphi}[l] e^{-\alpha l}$  is the *z*-transform of  $a_{\varphi}[l] = \langle \varphi(t-l), \varphi(t) \rangle$ , evaluated at  $z = e^{\alpha}$ .



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

# Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c<sub>n</sub> = c<sub>0</sub>e<sup>αt</sup> such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong\mathrm{e}^{\alpha t}.$$

Approximation error

$$arepsilon(t) = f(t) - e^{lpha t} = \mathrm{e}^{lpha t} \left[ 1 - c_0 \sum_{l \in \mathbb{Z}} \hat{arphi}(lpha + j2\pi l) \mathrm{e}^{j2\pi l t} 
ight].$$



글 🖌 🖌 글 🛌

# Approximate Strang-Fix

Assume φ(t) cannot reproduce exponentials, we want to find the coefficients c<sub>n</sub> = c<sub>0</sub>e<sup>αt</sup> such that:

$$\sum_{n\in\mathbb{Z}}c_n\varphi(t-n)\cong\mathrm{e}^{\alpha t}.$$

Approximation error

$$arepsilon(t) = f(t) - e^{lpha t} = \mathrm{e}^{lpha t} \left[ 1 - c_0 \sum_{l \in \mathbb{Z}} \hat{\varphi}(lpha + j2\pi l) \mathrm{e}^{j2\pi l t} 
ight].$$

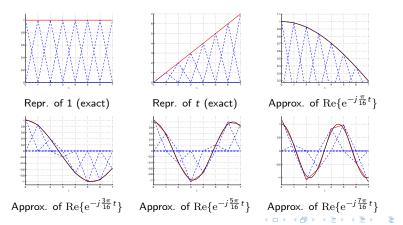
Constant Least-squares approximation

$$c_0 = \hat{\varphi}(\alpha)^{-1} \Rightarrow c_n = \hat{\varphi}(\alpha)^{-1} e^{\alpha n}$$

• Advantage: only need to know the Laplace transform of  $\varphi(t)$  at  $\alpha$ .



# Approximate Strang-Fix- Example with Linear Splines







## Approximate FRI recovery

- Assume the signal to retrieve is a stream of K Diracs.
- Reproduce approximately  $\alpha_m \ m = 1, 2, ..., L$
- Obtain

$$s_m = \sum_{n=0}^{N-1} c_{m,n} y_n = \sum_{k=0}^{K-1} x_k u_k^m - \underbrace{\sum_{k=0}^{K-1} a_k \varepsilon_m \left(\frac{t_k}{T}\right)}_{\zeta_m}$$

- Treat the error as noise and retrieve the Diracs using robust FRI reconstruction
- ▶ Note that given a first estimate of the Diracs, we can estimate  $\varepsilon_m\left(\frac{t_k}{T}\right)$  and repeat the estimation.



イロト イポト イヨト イヨト

э

### Approximate FRI recovery- Choice of $\alpha_m$

- ▶ We want a well-conditioned **C**.
- Since  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ :

$$\mathbf{C} = \begin{pmatrix} c_{1,0} & 0 & \cdots & 0 \\ 0 & c_{2,0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{L,0} \end{pmatrix} \begin{pmatrix} 1 & e^{\alpha_1} & \cdots & e^{\alpha_1(N-1)} \\ 1 & e^{\alpha_2} & \cdots & e^{\alpha_2(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{\alpha_L} & \cdots & e^{\alpha_L(N-1)} \end{pmatrix}$$

• Stability requires  $\alpha_m$  to be purely imaginary:  $\alpha_m = j\omega_m$ 



## Approximate FRI recovery- Choice of $\alpha_m$

- ▶ We want a well-conditioned **C**.
- Since  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ :

|            | $(\hat{\varphi}^{-1}(\alpha_1))$ | 0                              |   | 0 \                          | ( | 1 | $e^{\alpha_1}$ | <br>$e^{\alpha_1(N-1)}$                                     |
|------------|----------------------------------|--------------------------------|---|------------------------------|---|---|----------------|-------------------------------------------------------------|
|            | 0                                | $\hat{\varphi}^{-1}(\alpha_2)$ |   | 0                            |   | 1 | $e^{\alpha_2}$ | <br>$\left. e^{\alpha_1(N-1)} \\ e^{\alpha_2(N-1)} \right)$ |
| <b>C</b> = | ÷                                | ÷                              | · | ÷                            |   |   |                |                                                             |
|            | 0                                | 0                              |   | $\hat{arphi}^{-1}(lpha_L)$ / |   | 1 | $e^{\alpha_L}$ | <br>$\left  e^{\alpha_L(N-1)} \right $                      |

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Stability requires  $\alpha_m$  to be purely imaginary:  $\alpha_m = j\omega_m$ 

▶ Typically,  $\varphi(t)$  low-pass filter  $\Rightarrow$  pick  $j\omega_m$  close to the origin



