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ABSTRACT

In this paper, we present reconstruction schemes for the plenoptic
function. Using new sampling methods developed in [2, 4, 5], we
show that, for some particular scenes, it is possible to perfectly re-
construct the plenoptic function from a finite number of cameras
with finite resolution (Theorem 1 and Corollary 1). In more gen-
eral cases, we demonstrate new ways of interpolating exactly the
plenoptic function (Theorem 2). Finally, we show that it is possible
to infer camera locations from a finite set of images. In all cases,
we have perfect solutions due to the super-resolution property of
the sampling. First numerical experiments on noisy observations
show the potentiality of this new theoretical developments.

1. INTRODUCTION

Advances in device technology, networking and information pro-
cessing have allowed the emergence of sensor networks. These are
densely distributed sensor nodes with the capability to sense ele-
ments of the environment, make computations and communicate
with other nodes or a central receiver. Signal sensors can be cheap
temperature sensors, but also cameras or microphones.

In this new scenario, there are several problems to investigate
that span from traditional signal processing problems (i.e., sam-
pling, interpolation, compression and detection) to communication
and information theory. Among them, of particular interest in this
paper, is the sampling and interpolation problem.

In particular, we assume that our sensors are cheap cameras
with low resolution and the question we want to address is how
many cameras are needed to obtain a continuous rendering of a
certain scene. That is, assume we have a certain number of cam-
eras taking pictures of a scene from different positions, is there
any sampling theorem that tells us the number of cameras neces-
sary to reproduce that scene exactly? Or given a certain number of
cameras can we interpolate other views?

The problem of rendering a 3D scene from a set of 2D im-
ages is known as image based rendering (IBR) and has attracted a
lot of attention recently [8, 3, 9]. IBR is related to the concept of
the plenoptic function introduced by Adelson and Bergen [1]. As-
sume that one is free to take photographs of a visual scene at any
possible position, angle and time. Such a complete representation
of that scene can be parameterized by a single function called the
plenoptic function.

The sampling of the plenoptic function has been addressed by
several researchers, and a first solution was given in [3]. For fur-
ther results, see [9]. However, the sampling schemes developed in

those papers rely on the assumption that the plenoptic function is
band-limited, which is usually not true. Therefore, in this case, the
plenoptic function cannot be perfectly reconstructed from its set of
samples.

Recently, it has been shown that it is possible to develop sam-
pling schemes for classes of non-bandlimited signals [2, 4, 5]. A
common features of these signals is that they have a parametric
representation with a finite number of degrees of freedom.

In this paper, we develop new schemes for the sampling of the
plenoptic function based on extension of the results in [2, 4, 5].
In particular, we show that it is possible to perfectly sample the
plenoptic function of scenes with a finite number of degrees of
freedom. Namely scenes made of points, planes, and other simple
objects. Moreover, we show that, in other situations, we can ex-
actly interpolate the plenoptic function with only a few cameras.
We then propose to use these sampling schemes to solve a differ-
ent problem, namely, to infer the cameras locations from a set of
samples of the plenoptic function. Note that in all cases, we have
perfect solutions, due to the super-resolution property of the sam-
pling.

The paper is organized as follows. In the next section, after
a brief review of some background material, we present our sam-
pling and interpolating results (Theorem 1, Corollary 1 and The-
orem 2). In Section 3, we address the problem of inferring the
cameras locations from a set samples of the plenoptic function.
Section 4 presents some numerical results. Finally, we conclude in
Section 5.

2. INTERPOLATION AND SAMPLING THEOREMS FOR
THE PLENOPTIC FUNCTION

2.1. Background Material

The plenoptic function defined in [1] describes the intensity of
each light ray in the world as a function of visual angle, wave-
length, time and viewing position. Therefore, the plenoptic func-
tion is a 7D function

P7 = P (θ, φ, λ, t, Vx, Vy, Vz). (1)

By fixing the time (static scene) and the wavelength (fixed lighting
conditions), this function becomes a 5D function. As stated in [6],
we know that the 5D complete plenoptic function can be simplified
to a 4D light field plenoptic function by restricting the scene (or
conversely the camera view) to a bounding box or a convex hull:

