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Compression of Multispectral Images by
Three-Dimensional SPIHT Algorithm

Pier Luigi Dragotti, Giovanni Poggi, and Arturo R. P. Ragozini

Abstract—We carry out low bit-rate compression of multispec- On the other hand, since lossless coding exploits only the statis-
tral images by means of the Said and Pearlman’s SPIHT algo- tical redundancy of the image, the compression ratio achieved

rithm, suitably modified to take into account the interband de- rre)y exceeds 2: 1, not enough to cope with serious data man-
pendencies. Two techniques are proposed: in the first, a three-di- agement issues

mensional (3-D) transform is taken (wavelet in the spatial domain, .
Karhunen—Loeve in the spectral domain) and a simple 3-D SPIHT A much better performance is guaranteed by datapres-
is used; in the second, after taking a spatial wavelet transform, sion or lossy coding, which easily achieves compression ratios
spectral vectors of pixels are vector quantized and a gain-driven of 10:1 and more. As the name suggests, however, in this case,
SPIHT is used. Numerous experiments on two sample multispec- gne has to tolerate some loss of information (errors) in exchange
tral images show very good performance for both algorithms. . . . . . .
for the increased efficiency: the higher the compression ratio the
Index Terms—Compression, multispectral images, remote |ower the image quality as measured by means of some suitable

sensing, transform coding. distortion function.
A number of techniques have been proposed in the last few
|. INTRODUCTION years for the compression of multispectral images. All of them

EMOTE sensing images are of interest for a large numbly to t_ake advantage_, in various _deg_rees, of the pe_culiarities of
R of applications, such as geology, earth-resource manag@se images, especially of the high intraband and interband re-
ment, pollution monitoring, meteorology, and military surveil>™~" """ . y Lle
lance. As a consequence, there is a constant growth botHamilies: techniques based on vector quantization (VQ), and
the number and in the performance of remote sensing faciliidechniques based on transform coding. .
which produce larger and larger amounts of data that have to/€Ctor guantization [2], [3] is theoretically the optimal
be transmitted, processed, and stored efficiently. The probl@fck coding strategy. Indeed, it is the direct application
stems from the raw size of the images considered, and is esple!Ne principles of information theory, and all other block
cially urgent when dealing with multispectrithages where the €0ding techniques (e.g., transform coding) can be seen as
amount of data to be managed further increases with the numgigicturally constrained forms of VQ. However, unconstrained
of bands. As an example, a single multispectral image acquird® S characterized by a computational complexity that
by the Thematic Mapper (TM) sensor carried on board of tHows expongntlally with the block size. As a consequence,
Landsat V satellite, amounts to more than 200 MB. New seRractical coding schemes based on VQ are forced to use
sors are bound to have higher radiometric precision, as wellgall blocks, thereby exploiting the statistical dependencies
better spatial and spectral resolution. Images composed by 8f2Ng only a small number of pixels and/or spectral bands.
or even hundreds of spectral bands are highly valuable becalfsé?l: for example, VQ operates on purely spectral blocks,
of the wealth of information they provide on the nature of thiIUS neglecting any spatial dependency; on the contrary, in
ground, but their management can easily overwhelm the avapl it iS used with purely spatial blocks, and the spectral

able resources. These problems can be significantly reduced’§pendencies are exploited through nonlinear block prediction;
using some form of data compactation or data compression [3]5iMilar hybrid scheme based on VQ and address prediction

Data compactation or lossless coding, is a reversible prolS proposed in [6]. In all of these cases, a small block size is

cessing in which the original data can always be recovered fré@nsidered (no more than 16 pixels) with detrimental effects on

the encoded data without any loss of information. Everyday i€ Performance. In [7], instead, large three-dimensional (3-D)

amples are the “compress” routine of Unix or the “zip” routine@locks are represented as the Kronecker product of smaller

available on DOS/Windows. Reversibility is no doubt a desi¥ectors, which are then jointly vector quantized: although the
able property since the original data are always more rich SRCOUer is not optimal anymore, the use of larger blocks leads

information than any processed (possibly “enhanced”) versidf, & Petter performance. o
To obtain a good encoding performance with limited com-

plexity, many researchers rely on transform coding techniques
[1], where a linear transform decorrelates the input data and
goncentrates most of the power in a few coefficients so that

undancies they exhibit. They can be roughly classified in two
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in [9], instead, a hybrid predictive/transform coding scheme i . - p—

proposed. In [10], to take into account the nonstationarity of tt ——| TRANSFORM QUANTIZATION TRANSFORM

image, pixels are first classified (by means of tree-structure _.

