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ABSTRACT
Iterative shrinkage of sparse and redundant representations

are at the heart of many state of the art denoising and decon-

volution algorithms. They assume the signal is well approxi-

mated by a few elements from an overcomplete basis of a lin-

ear space. If one instead selects the elements from a nonlinear

manifold it is possible to more efficiently represent piecewise

polynomial signals. This suggests that image restoration algo-

rithms based around nonlinear transformations could provide

better results for this class of signals. This paper uses itera-

tive shrinkage ideas and a nonlinear quadtree decomposition

to develop image restoration algorithms suitable for piecewise

polynomial images.

Index Terms— Deconvolution, image restoration, piece-

wise polynomial approximation, quadtrees.

1. INTRODUCTION

Denoising and deconvolution are classic well studied prob-

lems that occur in many situations. Commonly one assumes

the following degradation model:

y = Hx + e, (1)

where y is the noisy blurred image, H is the matrix represent-

ing the convolution, x is the desired image and e is additive

Gaussian white noise. In most cases H is ill-conditioned and

the pure inverse approximation, x̂ = H−1y is heavily cor-

rupted by the coloured noise component H−1e. Traditional

frequency based techniques such as the Wiener filter over-

come this by suppressing H−1y at high frequencies where the

inverse is dominated by the coloured noise component. Un-

fortunately in many applications these high frequency com-

ponents also contain much of the information of x. This is

particularly true in images where edges represent an impor-

tant part of the visual information.

Because of this the image processing community has

moved away from frequency based methods and started using

transforms that provide a sparser representation of real world

images. The wavelet transform being by far the most com-

mon example. Usually an approximation of x is obtained by

solving a minimising problem of the form:

θ̂ = arg min
θ
‖y −HDθ‖22 + λ‖θ‖p, (2)

where x = Dθ, D is the matrix reconstructing the image

from the transform coefficients θ. The columns of D are the

basis functions of the approximation space and D can thus be

thought of as a dictionary of basis functions. In the wavelet

transform case D is simply the inverse wavelet transform. It

is expected that the coefficients vector θ will be sparse.

There has been much recent interest in the solution of

(2). In the simple denoising case (i.e. H = I) and D a

unitary transform the cost function is exactly minimised by

simple shrinkage (i.e. hard-thresholding for p = 0 and soft-

thresholding for p = 1). However in the more general case

the problem is much more complex. Daubechies et al [1]

proved that (2) can be exactly solved for the case where 1 ≤
p ≤ 2 by iteratively minimising surrogate cost functions.

Similar algorithms have also been derived using for exam-

ple expectation maximisation (EM) [2], majorisation minimi-

sation (MM), bound optimisation and optimisation transfer

algorithms [3, 4, 5]. A good overview of iterated shrinkage

is presented in [6]. Blumensath and Davies [7] also show

promising results for the p = 0 case, however they can no

longer guarantee global convergence due to the lack of con-

vexity in the cost function.

Although wavelets have become the standard in image

processing applications the quest for sparser representations

of images is still receiving much research interest. The main

problem with two-dimensional wavelets is that they can only

efficiently represent point singularities and not higher order

singularities such as edges which are a key part of real world

images. Motivated by this, Shukla et al [8] developed a com-

pression algorithm tailor made for piecewise polynomial im-

ages. Their algorithm was based around quadtree decompo-

sition and was able to outperform the JPEG2000 standard on

real world images. This was due to the sparser representa-

tion achieved by their transformation. Willett and Nowak [9]

used a piecewise linear wedgelet model to produce an im-

age restoration algorithm for photon-limited medical imag-

ing. Their image deconvolution algorithm uses the iterative
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shrinkage idea derived from an EM approach. In this paper

we develop an image restoration algorithm more suitable to

standard images using the more complex piecewise polyno-

mial model of [8]. Unlike [8] which uses a rate-distortion cost

function more suitable to compression we minimise a differ-

ent cost function very similar to (2). Shukla et al also devel-

oped a denoising algorithm [10] using the piecewise polyno-

mial model however they again used their rate-distortion cost

function. The rest of this paper is organised as follows. In

Section 2.1 the denoising algorithm is explained, then Sec-

tion 2.2. develops an iterative deconvolution algorithm using

a surrogate function and MM ideas. We also develop a tech-

nique to perturbate from local minimum to an approximation

with a smaller cost. Section 3 shows the results of this new

deconvolution algorithm on piecewise polynomial images and

shows comparisons with existing techniques. Finally Section

4 gives conclusions.