P4 = P (u, v, s, t), (2)
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Fig. 1. (a) Points of depthz(v, t) are observed by two cameras t’
and t (b) 2D plenoptic functions of two points observed along the
camera path

where (u,v) and (s,t) represent two parallel planes (the focal
plane and the camera plane respectively) of the bounding box.
Here we consider a pinhole camera model under which a point
in space with coordinatesX=(x, y, z)> is mapped to the point
(fx/z, fy/z, f)> on the focal plane defined byz = f wheref is
the focal length. By taking at-v slice of the 4D plenoptic function
(which is equivalent to fixing the viewpoint) we reduce the plenop-
tic function to a 2D parametrization which is called 2D light field
or epipolar plane image (EPI).

As shown in Figure 1, each point of an object is seen by two
cameras lying on the t-axis. The v-axis corresponds to the focal
line of the cameras. As in [3], we set up local coordinate on the
focal line base on where the camera is. Each point is represented
by a line in thet-v plane where the slope of the line is related to
the depth of the point through the following equation:

v − v′ = f(t− t′)/z. (3)

Note that the image or focal line is placed in front of the cam-
era centre. From now on, for simplicity, we will focus on the 2D
plenoptic function. However, all results can be extended to the
general case.

2.2. Interpolation And Sampling Results

The new sampling schemes we use [2] concern with a certain
class of non-bandlimited signals namely those of finite rate of in-
novation such as streams of Diracs and piecewise polynomials. It
has been shown that these signals can be sampled uniformly at
(or above) the rate of innovation using either a sinc or a Gaussian
kernel, and then be perfectly reconstructed. These results concern
one-dimensional signals whereas [4] presents extensions to classes
of 2D signals with finite complexity such as 2D Diracs (Poisson
process), polygons and bilevel signals with piecewise polynomial
boundaries. In [5], the case of the Radon transform of finite rate of
innovation objects is studied, showing that a finite number of pro-
jections and a finite number of samples is sufficient for an exact
reconstruction of certain simple objects such as Diracs.

In this work, we extend these results to the case of the plenop-
tic function. We show that it is possible to have an exact recon-
struction of the plenoptic function of simple objects from a finite
number of samples and a finite number of cameras. That is, as-
sume a finite number of cameras with finite resolution and some
lens distortion, then the plenoptic function can be recovered from
this finite number of blurred and sampled images.
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Fig. 2. Plenoptic function of a stream of Diracs and reconstruction
(a) Original scene made up ofM = 3 Diracs, (b) 2D plenoptic
functions (c) blurred plenoptic functions, (d) reconstruction of the
points from the projecting lines. The Diracs correspond to points
where exactlyM + 1 = 4 lines intersect.

Consider a set ofM singular points (2D Diracs generated
by a Poisson process) and a set ofK cameras. LetSi(v), i =
0, 1, ...K − 1 be their perspective projections of optical centresti.
Si(v) can be represented as a weighted sum of at mostM 1-D
Diracs lying on the image line. In practice, we observe a sampled
and distorted version of these projections, but as stated in [2], the
signalSi(v) made up of maximumM Diracs can be recovered
from a set of2M samples by using either the sinc or the Gaussian
sampling kernel. Therefore, the perspective projections can be re-
constructed. Moreover, one can prove (see [5]) that it is possible
to recover the original scene fromK ≥ M + 1 projecting lines.
Finally, the weights of the singular points can be found by solving
a linear system of equations. Hence, we can state the following
theorem:

Theorem 1: Consider a scene made up ofM singular points
(Diracs) and let its perspective projection be convolved with a sinc
or a Gaussian sampling kernel. By takingK ≥ M +1 perspective
projections and for each projection, at least2M samples, we can
perfectly reconstruct the scene.

Figure 2 shows an example of Theorem 1 withM = 3 and
four cameras(K = 4). Theorem 1, basically, states that with
K ≥ M + 1 cameras (or withK different pictures of the same
scene), we can recover exactly a visual scene made ofM Diracs.
In many cases, however, it is possible to have the same result with
only two cameras. In fact, in IBR, one has access to the perspective
projections and can label the points (Diracs) in these projections.
Then, in this case, and in absence of occlusions, two cameras are
sufficient to reconstruct the plenoptic function of a scene made up
of an arbitrary but finite number of Diracs. For the sake of clarity,
we state this in the following corollary:



Corollary 1: Consider a scene made up ofM labelled Diracs
and two perspective projections of this scene with no occlusions.
Then,N ≥ 2M sample values of each projection taken with a sinc
or Gaussian sampling kernel are a sufficient representation of the
scene.