VQ) so as to use subsequent transform coding (KLT+DCT) later

on groups of homogeneous pixels. Fig. 1. Block scheme of transform coding.
In the transform coding framework, wavelet transform [11],

[12] deserves a special treatment because of its peculiar chggnsform. The transform is usually unitary (norm-preserving)
acteristics. Indeed, due to its implementation as a recursive §b that quantization errors in the transform domain correspond
tering procedure, it can easily work on large blocks (even on the equivalent errors on the reconstructed signal. It has the
whole image) thereby providing an excellent power concentrigrain goal of concentrating the input power, spread over a
tion. This is not possible with the KLT which is much more comiarge number of samples, into as small a number of transform
plex and needs prior statistical information. Moreover, unlikgoefficients as possible. In fact, for a given total power, it is
other simple transforms, notablythe DCT, the Wavelettransformuch more convenient to quantize a Singie |arge coefficient
does not spread the power associated with discontinuities in thi@n many small ones.
whole transform domain thus providing a simple and elegantunfortunately, an “ideal” transform does not exist. For
way to deal with nonstationarity. These properties (among tigde-sense stationary sources, the Karhunen—Loeve transform
others) motivate an intense research on wavelet transform (Wd)yell-known to be optimal in a statistical sense [3] since it
in the image coding field [13], also with reference to multispe&oncentrates as much power as possible in the first coefficients.
tral images (e.g., [14]). Only recently, however, with the em4owever, it is computationally expensive, requires a trans-
bedded zerotree wavelet (EZW) encoding technique proposaision overhead, and does not work well on nonstationary
by Shapiro [15], and subsequently refined by Said and Pearlmgiages. The data-independent DCT overcomes many of these
[16], WT has been incorporated into a very successful encodiggbblems and works extremely well on flat low-pass regions
technique. of the image. However, it does a poor job in the presence of
In this paper, whose first results appeared in [17], we exte@gcontinuities (edges, boundaries between regions, impulses)
the Said—Pearlman algorithm or SPIHT (set partitioning in hipreading the block power on a large number of coefficients.
erarchical trees) to the multispectral case and propose two newyavelet transform (WT) represents, in a way, the answer to
encoding algorithms. Indeed, the SPIHT possesses a numbeghef limited ability of the DCT (and other transforms) to rep-
desirable properties (good performance, low complexity, erfesent efficiently both the low-pass part and the details of an
bedded encoding) which make it a perfect candidate for thiiage. A small low-pass version of the image is extracted which
task of compressing multispectral images, possibly on boaggcounts for most of the power, while the details can be recov-
Although the extension to 3-D images is conceptually straighred by a series of directional high-pass bands (see Fig. 2). What
forward, it presents new problems (mainly concerning implgs especially important, an impulse in the original image con-
mentation issues) and new opportunities (offered by the strofutes significantly to just a small number of coefficients in
interband dependencies) that have to be addressed specificalig. WT, corresponding to the same spatial location at various
We propose and compare here two alternative techniques f@§olutions, and therefore it can be encoded very efficiently. Al-
the compression of multispectral images. Both use the wavelgdugh no claim of optimality can be made for the WT, it is no
transform in the spatial domain but they differ in how they takgoubt a powerful tool for signal processing in general and image
into account spectral dependencies: by means of KLT in tegding in particular [12], [13].
first case, by means of tree-structured VQ in the second caseafter the transform, be it WT, KLT, or DCT, there is the
After transform and (|n the latter case) VQ, both use the ZerOtrSﬂ)biem of Convenientiy assigning the encoding resources; as
coding approach by applying suitably modified versions of th&sen before, one should quantize larger coefficients first, but the
SPIHT on the resulting images of coefficients. location of such coefficients is not knovenpriori. The SPIHT
After a brief review of the SPIHT algorithm in Section II, thea|gorithm tackles the bit assignment problem at its root. The
proposed techniques are described in detail in Section Il (&asic idea is to sort all coefficients in order of decreasing magni-
cept for the VQ codebook design which is deferred to the Apude so that an almost “perfect” bit assignment can be achieved.
pendix). Section IV is devoted to the assessment of the perf@iore precisely, coefficients are grouped according to their sig-
mance, also in comparison with those of some reference tegfficance with respect to a set of octavely decreasing thresholds
niques. Finally, Section V draws conclusions. 2N 9N—1 ... 90: 3 coefficient whose magnitude exceeds or
equal®” is said to be significant for that threshold. The encoder
sends a sequence of significance maps which locate significant
coefficients at leve?, 2V —1 etc., and uses quantization bits
In this section, we review just the basic concepts and ternainly for coefficients found significant thus far. For example, in
nology concerning the SPIHT that are relevant for the remaindée sequence of coefficientsq, 0,-2, 7, 2, 1,-3, -1), the first
of the paper; for a thorough description of the algorithm thmap comprises the linear coordinafds 4} to indicate that the
reader is referred to the original papers of Shapiro [15] and Sdiit and the fourth coefficients are significant with respect to the
and Pearlman [16]. threshold 4; for each of these coefficients, the sign and a quan-
All transform coding techniques consist of three main stepigation bit are immediately sent. Likewise, the second map is
(see Fig. 1): 1) transform, 2) quantization, and 3) inverd@, 5, 7}, and allows the encoder to send the sign and a quanti-

Il. THE SPIHT ALGORITHM
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Fig. 3. Tree structure used in the SPIHT algorithm.

trees (see Fig. 3) with a baseband coefficient as root; each tree
corresponds roughly to a square region of the original image,
the root itself can be considered as the low-pass version of that
region while the descendants correspond to finer and finer de-
tails. Three “spatial orientation trees” depart from the root, in
the horizontal, vertical, and diagonal subbands. Now, since the
image is for the most part smooth, significant coefficients are
@ usually concentrated in the upper levels of the trees and only
rarely in the bottom layers. This fact is exploited by recursively
encoding the significance of subtrees rather than that of single
coefficients. If all coefficients in a subtree are insignificant for a
given threshold a single bit, say “0,” will signal this occurrence;
otherwise a bit“1” is sent and all subtrees are analyzed in turn. If
the inputimage is indeed smooth, it will often happen that large
“zerotrees” will be pruned at once allowing for a very efficient
localization of the significant coefficients. On the other hand,
even in the presence of impulses or edges, only a small number
of high-pass coefficients will be significant and the recursive
pruning with its “divide and conquer” approach will single them
out efficiently.

