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ABSTRACT

In this paper, we consider classes of not bandlimited signals, namely, streams of Diracs and piecewise polynomial
signals, and show that these signals can be sampled and perfectly reconstructed using wavelets as sampling
kernel. Due to the multiresolution structure of the wavelet transform, these new sampling theorems naturally
lead to the development of a new resolution enhancement algorithm based on wavelet footprints.2 Preliminary
results show that this algorithm is also very resilient to noise.

1. INTRODUCTION

A critical element in modern signal processing and communication is sampling. Often one has no direct access
to the original continuous-time phenomenon and can only observe and analyze it through sampling. In some
cases the original signal x(t) is filtered before sampling and this filtering may be due to the acquisition device or
may be a design choice. Let h(t) be the impulse response of this filter, then the uniform sampling of x(t) with
sampling interval T leads to samples yn given by

yn = 〈h(t− nT ), x(t)〉 =

∫ ∞

−∞

h(t− nT )x(t)dt.

Given the samples yn, the key problem is to understand under which conditions one can reconstruct x(t) from
the yn’s and which is the best way to perform this reconstruction.

If x(t) is bandlimited, the Shannon sampling theorem states the conditions to reconstruct x(t) from yn’s.
Recently, it was shown that it is possible to develop sampling schemes for classes of signals that are not band-
limited.9 In particular, it was shown that it is possible to sample streams of Diracs and piecewise polynomial
signals using a sinc or a Gaussian kernel. The common feature of these signals is that they have a parametric
representation with a finite number of degrees of freedom. This number of degrees of freedom is called rate of
innovation. Thus, streams of Diracs and piecewise polynomial signals are signals with a finite rate of innovation.

In this paper, we extend the results of9 and show that streams of Diracs and piecewise polynomial signals can
be sampled and perfectly reconstructed using wavelets as sampling kernel. Due to the multiresolution structure
of wavelets, these new results naturally lead to a new algorithm for resolution enhancement and for robust signal
reconstruction in the case the samples yn have been corrupted by noise. This algorithm is based on the notion of
wavelet footprints which was introduced in.2 For an excellent review on sampling we refer to.5 Some pioneering
works on sampling with the wavelet transform can be found in.6

The paper is organized as follows: The next section presents a review of the wavelet transform and of wavelet
footprints. In Section 3, we present new sampling theorems for signal with a finite rate of innovation. Section 4
provides an interpretation of these sampling results in terms of resolution enhancement and in Section 5, we
present a footprint-based algorithm for resolution enhancement. We conclude in Section 6.



2. WAVELETS AND FOOTPRINTS

This section presents a brief review of the wavelet transform and of wavelet footprints. For a more detailed
treatment of wavelets, we refer the reader to.1, 3, 4, 8 Wavelet footprints were introduced in.2

2.1. The wavelet transform

Consider a wavelet function ψ(t) that generates a basis of L2(R). That is, assume that ψ(t) satisfies the
admissibility condition

∫ ∞

−∞

|Ψ(ω)|2|ω|−1dω <∞,

where Ψ(ω) is the Fourier transform of ψ(t) and that the set of its dilated and shifted versions

ψm,n(t) =
1

2m/2
ψ(2−mt− n), m, n ∈ Z

forms a basis of L2(R). The discrete wavelet transform is a unique and stable decomposition of any finite energy
signal x(t) in terms of {ψm,n}m∈Z,n∈Z or

x(t) =

∞
∑

m=−∞

∞
∑

n=−∞

dm,nψm,n(t). (1)

The wavelet coefficients dm,n are given by

dm,n = 〈x(t), ψ̃m,n(t)〉

with ψ̃m,n(t) such that 〈ψ̃m,n(t), ψj,k(t)〉 = δm−j · δn−k. To be more precise, the set {ψ̃m,n}m∈Z,n∈Z repre-
sents the dual basis of {ψm,n}m∈Z,n∈Z. If {ψm,n}m∈Z,n∈Z is an orthonormal basis of L2(R), then the two sets

{ψm,n}m∈Z,n∈Z and {ψ̃m,n}m∈Z,n∈Z coincide.

The double sum in (1) clearly shows the multiresolution structure of the wavelet transform. Since the wavelet
function ψ(t) has zero average, each term dm,n measure a local variation of x(t) at resolution 2m and the partial
sum

xJ+1(t) =

∞
∑

m=J+1

∞
∑

n=−∞

dm,nψm,n(t). (2)

represents an approximation of x(t) at resolution 2J+1. The completeness of {ψm,n}m∈Z,n∈Z ensures that by
adding details to xJ+1(t) at finer and finer resolutions we eventually recover x(t).