This result can be extended to the class of piecewise constant
signals. Assume, the scene is made up of surfaces of different
uniform color. In this case, the perspective projection on the im-
age plane is a piecewise constant signal containingL pieces. The
positionst0 and t1 of the cameras are such that none of these
pieces is occluded in the range [t0, t1]. Using [2], we also know
that the two views given by the cameras can be recovered from
N ≥ 2L + 1 samples. From the reconstructed views and by
means of projective geometry, we can then reconstruct any view
in between [t0, t1].Thus we can derive the following result:

Theorem 2: Consider a scene made up of surfaces contain-
ing L pieces each of different uniform color. Two cameras are at
the positionst0 andt1. Suppose that these positions are such that
none of the pieces is occluded in the range [t0, t1]. Then, by using
a sinc sampling kernel and at least2L + 1 samples of each view
taken by the cameras, we can:

1. recover perfectly the two views.

2. interpolate the plenoptic function in between the two views.

3. SUPER-RESOLUTION CAMERA LOCATION

Until now, we have considered the case where cameras locations
are known. What if we do not know this information? In this
case, what additional knowledge do we need in order to completely
recover cameras locations and hence the scene? The problem of
finding the camera positions and orientations has been extensively
studied in computer vision (see for instance [7]).

Our novel approach to this problem is to use the sampling
schemes for signals of finite rate of innovation to find exact cam-
eras locations. These methods lead to perfect reconstruction from
a finite number of samples of the perspective projections and al-
lows us to recover the exact positions of the cameras. In the gen-
eral case, the system of equations we have to solve is polynomial
but if we suppose that the cameras have the same orientation with
then the system becomes linear and in this case we can derive the
following theorem:

Theorem 3: Consider a set ofN aligned cameras looking at
a scene composed ofN singular points. Suppose that we know
the exact location of one of these points (reference point). Then,
we can perfectly recover the N cameras positions and the original
scene by taking at least2(N − 1) samples for each view taken by
a camera.
To prove this theorem, we just have to notice that the coordinates of
the reference point are used to find the locations of theN cameras
and then we use our algorithm and the positions of the cameras to
reconstruct the locations of theN−1 points. We can illustrate this
by considering the case whereN = 2: let (x1, z1) and(x2, z2)
be the coordinates of two pointsP1 andP2, respectively and let
(xcj , zcj , θj) be the coordinates of the cameraj (1 ≤ j ≤ N )
wherezcj is the same for each camera and is known (see Fig-
ure 1(a)). LetP1 be the reference point. Then, the system ofN
equations we have to solve is of the form:

vj1 =
(xcj − x1) + tan θj(zcj − z1)

tan θj(xcj − x1)− (zcj − z1)
f (4)
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Fig. 3. Monte Carlo simulations for the estimation of Diracs po-
sitions (a) and weight (b). Horizontal axis is the additive noise
standard deviation and vertical axis the estimation error standard
deviation.

wherevj1 is the image of the reference point on the cameraj. If
θ = 0, then the system is linear. The variablesvj1, j = 1, ..., N
are observed but thanks to the sampling theorem given in [2], we
can know them exactly (i.e with infinite precision) and thus we can
solve the system of equations to find the exact values ofxcj .