As said before, a precise description of the SPIHT is be-
yond the scope of this paper and this qualitative synthesis over-
looks many details, which can be easily found in [16]. In the
same paper, an experimental performance analysis is carried
out on the well-known test image Lena (and on a different test
image) showing extremely good rate-distortion results. Besides
being efficient, the SPIHT is relatively simple and fast, does

(b) not require prior information and provides embedded coding,
Fig. 2. Example of wavelet transform: (a) “House" original and (b) wavelenamely, the output data produced at a given rate can be used to
transform, the low-pass subband is in the upper-left corner. decode a meaningful (but lower quality) image at any desired

lower rate. For all these reasons, it seems sensible to extend the

zation bit for the corresponding coefficients, followed by a furSPIHT, whenever possible, to other image coding applications,
ther bit for those of the first map. The process continues with tHke video coding or, as in the present case, multispectral image
following maps as desired. Thanks to the sorting informatiof0ding.

guantization bits can be used almost optimally by specifying bits

in order of significance. The quantization is still suboptimal for [ll. PROPOSEDTECHNIQUES

several reasons (the sorting is only partial, the thresholds are noltn

optimized, the guantization is scalar and greedy) but very Saté';F"IHT to the case of multispectral images, the first, based on

factory. . ;
Of course, the sorting information must be sent as well f03r'D transform coding, and, the latter, on gain-shape VQ.

the decoder to work properly, and this can be very expensive:

sending an explicit list of coordinates will not work. So, the cor@- 1€ 3-D Transform SPIHT

of the SPIHT is an efficient strategy for encoding the sorting The obvious way to extend the SPIHT to a 3-D source is to
information, which takes full advantage of the properties aéke a 3-D wavelet transform of the image and, from then on,
wavelet transform. The transform coefficients are organizedtim apply the usual encoding procedure, with 3-D instead of 2-D

this section, we propose two techniques that extend the
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trees. The interband (spectral) dependence will be automatically

exploited the same way the spatial dependence is. /%k \\‘FF\
This solution is certainly viable, and maybe the best pos-

sible, when the source has a significant size in the third dimen- /[ é T

sior? as in the case of video sequences or 3-D medical images ..

[18], but it does not work with images comprising only a few —
bands like the Landsat TM images used in the experiments of E'i

Section IV: a WT in the spectral dimension would not make
much sense in this case. On the other hand, even though the
WT possesses a number of desirable properties, it does not sat- EE
isfy any optimality criterion for image compression in general

or even for SPIHT-like image compression algorithms in partic-
ular. Shapiro himself suggests [15] that other subband decompo-
sitions and other hierarchical structures could lead to interesting
results. The recent work of Xioret al.[19], for example, shows
that equally good results can be achieved using an EZW-likg. 4. Tree structure used in the 3-D-SPIHT algorithm. The “black”
image coder with the DCT in place of the WT. As a matter gfoefficients form a spectral vector like those used in the gs-SPIHT.

fact, one ends up using a fixed transform, like the WT, only be-

cause of the complexity of a data-driven transform, but whe@yme_pand children generate the usual spatial orientation trees,
complexity is not an issue it is more reasonable to use the Kigjje the spectral child is root of another 3-D tree. Note that
which guarantees optimal (at least in a statistical sense) POWgfy the baseband coefficients have a spectral child, otherwise
concentration. _ _ _ multiple-parent coefficients would arise and the quantization al-
For these reasons, in the 3-D implementation of the SP”‘ﬁBrithm would not work properly.

for multispectral images, we resort to the usual WT in the spatial
domain but to a KLT in the spectral domain (this is also the solu-
tion adopted by Said and Pearlman in their color image codeé.)
Of course, some additional computation is needed to evaluate

the transformation matrix as well as a small overhead to encode o ) ]
it, but for vectors of small size they are both negligible. As a The use of vector quantization to encode image subbands is

matter of fact, given the limited increase in computation and efiuite common [13] and has its rationale in the well-known prin-
coding costs, it is also possible to consider more than one KEple of information theory which states that it is always pos-

so as to better match the statistics of the image [10]. Therefopéle to improve the encoding performance by quantizing vec-
we consider two alternative transform sequences: tors (blocks of samples) instead of scalars. While this is cer-

.Itainly true, one should be aware that such improvements come at

the price of an exponential increase of the complexity (in terms

- spatial WT of the original bands, followed by subband(-)f bqth memory and computation) with the vector size, which
readily exceeds any reasonable bound. Although a large number

adaptive spectral KLT. ; . I
In the latter case, one takes advantage of the implicit classifi(§)¢':]{—techmqueS have been devised to carry out VQ with limited

tion carried out by the wavelet transform, which separates tﬁgmplemy [3], the problem_ remains, so_mu.ch so that transform
coding still keeps the lead in most applications.

coefficients according to their resolution (fine/coarse) and ori- . . .
: . : : . When dealing with small vectors, however, where complexity
entation (horizontal/vertical/diagonal). It is reasonable to expect
) . L problems can be better controlled, VQ represents an extremely

that different subbands have different statistics, and that the dse " . o .