The approximation function xJ+1(t) can be expressed in terms of shifted versions of a different function ϕ(t)
called the scaling function. That is

xJ+1(t) =

∞
∑

n=−∞

yJ,nϕJ,n(t) (3)

with the usual assumption that ϕJ,n(t) = 1/2J/2ϕ(t/2J − n). Thus, by combining (1), (2) and (3), we see that
it is possible to represent any function in L2(R) as a combination of wavelets and scaling functions or

x(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) +
J

∑

m=−∞

∞
∑

n=−∞

dm,nψm,n(t). (4)

The scaling coefficients yJ,n tend to measure the local regularity of x(t) at scale 2J . Therefore, the term
∑∞

n=−∞ yJ,nϕJ,n(t) represents a coarse version of x(t) as opposed to the detail version provided by the wavelets
in the last term of (4).

The wavelet function and the scaling function are intimately related and their link does not reduce to the
expansion showed in (4). Indeed, the scaling function represents the basic element in the construction of a
wavelet basis and many properties of wavelets can be inferred directly from the scaling function.

A function ϕ(t) is an admissible scaling function of L2(R) if and only if it satisfies the following three
conditions5, 7:



1. Riesz basis criterion
A ≤

∑

n∈Z

|ϕ̂(ω + 2πn)|2 ≤ B

2. Refinability

ϕ(
x

2
) = 2

∑

k∈Z

h(k)ϕ(x − k)

3. Partition of unity
∑

k∈Z

ϕ(t− k) = 1.

These conditions ensure that there exists a corresponding wavelet ψ(t) that generates a basis of L2(R). The
wavelet is then expressed as a linear combination of shifted versions of ϕ(t):

ψ

(

t

2

)

= 2
∑

n∈Z

gnϕ(t− n).

Finally, an important and well known property of the wavelet transform is that of the vanishing moments.
We say that a wavelet has K vanishing moments if

∫ ∞

−∞

tkψ̃(t)dt = 0, k = 0, 1, ...,K − 1.

This vanishing moments property translates directly into the polynomial approximation property of the scaling
function. More precisely, a wavelet has K vanishing moments if and only if its corresponding scaling function
can reproduce polynomials of maximum degree K − 1, that is,

∑

n∈Z

ck,nϕ(t− n) = tk k = 0, 1, ...,K − 1. (5)

In Section 3, we will use the properties of the scaling function to present new sampling results for classes of
signal with a finite rate of innovation. In addition, we will use the link between wavelets and scaling functions and
the multiresolution nature of wavelets to give an interpretation of these sampling results in terms of resolution
enhancement.

2.2. Wavelet footprints

Consider the signal x(t) = a0δ(t − t0), that is, a signal made of a single Dirac at location t0, and consider its
decomposition in terms of wavelets and scaling functions:

x(t) =

∞
∑

n=−∞

yJ,nϕJ,n(t) +

J
∑

m=−∞

∞
∑

n=−∞

dm,nψm,n(t). (6)

If we assume that the wavelet ψ(t) has compact support, then only a limited number of wavelets is influenced by
this Dirac, namely, only the wavelets ψm,n(t) that overlap the location t0. Recall that the set of points (m,n)
such that t0 is included in the support of ψm,n(t) is called cone of influence of t0 (see Figure 1). Thus, if ψ(t)
has compact support, the only non-zero wavelet coefficients of the decomposition (6) are the coefficients in the
cone of influence of t0. Moreover, the coefficients inside this cone of influence have only one degree of freedom
since their values depend uniquely on the amplitude a0 of the Dirac. These considerations lead to the definition
of wavelet footprints2:

Definition 1. Given is a stream of Diracs with only one Dirac at location t0, we call footprint ft0 the scale-space

vector obtained by gathering together all the wavelet coefficients in the cone of influence of t0 and then imposing

‖ft0(t)‖ = 1.
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Figure 1. The cone of influence of t1 consists of the scale-space points m,n such that t1 is included in the support of
ψm,n(t).

Expressed in terms of wavelets, this footprint can be written as

ft0(t) =

J
∑

j=−∞

∑

n∈I0

uj,nψj,n(t)

where I0 is the set of indices n which are in the cone of influence of t0 and uj,n are the coefficients of the
decomposition (6) normalized to ensure ‖ft0(t)‖ = 1. Clearly, we have a different footprint for every different
location t0 and the scale J in the footprint definition can be chosen arbitrarily.