# Approximate FRI recovery- Choice of $\alpha_m$

- We want a well-conditioned C.
- Since  $c_{m,n} = c_{m,0}e^{\alpha_m n}$ :

|            | $(\hat{\varphi}^{-1}(\alpha_1))$ | 0                            | <br>0 | \ | / 1 | $e^{\alpha_1}$ |   | $e^{\alpha_1(N-1)}$ |
|------------|----------------------------------|------------------------------|-------|---|-----|----------------|---|---------------------|
|            | 0                                | $\hat{\varphi}^{-1}(lpha_2)$ | <br>0 |   | 1   | $e^{\alpha_2}$ |   | $e^{\alpha_2(N-1)}$ |
| <b>C</b> = | :                                |                              |       |   | ÷   | ÷              | · | ÷                   |
|            | 0                                | 0                            |       |   |     |                |   | $e^{\alpha_L(N-1)}$ |

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

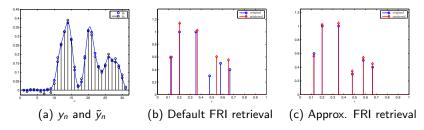
▶ Stability requires  $\alpha_m$  to be purely imaginary:  $\alpha_m = j\omega_m$ 

- Typically,  $\varphi(t)$  low-pass filter  $\Rightarrow$  pick  $j\omega_m$  close to the origin
- Choose L ~ N so that C square



A = A A = A

# Approximate FRI recovery: Numerical Example



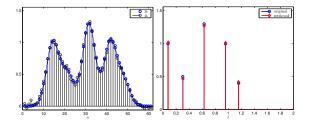
Estimation of K = 6 Diracs with the B-Spline kernel of order L = 16, N = 31. (b) Default polynomial recovery. (c) Approximate recovery with  $\alpha_m = j \frac{\pi}{1.5(P+1)} (2m - P)$ , m = 0, ..., P where P + 1 = 21, SNR=25dB.



A = A A = A

# Approximate FRI recovery: Numerical Example

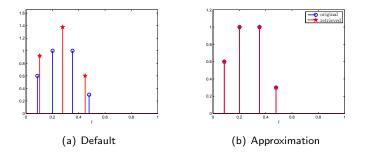
#### Gaussian Kernel



Approximate FRI with the Gaussian kernel. K = 5, N = 61, SNR=25dB. Recovery using the approximate method with  $\alpha_m = j \frac{\pi}{3.5(P+1)}(2m-P)$ ,  $m = 0, \dots, P$  where P + 1 = 21.



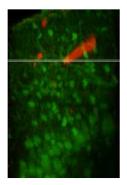
### Universal FRI recovery

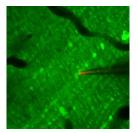


Reconstruction of K = 4 Diracs using the default strategy, part (a), and the approximate framework, part (b). Sampling Kernel: B-spline of order P = 5.



# Neural Activity Detection

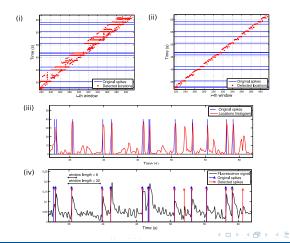




◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▼ ● ● ● ●

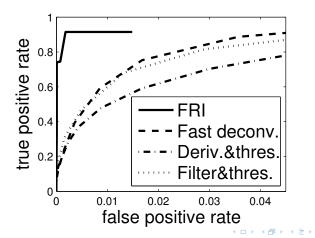


### Calcium Transient Detection





### Calcium Transient Detection



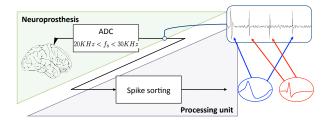




A = A A = A

# Application in Neuroscience

Applications in Neuroscience



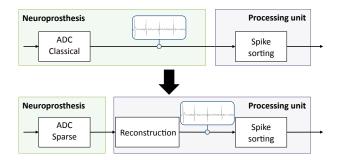




(4 同) (4 日) (4 日)

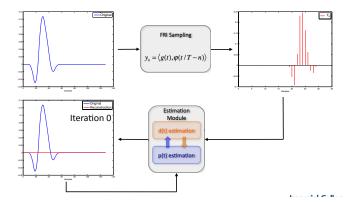
# Application in Neuroscience

Insight: Sample at lower rate and reconstruct the signal outside the implant





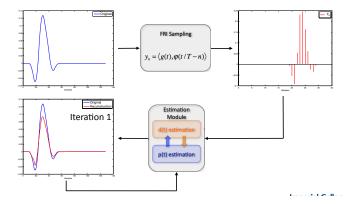
### Stream of Pulses with unknown Shape







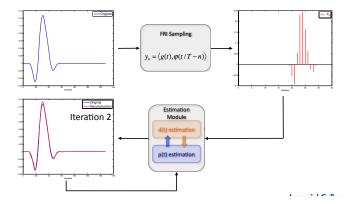
### Stream of Pulses with unknown Shape







### Stream of Pulses with unknown Shape







# Application in Neuroscience

- Classical Sampling (C)  $f_s = 24KHz$
- Sparse Sampling (F)  $f_s = 5.8 KHz$ 
  - Two recordings of 1000 spikes from 3 different neurons.
    - Classical sampling:  $f_s = 24 KHz$  (C)
    - FRI sampling:  $f_s = 5.8 KHz$  (F)
  - The classical sampling signal and the reconstruction from FRI sampling are fed to a spike sorting algorithm.