. - appealing tool: its structural freedom allows one to exploit all
of subband-matched KLT matrices will improve performance, . . i
. . . intrablock dependencies, be they linear or nonlinear, whereas
However, only numerical experiments will make clear whether_, ~. . L .
orHry linear dependencies are exploited in transform coding.

such an improvement is actually worth the increased overhea herefore, we devised a second SPIHT-based technique for

in terms of computation and side information. . . L

' : ._multispectral images where vector quantization is used to en-
After the transform, we have to define a 3-D h'erarCh'Céc]:)de spectral vectors of coefficients. More precisely, after the
structure to run the SPIHT algorithm. Based on a few prelirrw—m b ) P Y,

Gain-Shape SPIHT

* spectral KLT on the whole image, followed by spatial W
of the transform bands;

X . WT of all bands of the image is carried out, the homologous co-
nary experiments we selected the structure shown schematically .
L o ) cients from all the bands are stacked to form vectors, one for
in Fig. 4. Each coefficient in the baseband of the first KLT ban . . i
ch point, and these are then vector quantized to a given pre-

is the root of a tree and has four children: three of them Iocatga. . . -
. : . . . Ision. In Fig. 4, one such vector has been evidenced by using
in the horizontal, vertical and diagonal lowest-resolution sub- . ) :
: lack rather than white squares for its components in the var-
bands, the fourth in the baseband of the second KLT band. The o
iotis bands. The SPIHT can now work on these vectors like it

2However, note that this approach poses serious memory management pelik on scalars, with just a few changes: the magnitude of the

lems. For a 3-D image of size, say, 512 x 512 x 512 with 16-bit coefficients, tgyafficient is replaced by the norm of the vector, while the sign
transformed image alone requires 256 MB of memory and the lists maintainec% ti di It ther. to b | ’ d by the di
by the SPIHT (list of significant and insignificant pixels, list of insignificantIn ormation disappears altogetner, 10 be replaced Dy the direc-

sets) can grow much larger than that at high rates. tion of the vector. To implement the VQ-based SPIHT in this
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form, highly resemblant of the original algorithm, it is neces-
sary to use a gain-shape VQ codebook in which all codevectors
are obtained as products of the form

XiJ = §i8; 1)

where s; is a unit-norm shape vector (the “direction” of the
codevector) ang; is a scalar gain factor. This choice not only
allows us to introduce only minimal changes to the basic en-
coding structure of the SPIHT, but also reduces considerably = &
both encoding complexity and memory storage with respect to
unstructured VQ. .

As a matter of fact, even working at moderate bit-rates, as we
do in this work, a prohibitively large VQ codebook could turn
out to be necessary to accurately encode the mostimportant vec
tors, like those in the basebahBy using a product codebook,
one can hugely reduce such storage requirements: if the gain an
shape codebooks have siXg and Ng, respectively, a total of 1
N = N¢ Ng product codevectors are available, but the memory
occupation is only proportional t&§ + Ns. The encoding per-
formance is slightly inferior to that of an unconstrained codeig. 5. Band 5 of the TM test image.
book of the same siz& but the complexity saving is well worth
this price.

Progressive transmission is easily achieved by resorting to
tree-structured codebooks where a better and better approximiae in comparison with that of some reference techniques pro-
tion of the input vector is obtained with each new bit of inforposed in the literature [7], [8], [10].
mation, just like in ordinary scalar quantization. In particular, We use a TM multispectral image of a region near Lisbon in
to preserve the embedding, both the gain and shape codebd@sugal. There are six bands in the range 0.4xgh5each con-
need be tree-structured. While the joint design of ordinary gadisting of 2401 lines of 2401 pixel quantized at 8 bit per pixel
and shape codebooks is a deeply understood problem and a(bpp), plus a thermal band of different spatial resolution which
rithms exist [3] that provide jointly (locally) optimal codebooksjs not considered in the experiments for the sake of simplicity.
the same is not true for tree-structured gain and shape codle-test the algorithms under conditions of higher spectral cor-
books. In the Appendix we propose a simple algorithm for thelation we also use a 63-band hyperspectral image acquired by
design of the tree-structured gain and shape codebooks whith GER (geophysical environmental research) airborne sensor
also solves the related resource assignment problem (how maych portrays an agricultural area in Germany near the river
bits should be devoted to the gain, how many to the shape, aigein. Each band consists of 1953 lines of 512 pixels quan-
in which order). tized at 16 bpp; in particular, we use 16 bands (from 6 to 21)

Once the design problems are solved, the encoding algorittimat have a constant spectral resolution of 25.4 nm, and only 9
is conceptually very similar to the original SPIHT: once a vectdopp of meaningful information. In both cases, a square region
is found significant, because its gain (the norm) exceeds a givei512 x 512 pixels which exhibits all the land covers present
threshold, one or more bits of shape (the direction) are imme-the image is selected and used as a test set, while the rest of
diately sent which, together with the average gain for that clae image or part of it is used as a training set to design the VQ
of significance, forms the initial reproduction vector. Then, siggodebook. The wavelet transform in the SPIHT has five levels
nificant vectors are progressively refined, like in the ordinargf decomposition and is based on the symmlet-16 orthogonal
SPIHT, by sending gain and shape bits in the order singled audvelet [20]. Fig. 5 shows band 5 of the TM test image, while
at design time until all resources are consumed. Fig. 6 shows band 12 of the GER test image.