Therefore, any signal of the form x(t) = a0δ(t− t0) can be expressed in terms of the scaling functions and of
ft0(t). For instance, the signal x(t) in (6) becomes

x(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) + b0ft0(t)

where b0 = 〈x, ft0〉. Likewise, a complete stream of Diracs x(t) =
∑

k∈Z
akδ(t − tk) can be represented by a

linear combination of scaling functions and footprints, that is,

x(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) +
∑

k∈Z

bkftk
(t). (7)

The cones of influence of two different footprints at locations t0 and t1 may overlap. In this case, we say that
the two footprints are biorthogonal, otherwise, we say they are orthogonal. The orthogonality of two footprints
depends on the distance between the locations t0 and t1, and on the choice of J . Assume, for instance, that in
the decomposition in (7) J is chosen so that there are no overlapping footprints, then the coefficients bk of that
decomposition are given by bk = 〈x, ftk

〉.

The notion of footprints generalizes to the case of piecewise polynomial signals.2 First, we need to define a
piecewise polynomial signal.

Definition 2 (Vetterli, Marziliano, Blu9). A τ-periodic signal x(t) is piecewise polynomial with K
pieces each of maximum degree R if and only if its (R + 1) derivative is a stream of differentiated Diracs given

by x(R+1) =
∑

k

∑R
r=0 akrδ

(r)(t− tk).

In a similar way one can define a non-periodic piecewise polynomial signal. Assume that x(t) is a piecewise
polynomial signal, the wavelet decomposition of this signal with a compact support wavelet with at least R+ 1



vanishing moments, results in zero wavelet coefficients except for the coefficients in the cones of influence of tk
k = 0, 1, ...,K − 1. In this case, one can prove that the wavelet coefficients inside each cone of influence have

only R + 1 degrees of freedom and these coefficients can be precisely represented by R + 1 footprints f
(r)
tk

(t)
r = 0, 1, ..., R. These footprints are designed to satisfy the following two conditions

‖f
(r)
tk

(t)‖ = 1 r = 0, 1, ..., R.

〈f
(r)
tk

(t), f
(l)
tk

(t)〉 = δr,l.

With this set of footprints one can characterize any discontinuity at a fixed location tk. For instance, a piecewise
polynomial signals x(t) with K discontinuities at locations tk, k = 0, 1, 2, ...,K − 1 can be written as

x(t) =

∞
∑

n=−∞

yJ,nϕJ,n(t) +

K−1
∑

k=0

R
∑

r=0

bk,rf
(r)
tk

(t).

Finally, assume that x(t) is a periodic piecewise polynomial signal with period τ and assume that J = log2 τ ;
x(t) can be written as2

x(t) = yJ,0ϕJ,0(t) +
K−1
∑

k=0

R
∑

r=0

bk,rf
(r)
tk

(t) (8)

where the coefficient yJ,0 is proportional to the mean value of x(t). This representation of x(t) is among the
most compact representations of a piecewise polynomial signal, since the number of coefficients in (8) equals the
number of degrees of freedom of the piecewise polynomial signal.

In conclusion, footprints represent a simple and efficient way to model the dependency across scales of the
wavelet coefficients. Footprints will be used in the rest of the paper to enhance the resolution of signals with a
finite rate of innovation.

3. WAVELET SAMPLING OF SIGNAL WITH FINITE RATE OF INNOVATION

We have seen in the previous section that a valid scaling function has to satisfy three conditions: Riesz basis
criterion, refinability and partition of unity. In this section, we further assume that the scaling function is of
compact support L, that is, ϕ(t) 6= 0 for t ∈ [−L/2, L/2] where L is for simplicity an integer; and that a linear
combination of ϕ(t) can reproduce polynomials of degree K − 1.

We consider two classes of signals namely streams of Diracs and piecewise polynomial signals. We present
the results for streams of Diracs in details and derive the other sampling theorems directly from these results.

3.1. Streams of Diracs

Consider the case of a stream of Diracs, that is, x(t) =
∑

n∈Z
anδ(t− tn) and t, tk ∈ R. Moreover, assume that

there is at most one Dirac in an interval of length LT . It follows

Proposition 1. Given is a scaling function ϕ(t) that can reproduce polynomials of maximum degree one and of

compact support L. An infinite-length stream of Diracs x(t) =
∑

n∈Z
anδ(t− tn) is uniquely determined from the

samples defined by yn = 〈ϕ(t/T −n), x(t)〉 if and only if there is at most one Dirac in an interval of length LT .