4. SIMULATION RESULTS

In Section 2, it has been shown that the positions ofM singular
points can be reconstructed perfectly takingN samples onK pro-
jections. The reconstruction is obtained in two steps: first theN
samples are used to find the position of the singular points on each
projection, then such positions are used to reconstruct the positions
on thet−v plane. In a practical setup, the precision of the method
is limited by the sensors, which introduce distortion and noise that
limit the precision of the first step of the reconstruction algorithm.
In order to investigate the robustness of the algorithm with respect
to noise, Monte Carlo simulations have been performed. Namely, a
noiseless signal made up ofM = 3 weighted Diracs has been gen-
erated. Diracs positions were atv0 = 5.3, v1 = 16.2, v2 = 22.7
and weightsa0 = 404, a1 = 275, a2 = 126. The signal has
been filtered with the Gaussian kernel with parameterσK = 5
andN = 7 samples has been considered uniformly spaced be-
tweenv = 0 andv = 24. Noisy samples have been obtained
adding Gaussian noise and the position and weights of the Diracs
reconstructed with the algorithm presented in [2]. Different level
of noise standard deviationσn has been considered and 200 exper-
iments have been run for each noise level. One of the experiments
corresponding toσn = 0.3 is depicted in Figure 4. The standard
deviation of the parameter estimation error is illustrated in Fig-
ure 3 for the Diracs positions and weights respectively. It should
be pointed out that, in the current implementation of the algorithm,
the parameterσK cannot be too small to avoid ill conditioning of
the system. Such a parameter influences also the relation between
the noise standard deviation,σn and the estimation error. In fact,
for a fixed valueσn, a biggerσK increases the number of mean-
ingful samples, reducing the estimation error.

To be able to use this type of algorithm on a real setup, one
must be careful in avoiding potential additional sources of errors,
such as lens distortion, poor precision of lens calibration, sensor
noise and non linearities and bad illumination conditions. To make
a preliminary evaluation of the proposed method we determined
the estimation errors indirectly, using a pattern containing four ver-
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Fig. 4. One experiment of the simulation with a noise standard
deviationσn = 0.3. Points correspond to theN = 7 samples
used by the algorithm. The line correspond to the reconstructed
values and is practically superposed to the ground truth values.
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Fig. 5. An image of the pattern used to measure the estimation
error on diracs positions (a). The dots represent the sensor data
corresponding to the marked line of the pattern. The solid line
corresponds to the reconstructed stream of Diracs (b).

tical lines at positionsv0, v1, v2 andv3. The positions are chosen
so thatv1−v0 = v3−v2 À v2−v0. The four lines of the pattern
are printed on a transparent slide placed in front of a uniform light
source. The images of the pattern were acquired using a digital
camera with the settings chosen to operate on the linear region of
the CCD. The focus control was deliberately set to have a slightly
defocused image, to reduce the influence of print imprecision and
light conditions. Also, a defocused image corresponds approxi-
mately to increase the parameterσK of the kernel, avoiding the
problems of ill-conditioning mentioned above.

To avoid the influence of lens distortion, only the center of
the image was used, namely a rectangle of 100x300 pixels (the
image size was 1456x2224). An example of the acquired image
is given in Figure 5(a) and the samples for the marked line are
reported in Figure 5(b). Since the thickness of the lines is small
with respect to the parameterσK of the Gaussian kernel, every
line can be modelled as a Dirac impulse in the horizontal direction
and the algorithm in [2] applied withK = 4. The estimations
of the positions of the Diracs,̂v0, v̂1, v̂2 and v̂3 can be used to
estimate the ratio:

r =
v1 − v0

v2 − v0
. (5)

The advantage of using a ratio between distances rather then com-
puting an absolute measure on the pattern is that knowledge of lens
parameters (such as focal length and position of the nodal point) is
not required, avoiding a potential source of errors. It can be easily

verified that the estimation errorse0 = v̂0 − v0, e1 = v̂1 − v1 on
the Diracs’ positions and the ratio estimation error are related by

e1 − e0 ' (r̂ − r)(v2 − v0). (6)

If we model e0, e1 as i.i.d. variables, one can compute the es-
timation error standard deviationσe ' (r̂ − r)(v2 − v0)/

√
2.

This method has been used to evaluate the estimation error of the
proposed technique, obtainingσe ' 0.2 pixels. That is, on this
blurred and noisy image case, we have obtained a precision of
about1/5 of a pixel, which is a promising preliminary result.

5. CONCLUSIONS

We have developed perfect reconstruction methods for simple
scene models using a small number of cameras. These methods
are based on new sampling schemes for signals of finite rate of in-
novation [2, 5]. We have derived interesting results for a perfect
interpolation of the plenoptic function of piecewise linear objects.
We also have shown that the cameras locations can be recovered
if we know the position of one point in the scene. Finally, prelim-
inary results on real cameras have shown the potentiality of these
new sampling schemes.
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