Also in the case of the gs-SPIHT, like for the 3-D-SPIHT de- Performance is assessed through the analysis of suitable
scribed before, it is possible to devise a subband-adaptive vexte-distortion curves. For now, we use the mean square error
sion where a different gain-shape codebook is designed and udistiortion measure, as is customary in the data compression
for each WT subband. Again, numerical experiments of the ndidld, but later on, we will consider other distortion criteria,

section will clarify the usefulness of such a variation. more closely related to possible applications of compressed
images, such as maximum error and probability of misclassifi-
IV. NUMERICAL RESULTS cation.

Rates are given on a per-band basis, i.e., 8 bpp means 8 bit

We present here the results of a number of experiments car. pixel for each band. The mean square error is defined as

ried out to assess the performance of the proposed algorlthl%e

3However, note that VQ is intrinsically lossy, hence perfect reconstruction is
not possible and the quality saturates at medium/high rates when sending more 2
bits will not improve the reconstruction any further. MSE = E[(z — )7] 2)
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Fig. 7. Rate-distortion performance of the 3-D-SPIHT for the TM test image:
(a) 3-D-SPIHT, (b) subband-adaptive 3-D-SPIHT, and (c) 2-D-SPIHT (band by
band encoding).

SNR

Fig. 6. Band 12 of the GER test image. (dB) ‘ T

16+ . . . o ]
or, equivalently, by the SNR 1al : ) i

_ (@)
E[x? B
SNR =10 logyy ——— 3 12r e
10 MSE 3) . 5

10 P

where E(-) denotes statistical average. In practice, lacking a =

accurate probabilistic model, statistical averages are replac 8y
by sample averages. All bands are normalized to zero mean
unitary power prior to encoding in order to obtain homogeneot
subjective results; otherwise, a minimum-MSE strategy woul ar
privilege high-power bands and underencode low-power one

(a) gs—-SPIHT
(b) adaptive gs—SPIHT

5 (c) 2d-SPITH
To facilitate the analysis of the results we will often use averag
(on B bands) rate and distortion, namely % X 02 o3 02 Rate (bop)
B
R = i Z Ry, Fig. 8. Rate-distortion performance of the gs-SPIHT for the TM testimage: (a)
B ) gs-SP_IHT, (b) subband-adaptive gs-SPIHT, and (c) 2-D-SPIHT (band by band
B encoding).
MSE = — > MSE
B b Compared to the 2-D-SPIHT (band by band SPIHT), whose re-

b=1

1 sults are also shown in the figure, the 3-D version guarantees
SNR =10 log, MSE (4) a2-4 dB improvement at all rates. The 3-D-SPIHT is imple-
mented both with the usual KLT-WT sequence (solid line), and
Under the normalized-power condition, such averages indegfih the WT-KLT sequence (dashed line), in which case a dif-
make sense. ferent KLT is used for each subband. It is clear that the neg-
ligible performance gain granted by this latter approach is not
worth the extra complexity, so it will not be considered anymore
In this subsection we analyze the results of several expdri-the experiments.
ments in order to select the encoding scheme that better satig=ig. 8 shows results for the gs-SPIHT, and compares the
fies the contrasting requirements of good performance, and lose of a single codebook for all subbands (solid line) with that
design and encoding complexity. of subband-matched codebooks (dashed line); as a reference,
Let us begin with the Landsat TM image. Fig. 7 shows th2-D-SPIHT performance is also reported again. With respect
encoding results of the 3-D-SPIHT; the average SNR alreatty the 3-D-SPIHT algorithm, only small differences in the
exceeds 12 dB at 0.2 bpp (a compression ratio of 40), and iperformance are observed, hence the choice between the
proves rapidly with the rate, up to more than 16 dB at 0.5 bppvo should be guided mainly by other considerations, such
Such values of the SNR (by definition, the SNR is 0 at 0 bp@)s implementation complexity, and prior information on the
correspond to medium and high quality images, as the reader sanrce. For the gs-SPIHT, however, the subband adaptivity does
verify by taking a look already at Figs. 13 and 14 discussed latprovide some limited improvement over the single-codebook

A. Selecting the Encoding Algorithm
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Fig.9. Rate-distortion performance of the 3-D-SPIHT for the GER testimag,

the 16 bands are encoded in groupg3of= 16, 8, 4 or 1 (2-D-SPIHT) bands. Ei’g. 11. Rate-distortion performance of various techniques for the TM test

image: (a) 3-D-SPIHT (proposed), (b) macroblock-adaptive KLT-DCT [8], (c)
class-adaptive KLT-DCT [10], and (d) Kronecker-representation VQ [7].