Proof: We first show how to localize a Dirac in an interval of size T , then we show how to find the exact
location and amplitude of that Dirac.∗

Let T = 1 and let the support of ϕ(t) be L, assume the signal is known for t ≤ n− L/2. If there is no Dirac
in [n− L/2, n+ L/2] then yn = 0. If there is one Dirac in that interval (call it akδ(t− tk)), then yn 6= 0. Now,
consider the inner product yn−L+1 if there is no Dirac in the interval [n − 3L/2 + 1, n − L/2] and yn−1 6= 0,
then the Dirac akδ(t− tk) is in the interval [n− L/2, n− L/2 + 1]. If a Dirac was already found in the interval

∗It is straightforward to show that if there is more than one Dirac in an interval of size LT , then it is not possible to
reconstruct x(t), for this reason this part of the proof is omitted.
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Figure 2. Illustration of the reproduction of polynomials of degree zero and one using a B-spline of degree two. In this
case L is equal to three and only three translated versions of the scaling function overlap the Dirac. Because of the
polynomial reproduction property of the scaling function, the following is true: y0 +y1 +y2 =

∫ ∞

−∞
akδ(t− tk)(ϕ(t)+ϕ(t−

1) + ϕ(t− 2))dt = ak where in the last equality, we have used the fact that around tk the sum of the scaling functions is
constant and equal to one. Similarly, c1,0y0 + c1,1y1 + c1,2y2 = aktk as illustrated in Figure 2(b).

[n− 3L/2 + 1,−L/2n] (recall that x(t) is known for t ≤ n− L/2) or if yn−1 = 0 then akδ(t − tk) cannot be in
[n − L/2, n − L/2 + 1], but must be in [n − L/2 + 1, n + L/2]. We then need yn−L+2 to see if akδ(t − tk) is
in [n − L/2 + 1, n − L/2 + 2]. The process is iterated until we find an interval of size T where we know that
akδ(t− tk) is. Assume yn n = 0, 1, ..., L− 1 are the inner products that overlap this interval. Since the scaling
function has compact support L and there is at most one Dirac in an interval of length L, we are sure that
only L inner products overlap akδ(t− tk) and no other Diracs are in the same inner products. Therefore using
partition of unity and equation (5), we have that

ak =

L−1
∑

n=0

yn (9)

and
tk = (

∑

n

c1,nyn)/ak (10)

where the coefficients c1,n are known and given by (5).
�

In equations (9) and (10), we have used the fact that, in the vicinity of tk, the scaling function is reproducing
polynomials of degree zero and one respectively. In fact, we have that

L−1
∑

n=0

yn = 〈akδ(t− tk),

L−1
∑

n=0

ϕ(t− n)〉 =

∫ ∞

−∞

akδ(t− tk)(

L−1
∑

n=0

ϕ(t− n))dt = ak

L−1
∑

n=0

ϕ(tk − n) = ak (11)

where in the last equality we have used the property that the sum of the translated versions of ϕ(t) is constant
and equal to 1 in tk. Likewise, we have that

L−1
∑

n=0

c1,nyn = 〈akδ(t− tk),

L−1
∑

n=0

c1,nϕ(t− n)〉 = ak

L−1
∑

n=0

c1,nϕ(tk − n) = aktk (12)

where in the last equality we used the polynomial approximation property (5). Figure 2 illustrates this result
with a simple example.

Finally, it is worth pointing out that the scaling functions that generate some of the most commonly used
wavelets such as Daubechies wavelets and Splines, satisfy the hypotheses of the theorem and can, therefore, be
used to sample streams of Diracs.



In the case of a periodic stream of Diracs we have:

Proposition 2. Given is a scaling function ϕ(t) that can reproduce polynomials of maximum degree one and

of compact support L, and a periodic stream of Diracs x(t) of period τ with K Diracs. This signal is uniquely

determined from the samples defined by yn = 〈ϕ(t/T − n), x(t)〉 if and only if there is at most one Dirac in an

interval of length LT and τ/T ≥ LK + 1.

Proof: For the hypotheses, there is at least one inner product yn which is equal to zero. This is used as an
initial condition and then the remaining signal can be determined using the algorithm of Proposition 1.