|               |            | Missed spikes |        | False positives |        | Misclassified spikes |        | Unclassified spikes |        | Success Rate |        |
|---------------|------------|---------------|--------|-----------------|--------|----------------------|--------|---------------------|--------|--------------|--------|
| Spike set     | Noise s.d. | 24K C         | 5.8K F | 24K C           | 5.8K F | 24K C                | 5.8K F | 24K C               | 5.8K F | 24K C        | 5.8K F |
| Easy (1)      | 0.05       | 111           | 135    | 0               | 2      | 22                   | 21     | 30                  | 20     | 83.7         | 82.2   |
|               | 0.1        | 93            | 91     | 6               | 9      | 29                   | 34     | 9                   | 4      | 86.3         | 86.2   |
|               | 0.15       | 143           | 129    | 7               | 21     | 50                   | 56     | 1                   | 2      | 79.9         | 79.2   |
|               | 0.2        | 248           | 216    | 1               | 18     | 37                   | 44     | 1                   | 2      | 71.3         | 72     |
| Difficult (2) | 0.05       | 140           | 149    | 0               | 0      | 17                   | 7      | 70                  | 71     | 77.3         | 77.3   |
|               | 0.1        | 101           | 80     | 0               | 16     | 418                  | 199    | 0                   | 16     | 48.1         | 69.9   |
|               | 0.15       | 115           | 86     | 1               | 20     | 346                  | 454    | 0                   | 0      | 53.8         | 44     |
|               | 0.2        | 160           | 108    | 3               | 19     | 441                  | 420    | 0                   | 0      | 39.6         | 45.3   |
| (Av.)         | 0.125      | 138.88        | 124.25 | 2.24            | 13.13  | 170                  | 154.38 | 13.88               | 14.38  | 67.5         | 69.51  |





(4) E > (4) E >

< 🗇 🕨

# Conclusions

Sampling signals using sparsity models:

- New framework that allows the sampling and reconstruction of infinite-dimensional continuous-time signals at a rate smaller than Nyquist rate.
- It is a non-linear problem
- Different possible algorithms with various degrees of efficiency and robustness
- Approximate Strang-Fix method: universal and robust to noise

Outlook:

- Promising applications in neuroscience
- Applications to the inversion of physical fields from sensors' measurements

Still many open questions from theory to practice!



# References

On sampling

- J. Uriguen, T. Blu, and P.L. Dragotti 'FRI Sampling with Arbitrary Kernels', IEEE Trans. on Signal Processing, December 2012 (submitted)
- T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano and L. Coulot 'Sparse Sampling of Signal Innovations: Theory, Algorithms and Performance Bounds,' IEEE Signal Processing Magazine, vol. 25(2), pp. 31-40, March 2008
- P.L. Dragotti, M. Vetterli and T. Blu, 'Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon meets Strang-Fix', IEEE Trans. on Signal Processing, vol.55 (5), pp.1741-1757, May 2007.
- J.Berent and P.L. Dragotti, and T. Blu, 'Sampling Piecewise Sinusoidal Signals with Finite Rate of Innovation Methods,' IEEE Transactions on Signal Processing, Vol. 58(2),pp. 613-625, February 2010.
- J. Uriguen, P.L. Dragotti and T. Blu, 'On the Exponential Reproducing Kernels for Sampling Signals with Finite Rate of Innovation' in Proc. of Sampling Theory and Application Conference, Singapore, May 2011.
- ► H. Pan, T. Blu, and P.L. Dragotti, 'Sampling Curves with Finite Rate of Innovation' in Proc. of Sampling Theory and Application Conference, Singapore, May 2011.



# References (cont'd)

On Image Super-Resolution

 L. Baboulaz and P.L. Dragotti, 'Exact Feature Extraction using Finite Rate of Innovation Principles with an Application to Image Super-Resolution', IEEE Trans. on Image Processing, vol.18(2), pp. 281-298, February 2009.

On Application in Neuroscience

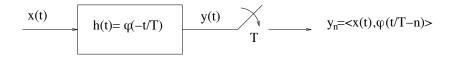
- J. Caballero, J.A. Uriguen, S. Schultz and P.L. Dragotti, Spike Sorting at Sub-Nyquist Rates, in Proc. of IEEE International Conf. on Acoustic, Speech and Signal Processing (ICASSP), Kyoto, Japan, April 2012.
- Jon Onativia, Simon R. Schultz, and Pier Luigi Dragotti, A Finite Rate of Innovation algorithm for fast and accurate spike detection from two-photon calcium imaging, Journal of Neural Engineering, June 2013 (to appear).





→ 3 → < 3</p>

# Structural-Sparsity vs Sparse Samples

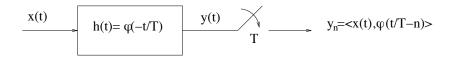








# Structural-Sparsity vs Sparse Samples





Non-sparse samples





# Structural-Sparsity vs Sparse Samples