SNR
(dB)
16+ « : I place ofB individual scalars and hence maintains much smaller
lists of coordinates. However it exhibits the saturation phenom-
14+ H i i S|
enon already described in Section Ill, and clearly visible above
12} 0.2 bpp in the curve® = 8 and B = 16.
Summing up all this experimental evidence, 3-D-SPIHT and
10+ i i i
0s-SPIHT appear to provide approximately equivalent perfor-
8k mance. The former requires much less design effort and memory
storage (the KLT matrix can even be computed on line) so it will
i , be our choice for subsequent experiments. Nonetheless, when
at (a) gs-SPIHT (16 bands) | central memory is the more precious resource, or when non-
, (b): gs—SPIHT ( 8 bands) . . .
() gs-SPIHT (4 bands) | linear dependencies are dominant, the gs-SPIHT should be pre-
2 (d) 2d-SPIHT ferred. In the following experiments we will uge = 6 for the
0 ; ; - - . TM image, andB = 16 for the GER image.
o] 0.05 0.1 0.15 0.2 0.25 Rate (bpp)

Fig. 10. Rate-distortion performance of the gs-SPIHT for the GER test imag%i Comparison with Conventional Methods

the 16 bands are encoded in groupsiot= 16, 8, 4 or 1 (2-D-SPIHT) bands.  The performance of the selected technique (3-D-SPIHT with
single KLT) is now compared to that of three “conventional”
case, so it could be considered as a convenient choice wineethods, based on transform coding and vector quantization,
complexity is not an issue. proposed specifically for the compression of multispectral im-
Results for the GER image are presented in Fig. 9 (3-lges. The technique proposed by Saghail.[8] (referred to as
SPIHT, single KLT) and Fig. 10 (gs-SPIHT, single codebookKLT-DCT, here) uses spectral KLT followed by spatial DCT; to
The general behavior is similar to that observed in the TM imagecount for the nonstationarity of the image, a different KLT ma-
case, but the same values of the SNR are obtained at mtrehis computed and used for each image macroblock. Gelli and
smaller rates, as a consequence of the stronger interband depeggi [10] use VQ to classify each pixel of the image, and then
dency which characterizes this image. encode the residuals by means of class-adaptive spectral KLT,
Dealing with a 16-band image, we now have the opportuniggnd spatial DCT. Finally, Canta and Poggi [7] carry out VQ by
to study the effects of jointly encoding many bands; in particneans of a Kronecker-product gain-shape codebook (KRVQ)
ular, we use groups dB = 1 (isolated encoding), 4, 8, and 16which enables the use of large 3-D blocks with reasonable com-
bands. Of course, the performance improves \itim general, plexity.
but the gain is smaller and smaller &sincreases. So, going Fig. 11 presents encoding results for the TM image: 3-D-
from B = 4 to B = 8 guarantees a 1-1.5 dB improvementSPIHT outperforms all reference techniques at all rates gaining
while going fromB = 8 to B = 16 adds just another 0.5 dB more than 2 dB on the average over both KLT-DCT and KRVQ.
on the average. Moreover, high&'s call for more encoding Only the classification-based technique (Class. KLT-DCT) has a
resources, which are not always available. In the 3-D-SPIHdomparable performance but it requires a considerable training
which maintains large lists of coordinates, memory is the critickd design the classifier and the class-adaptive KLT. A similar
resource, and? > 16 could not even be implemented (with 128ehavior is observed for the GER image (Fig. 12) with the only
MB of memory). The gs-SPIHT is less memory and computdifference that here the performance gain is significant also with
tion intensive because it has to manage a single spectral vectaeispect to the Class (KLT-DCT) technique. In summary, the
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SNR
(dB)

161

14r

12}

10+

(a) 3d-SPIHT

(b) KLT-DCT

(c) Class. KLT-DCT
(d) KRVQ

0 0.05 0.1 0.15 0.2 0.25 Rate (bpp)

Fig. 12. Rate-distortion performance of various techniques for the GER test
image: (a) 3-D-SPIHT (proposed), (b) macroblock-adaptive KLT-DCT [8], (c)
class-adaptive KLT-DCT [10], and (d) Kronecker-representation VQ [7].

3-D-SPIHT seems to be preferable to conventional methods (at
least the set we could test) because of its limited complexity,
its fully progressive transmission ability, the absence of ané
training phase, and also, as the experiments show, for its better ©
rate-distortion performance.

C. Assessing the Image Quality

As Salq before, the mean square error (and re'lated. SNF\;)EiIr_:% 13. Detail of band 5 of the TM test image: (a) original, (b) compressed at
a convenient performance measure because of its universaityppp, and (c) Fig. 5 difference image (five times amplified).
tractability, and fairly good agreement with other measures, but
cannot be the only performance criterion when images must be
used for further (possibly unknown) processing and their se-
mantic value should be carefully preserved. Therefore, we are
going to consider here some alternative criteria.

Subjective as it can be, itisimportant to first gain some insigh)
about the visual appearance of images encoded at various bit
rates. In each of Figs. 13—-16 we show a section of the original,
encoded, and difference image (the errors are multiplied by five
and shifted around 128 for display) of a single band of a test
image.

Fig. 13 shows band 5 of the TM testimage encoded at 0.2 bpp:
many fine details are lost and the borders between different re-
gions are often blurred; the difference image is highly structuregd)
(confirming that not all relevant information has been encoded)
showing peaks of error in the border regions. Hence, this image
is likely not to be accurate enough for the most demanding ap-
plications. On the contrary, at 0.5 bpp (Fig. 14) the difference
image is almost flat and also fine details and borders are faith-
fully encoded, despite the high compression ratio, 16: 1.