�

The propositions above have shown conditions under which we can sample streams of Diracs. The reconstruction
algorithms rely on the ability of the scaling functions to reproduce polynomials of degree one. However, we need
to assume that there is at most one Dirac in an interval of size LT . It is possible to weaken this condition by
considering scaling functions that can reproduce higher order polynomials. In that case, one can show that it is
possible to reconstruct streams of Diracs with more than one Dirac in an interval of length LT .

3.2. Piecewise Polynomial Signals

We know that by differentiation a piecewise polynomial signal can be reduced to a stream of Diracs (see Defini-
tion 2). Thus, we can use the results on streams of Diracs to derive sampling theorems for piecewise polynomial
signals.

We know that by using integration by parts we have that

〈
dnx(t)

dtn
, y(t)〉 = (−1)n〈x(t),

dny(t)

dtn
〉.

For this reason, we can use derivative of the scaling functions and the result in Proposition 1 to sample piecewise
polynomial signals.

Although these considerations give us a way to sample piecewise polynomial signals, we prefer to use the
scaling function as sampling kernel rather than its (R+ 1) derivative. Therefore, we can enunciate the following
result which is weaker, but it will be useful for the rest of the paper.

Proposition 3. A piecewise polynomial signal x(t) with polynomial pieces of maximum degree R is uniquely

determined from the samples defined by yn = 〈ϕ(t/T − n), x(t)〉 where ϕ(t) is a scaling function of compact

support L, if and only if there is at most one discontinuity in an interval of length (R + 2)LT .

4. INFINITE RESOLUTION WITH FOOTPRINTS

In this section we provide an interpretation of the sampling theorems of Section 3 in terms of resolution enhance-
ment. To simplify the notation we will concentrate on the case of orthogonal wavelets.

We have seen that a signal x(t) ∈ L2(R) can be decomposed in terms of wavelets and scaling functions or

x(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) +
J

∑

m=−∞

∞
∑

n=−∞

dm,nψm,n(t). (13)

Now assume that x(t) and ϕ(t) satisfies the hypotheses of the theorems in Section 3. That is, x(t) is a stream
of Diracs or a piecewise polynomial signal with a finite rate of innovation, and ϕ(t) is a compact support scaling
function that can reproduce polynomials of a certain degree. Then the sampling theorems of the previous section
ensure that, for a proper choice of J , the inner products yJ,n of equation (13) are sufficient to characterize x(t)
or, in other words, that the finite resolution version xJ+1(t) =

∑∞

n=−∞ yJ,nϕJ,n(t) is sufficient to reconstruct
the signal exactly. This means that by knowing x(t) at a finite resolution, we can infer the value of the wavelet
coefficients dm,n with m ≤ J and, therefore, arbitrary increase the resolution of our approximation to eventually
recover the original signal.



These sampling results can also by interpreted in terms of footprints. Consider, for instance, the case where
x(t) is a stream of Diracs, that is, x(t) =

∑

k∈Z
akδ(t− tk). We know that we can write x(t) as

x(t) =

∞
∑

n=−∞

yJ,nϕJ,n(t) +
∑

k∈Z

bkftk
(t).

with

ftk
(t) =

J
∑

j=−∞

∑

n∈Ik

uj,nψj,n(t).

Now, assume that we observe a finite resolution version of ftk
, that is,

f̂tk
=

J
∑

j=J0

∑

n∈Ik

uj,nψj,n(t)

with J0 < J . The fact that under the hypotheses of the theorems in Section 3, it is possible to reconstruct
x(t) from its finite resolution version, allows us to say that it is in principle possible to increase arbitrarily the

resolution of the footprint f̂tk
and eventually recover the corresponding infinite resolution footprint.

This last observation will be used in the next section to develop a robust resolution enhancement algorithm
based on footprints.

5. OVERSAMPLING AND RESOLUTION ENHANCEMENT WITH FOOTPRINTS

In this section we investigate the use of footprints to increase the resolution of a sampled signal and to reduce
the effect of noise in the case of noisy samples. Again, for the sake of simplicity, we consider orthogonal wavelets
and focus on piecewise polynomial signals. In particular, we concentrate on piecewise constant signals.

Consider a piecewise constant signal x(t), we have seen that it can be written as

x(t) =

∞
∑

n=−∞

yJ,nϕJ,n(t) +

J
∑

m=−∞

∞
∑

n=−∞

dm,nψm,n(t),

or, using footprints, as

x(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) +
K−1
∑

k=0

bkf
(0)
tk

(t).

with f
(0)
tk

(t) =
∑J

j=−∞

∑

n∈Ik
uj,nψj,n(t). Assume that we observe a finite resolution version of x(t), namely,

xJ0+1 =

∞
∑

n=−∞

yJ,nϕJ,n(t) +

J
∑

m=J0

∞
∑

n=−∞

dm,nψm,n(t).