2. PROPOSED IMAGE RESTORATION
ALGORITHMS

2.1. Quadtree decomposition denoising algorithm for
piecewise polynomial images

In nonlinear approximation theory quadtree decomposition is

well established as a technique to adaptively partition a two

dimensional function. The more flexible nonlinear transfor-

mation allows [8] to achieve highly competitive compression

and we aim to achieve similar results in the restoration case.

In the following we will describe the quadtree decomposition

algorithm of [8] with our modifications making it more appli-

cable to denoising. The aim of the algorithm is to solve the

following minimisation problem:

θ̂ = arg min
θ
‖y −D(θ)‖22 + λ‖θ‖0, (3)

where D(θ) is the image representation with coefficients θ.

By ‖θ‖0 we mean the number of non zero coefficients used

to produce the image D(θ). The image partitions shown in

figures 1a and 1b are examples of the prune and prune-join

models which are explained below.

Algorithm 1 is used to approximately solve (3) using the

prune only model resulting in what we will call the pruned

quadtree. As figure 1a shows a limitation of the prune only

model is that neighbouring regions can only be jointly rep-

resented by their parent. It would be beneficial however to

allow any neighbouring regions to be jointly represented. To

achieve this every leaf of the pruned quadtree is considered to

be joined to its neighbouring leaves using algorithm 2 result-

ing in the partitions of figure 1b.

When approximating a region of the image a hard thresh-

olding step is used, this is optimal as the polynomials we use

are orthogonal and the problem is thus linear and unitary for

a particular node with a particular boundary.

(a) Prune regions (b) Prune-join regions

Fig. 1: Example of prune and prune-join regions

Algorithm 1 (Denoise prune only)
1. Decompose the image to a predetermined depth.
2. Approximate each leaf by two 2-D polynomials sepa-

rated by a polynomial boundary.

(a) Find the best coefficients for each of a predeter-
mined set of boundaries.

(b) Hard threshold the coefficients of the polynomials
for each boundary.

(c) Choose the boundary that results in the minimum
cost as described by (3).

3. Approximate the parents of the leaves using the same
approach as 2.

4. If the parent has a smaller cost than the sum of the costs
of the four children then prune the children and use the
parents approximation.

5. Repeat step 3 and 4 all the way up the tree.

Algorithm 2 (Denoise join)
1. Visit the leaves of the pruned quadtree in a top to bot-

tom left to right manner.
2. Join a leaf with a neighbouring leaf later in the tree if

the joined cost is less than the sum of the individual
costs of the two leaves .

3. If two leaves are joined the two leaves are considered
as one leaf for the rest of the joining process.

2.2. Deconvolution using the non linear quadtree decom-
position transformation

To extend the quadtree decomposition algorithm for deconvo-

lution we attempt to minimise a cost function virtually identi-

cal to (2) but with slight modification for the non linear case:

θ̂ = arg min
θ
‖y −HD(θ)‖22 + λ‖θ‖0. (4)

The H causes all the basis functions in our transformation

to overlap which means that we cannot locally look for the

best tile. This is equivalent to the non-unitary linear denois-

ing problem where all the equations are coupled together. As

the linear case we use a surrogate function and the MM phi-

losophy to decouple these equations, for a good introduction
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to MM algorithms see [11]. Equations (5) and (6) show the

original cost function C, and surrogate cost function Csur re-

spectively.

C(D(θ)) = ‖y −HD(θ)‖22 + λ‖θ‖0 (5)

Csur(D(θ) | a) = C(D(θ))− ‖HD(θ)−Ha‖22
+ α‖D(θ)− a‖22 (6)

It can easily be shown that the surrogate function is a max-

imiser of C(D(θ)) if α ≥ ‖H‖. I.e.

Csur(D(θ) | a) ≥ C(D(θ)) ∀θ (7)

Csur(a | a) = C(a) (8)

The surrogate function has the advantage that the ‖HD(θ)‖22
terms cancel essentially decoupling the equations as we re-

quire:

Csur(D(θ) | a) = ‖y‖22 − 2D(θ)T HT y + ‖HD(θ)‖22
− ‖HD(θ)‖22 + 2D(θ)T HT Ha

− ‖Ha‖22 + α‖D(θ)‖22 + α‖a‖22
− 2αD(θ)T a + λ‖θ‖0 (9)

Csur(D(θ) | a)
α

=
∥∥∥∥a +

HT

α
(y −Ha)−D(θ)

∥∥∥∥
2

2

+ λ̄‖θ‖0
+ terms independent of θ (10)

We can see that the minimisation of the surrogate function is

equivalent to minimising the denoising cost function (3) with

y replaced with a+ HT

α (y−Ha).The MM approach suggests

to thus solve the problem with the iteration:

θi+1 = Denoise

(
D(θi) +

HT

α
(y −HD(θi))

)
(11)

From the inequalities of a maximiser we know that

C(D(θi+1)) ≤ Csur(D(θi+1) | D(θi)) (12)

Csur(D(θi) | D(θi)) = C(D(θi)) (13)

So if the denoising algorithm guarantees that

Csur(D(θi+1) | D(θi)) ≤ Csur(D(θi) | D(θi)) then the

sequence is guaranteed to be decreasing. As the previously

introduced denoising algorithm only approximately solves (3)

then this is not guaranteed in its current state. To achieve

convergence we use an update algorithm which starts looking

for the best approximation from the current representation θi.

This not only guarantees a decreasing sequence but it is also

more computationally efficient.

As the denoising case we first assume the simpler prune

only model and only introducing joining when our deconvo-

lution pruning algorithm (algorithm 3) cannot further improve

the representation.

Algorithm 3 (Deconvolution, prune only model)
1. Denoise pruning only. (Algorithm 1).
2. Iterate linear hard thresholding.

(a) Find basis functions for the current tile and
boundary structure.

(b) Find the coefficients for updated image D(θi) +
HT

α (y −HD(θi)) using these basis functions.
(c) Hard threshold the coefficients.
(d) If the coefficients have changed goto 2b.

3. Update pruned quadtree.

(a) Inspect each leaf in a bottom up approach.
(b) Find the best boundary model for the leaf.
(c) Split the leaf to its four children if the sum of the

children’s cost is less than that of the current leaf.
(d) If four leaves have the same parent and the parent

has a smaller cost than the sum of its children’s
costs then prune the leaves.

(e) If after doing 3a-d for the whole tree a boundary
or tile structure has changed then goto step 2.

4. Update a single tile or prune four children using (5)

directly.

(a) Visit every leaf in the tree.
(b) Remove the blurred tile of this leaf from the cur-

rent representation and find the residual over the
region that the blurred tile covers.

(c) Find the best blurred tile that approximates the
residual by trying every boundary and hard thresh-
olding as before.

(d) If four leaves have the same parent then remove
the four leaves and find the best blurred parent to
replace them as steps 4b,c.

(e) After doing steps 4a-d for the whole tree update
the representation that decreases the cost the most
and goto step 2. If no improvement can be made
then terminate.

The iterate linear hard thresholding step of algorithm 3

only calculates the basis functions once and it can thus very

quickly update the coefficients until convergence. This allows

step 3 to just look to improve the boundaries and tile structure

which is a slower process. When step 4 is reached the surro-

gate approach has reached a local minimum so we attempt to

improve further by using (5) directly. Although all the basis

functions in (5) overlap preventing them all to be solved in a

reasonable amount of time it is still possible to update only

one and fix all the others. It is this principle that allows step 4

to update a single tile or replace four children with their par-

ent. Only the single representation that decreases the cost the

most is updated.

The algorithm to join the pruned quadtree is very simi-

lar to algorithm 3. First the pruned quadtree is joined and

then hard thresholding is iterated with the tiles and bound-

aries fixed. A slower algorithm is then used to improve the
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(a) Original (b) Degraded, PSNR=16.47 dB

(c) Reconstructed with wavelets,

PSNR=27.38 dB

(d) Reconstructed with proposed

algorithm, PSNR=50.22 dB

Fig. 2: Deconvolution of piecewise polynomial images

boundaries and tile structure using the surrogate approach and

finally a single tile or two neighbouring tiles are replaced by

a single tile to escape from local minimum. The algorithms

are iterated in the same way as algorithm 3.

3. EXPERIMENTAL RESULTS

The proposed algorithm can be implemented to any polyno-

mial degree with any set of continuous boundaries however in

the following results we use polynomials of maximum degree

1 and straight edge boundaries. Figure 2 shows the decon-

volution of a synthetic piecewise linear image that has been

blurred by a 7 by 7 quadratic spline followed by additive

Gaussian noise with a standard deviation of 0.1. The pro-

posed algorithm is compared against iterated soft threshold-

ing using the stationary wavelet transform. The Daubechies 4

tap wavelet was used to a depth of 3.

4. CONCLUSIONS

We have presented image restoration algorithms based on iter-

ative shrinkage ideas and a nonlinear quadtree decomposition

for use on piecewise polynomial images. Preliminary results

suggest the success of the algorithm for reconstructing this

class of signals and we are currently investigating extending

these ideas to real world images.
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