The GER image presents a different behavior: both at 0.2 bpp
(Fig. 15) and at 0.3 bpp (Fig. 16) the encoding quality is veryt)
high, and also the difference images hardly show any structure,
looking more like white noise. With respect to the original, the
most relevant differences are in homogeneous regions, which
appear to be more flat after compression. Our guess is that al-
ready at 0.2 bpp all (or most of) the structural information has

been_correctly r_eprOduced’_ and all f_u':ther_ encoding resourcesgP 14 petail of band 5 of the TM test image: (a) original, (b) compressed at
to refine the noise present in the original image. In other wordss bpp, and (c) difference image (five times amplified).
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Fig. 16. Detail of band 12 of the GER test image: (a) original, (b) compressed

Fig. 15. Detail of band 12 of the GER test image: (a) original, (b) compress@ﬁo'3 bpp, and (c) difference image (5 times amplified).
at 0.2 bpp, and (c) difference image (five times amplified).
Maximum Error

low rate compression has the effect of removing sensor noist , ,, ‘ ‘

and the compressed imatpokseven better than the original. (@) No point corrected

To be more conservative, it is at least reasonable to concluc 120t (5) 63 points corrected
. X R (c) 630 points corrected

that lossless encoding is often an unnecessary (but expensi

requirement.

Thel* norm, namely, the maximum encoding error over the
whole image, is also a performance measure often considered
the literature. In fact, it is assumed that a small maximum erro  eof
is a guarantee that the diagnostic value of the images is full
preserved; in such a case it is customary to spealeaf-loss- 401
lesscoding. The 3-D-SPIHT proposed here becomes lossless f
sufficiently high rates, but we want to investigate its behavior
at lower bit-rates. Fig. 17 reports the global maximum erroror ¢ : ; ; ‘
the TM image as a function of the rate. Although generally de.  ° o1 o2 s 04 Rate (bpp)
creasing with the rate, itis still pretty large (44 out of 256 levels)

o ; ig. 17. Maximum error as a function of the rate for the TM test image: (a)
even at 0.5 bpp. However, this is mainly due to a small numbr?(?correction of the outliers, (b) correction of 63 values (0.001 bpp of side

of outliers, as is clear by the analysis of Fig. 18 which shows thgormation), and (c) correction of 630 values (0.01 bpp of side information).
histogram of the errors at 0.3 bpp: the probability of errors larger

than 20 is clearly negligible, even though the maximum errorjghp and 0.01 bpp of side information are sent. The same consid-
64. Therefore, we experimented with a simple error correctiations hold for the GER image, Fig. 19, with the only differ-
scheme, in which the coordinates (band and spatial location)edfce that the errors are generally smaller here when compared
each of thel pixels with the largest errors are sent, together witf the maximum value of 511, and the results at 0.3 bpp are sim-
their value in the Original domain quantized at 5-bit preCiSiomar to those obtained at 0.5 bpp for the TM.

By choosingL one controls the amount of side information re- Finally, to analyze the usefulness of compressed images for
quired. In this way, much better results are obtained, as showjihsequent applications, we carried out some classification ex-
Fig. 17. Taking again the case of 0.5 bpp as a reference, the Mg&riments. A simple minimum distance classifier was designed
imum error decreases to 25 and 20, respectively, when 0.084 the original image for a variable number of class¥s=

100

80

201 7
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Points x 10° ‘ ‘ ' ' TABLE I
ol ERROR RATES IN THE CLASSIFICATION OF
THE GER TEST IMAGE COMPRESSED ATO.1, 0.2,AND 0.3 bpp,
1.8r USING TwO TO EIGHT CLASSES
e classes | misclassification rate (%)
14r 0.1 bpp 0.2bpp 0.3 bpp
1.2 2 4.16 2.42 2.21
1k i 3 9.26 5.56 5.15
4 13.33 8.15 7.52
o-8f 5 17.74  10.86  10.47
0.6} 6 21.14 12.83 12.31
o4k 7 23.02 13.99 13.27
o2 8 27.57 16.96 15.65

(o]

40 Erorlevel)  400d agreement with the SNR and maximum error performance,

Fig. 18. Histogram of the encoding errors at 0.3 bpp for the TM test image.namely’ the TM image heedsat Iee}St 0.3 bpp to a.ChIe.Ve areason-
able level of accuracy, and results improve steadily with the rate.
Much better results are obtained for the GER image already at

0.2 bpp, while going to 0.3 bpp does not reduce significantly the

Maximum Error

error. When the number of classes increases, the misclassifica-
250 ... (@) No point corrected ] tion rate becomes relatively large, but this comes as no surprise
: ::)) 11:113‘)02::232:; given the very high activity of these images. Better results could
2001 , P probably be achieved using context-based classifiers and having
some prior knowledge on the images.
In particular, note that these results are rather conservative
18or since the original image is characterized itself by a nonzero mis-
classification rate with respect to the (unknown) ground truth,
1001 due to the presence of noise. Compression tends to smooth out
edges (introducing errors) but also to filter noise (correcting er-
50t rors). Only the net increase should be really accounted for. It is
not easy to tell the classification of the original from classifi-
o : , , , : cation of the compressed image, as evidenced by Fig. 20 with
o 0.05 0.1 0.15 0.2 025 Rate (bpp)  reference to the TMNV = 5 classes, and 0.3 bpp.
Fig. 19. Maximum error as a function of the rate for the GER test image: (a) V. CONCLUSIONS AND FUTURE RESEARCH