This means that x(t) has been sampled with a scaling function ϕ(t/2J0). The representation of xJ0+1 in terms
of footprints is given by

xJ0+1(t) =
∞
∑

n=−∞

yJ,nϕJ,n(t) +
K−1
∑

k=0

bkf̂
(0)
tk

(t),

with f̂
(0)
tk

(t) =
∑J

j=J0

∑

n∈Ik
uj,nψj,n(t) representing the finite resolution version of f

(0)
tk

. Now, assume that x(t)

satisfies the hypotheses of Proposition 3 and that J is chosen so that there are no overlapping footprints.† We

can reconstruct the infinite resolution version of f̂
(0)
tk

(t) by comparing it with all the possible finite resolution

†Notice that, since we know that there is at most one discontinuity in an interval of length 2LT (Proposition 3), it is
always possible to choose J such that there are no overlapping footprints.
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Figure 3. Illustration of the reconstruction algorithm based on footprint. (a) Original discrete-time piecewise linear
signal. In this case the original signal has 128 samples. (b) Coarse version of the signal using Daubechies filters with two
vanishing moments. This coarse version is obtained taking only 16 samples. This means J0 = 4. (c) Reconstruction with
footprints of the original signal using the 16 samples of the coarse version.

footprints f̂
(0)
tx

(t) at arbitrary location tx and by choosing the one that maximizes 〈f̂
(0)
tk
, f̂

(0)
tx

〉. More precisely,
assume that tx is close enough to tk, the following holds

〈xJ0+1(t), f̂
(0)
tx

(t)〉 = bk〈f̂
(0)
tk
, f̂

(0)
tx

〉,

and it is possible to show that the maximum of 〈f̂
(0)
tk
, f̂

(0)
tx

〉 is achieved only when tx = tk.

In practice, it is not feasible to compute all the possible inner products 〈f̂
(0)
tk
, f̂

(0)
tx

〉 since tx is real. However,
if one is only interested in enhancing the resolution of xJ0+1(t), then one has to test only a limited number of
footprints. Assume, for instance, that the new resolution one wants to achieve is 2J1 with J1 < J0, then the
footprints that we need to consider are only at discrete locations tn = n · 2J1 with n ∈ Z and the footprint f̂tn

(t)

closest to the actual value tk gives the highest inner product 〈f̂tk
, f̂tn

〉 .

Finally, it is worth pointing out that the resolution 2J0 at which we sample x(t) is arbitrary. In fact, J0 has
to be such that the hypotheses of Proposition 3 are satisfied and must be smaller than J . If we increase the
sampling resolution further, that is, we choose J1 < J0, then the finite resolution footprints that we consider in
our algorithm operate at more scales. For this reason the inner products in the algorithm tend to became more
robust to noise. Therefore, by increasing the resolution of our sampling, we automatically increase the resilience
of our algorithm to noise.

An example of the algorithm is illustrated in Figure 3. We consider a periodic piecewise linear signal with
period τ = 128 (Figure 3(a)). The signal is sampled with a Daubechies filter with two vanishing moments. The
coarse approximation of the signal (what we have called xJ0+1(t)) is shown in Figure 3(b). In this case J0 = 4.
The reconstruction with footprints of x(t) is shown in Figure 3(c) and is exact to machine precision.

The effect of the noise is shown in Figure 4 and in Table 5. In particular, the table shows how the performance
improves with the number of samples.

Samples 8 16 32 64
SNR 20.7dB 22.2dB 23.2dB 24.5dB

Table 5. Effect of the oversampling in the reconstruction of a piecewise constant signal. The samples have
been corrupted with additive Gaussian noise.

6. CONCLUSIONS

In this paper, we have shown that it is possible to sample some classes of signal using a wavelet sampling kernel.
We have then developed a new resolution enhancement algorithm based on these sampling results and on the
notion of footprints. Future research will focus on the generalization of these sampling theorems to the case of
two-dimensional signals and on the design of new algorithms for image resolution enhancement.
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Figure 4. Effect of the noise in the reconstruction algorithm. In this case, the samples yn have been corrupted by additive
Gaussian noise. (a) Original signal. (b) Original signal (dashed) and reconstructed signal (SNR=22.9dB).
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