no correction of the outliers, (b) correction of 161 values (0.001 bpp of side
information), and (c) correction of 1613 values (0.01 bpp of side information). |n this paper, we proposed several modified SPIHT algo-

rithms for the compression of multispectral images, using either

TABLE | KLT or VQ in the spectral dimension in order to take advantage

ERROR RATES IN THE CLASSIFICATION OF f th rona inter n n nci h him xhibi
THE TM TEST IMAGE COMPRESSED AT0.1, 0.3,AND 0.5 bpp ofthe st O. g inte band depe de c_es that SUC_ ages € .b t
USING TWO TO EIGHT CLASSES Our experiments show an app_roxmately_ equivalent rate-dis-

tortion performance for the various algorithms proposed, but

classes | misclassification rate (%) the nonadaptive KLT-based version (3-D-SPIHT) seems to
0.1bpp 0.3bpp 0.5 bpp be preferable because of its lower design complexity. It also
2 8.91 5.38 3.95 compares favorably with other techniques proposed recently
i iégg ‘9"23 g'gg for the same task, both when multispectral and hyperspectral
5 18:17 10:75 7:79 images are considered.
6 20.82 12.73 9.32 To better assess the absolute quality of the compressed im-
7 28.44 17.95 13.37 ages, we considered, besides the usual SNR measure, visual in-
8 3146 2011  15.15 spection, maximum error measure, and misclassification rate.

According to all measures, it is clear that the encoding is far
from being lossless or near-lossless, as is also obvious given the
2, .-+, 8. In the absence of ground truth data, the classificati@mompression ratios used, 16 : 1 or more for the TM image, 30: 1
of the original image is assumed as a reference against whiclotanore for the GER. However, it is also clear that often these
compare the results of the classification of the compressed irequirements are not necessary, as the degradation introduced
ages. by compression is much less than the intrinsic noise level of the
We report the probability of misclassification fé¢f = 2 images.

to 8 classes and for some values of the rate in Table | for theWork is currently under way to investigate in more depth this
TM image and Table Il for the GER image. The results are point. In particular, a joint project with other research groups in
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cepts of vector quantization [3], and especially with the GLA
(or LBG algorithm) for the codebook design.

We want to design a product codebook where both compo-
nent codebooks are tree-structured, so as to carry out low-com-
plexity progressive encoding of large vectors. In order to ob-
tain a good performance the two codebooks should be designed
jointly. However, we show that a truly optimal design is not
feasible, and propose a simple, greedy, design procedure which
provides satisfactory experimental performance.

For the sake of clarity, we will now make a number of sim-
plifying assumptions, to be removed later. So, let us suppose
that both component codebooks, $agndsS, are described by
balancedrees, and have the same si¥gin addition, let us as-
sume that for each input vecterthe encoder sends alternately
one bit for the gain and one for the shape. Under these condi-
tions, a joint codebook design procedure is readily outlined. Let

{gn7 n:207217"'72B:N} (5)

be the set of codebooks corresponding to the various layers of
the gain tree, where

The last layer corresponds to the full-resolution codeb@tk
while G is composed of a single elemept, which is the root
of the tree. Analogous definitions will hold for the shape code-
books, with the only difference that these will be composed by
unit-norm vectors, rather than scalars.

Now, itis a trivial task to design the optimal size-1 codebooks

G* andS! over the training se¥ = {y, ¥, -+, Yy, }. It re-
sults in

. A Y

9% = |l9ll, Si = W (7)

wherey is the centroid off . At 0 bits, all input vectors: are
reproduced agts;. If a single encoding bit per vector is avail-
able, for the assumptions made above it goes to refine the gain,
so we should now desigf?. This is a straightforward task as
well, since it simply consists in the application of the ordinary
GLA. The gain root is split in two new values, sgy, = g1 +¢
andgr = g —e, which, givens!, partition the training set iffz,
and7g according to a minimum distortion criterion. Then, the
Salues ofgr, andgr and the corresponding partition are updated
until convergence. A similar procedure is carried out to design
all other layers, for example§? given G2, where each couple
ltaly is under development with the goal (among others) to ast codewords is designed on the subtraining set relative to their
sess the quality of compressed remote sensing images for eB\éjrent codeword.

ronment monitoring application. More immediate experiments note that, contrary to what happens in conventional product-
will concern the use of contextual classifier (based on Mark@ydebook VQ, each codebook is desigrgiden rather than
random field models) which can partly make up for the noise fintly with, some other codebooks. This makes the design very
the image and provide more reliable results. easy, just like in ordinary TSVQ, but also introduces some per-
formance loss.

Now, let us remove the simplifying assumptions considered
above, beginning with the fixed encoding path (alternation of
gain and shape bits). Indeed, it is easy to envision situations

In this Appendix, we describe the design of the tree-struathere an unequal resource assignment is more desirable. The
tured gain-shape codebooks used in the gs-SPIHT algorithshesign procedure needs only minor changes. Supgtsand
The reader is assumed to be already familiar with the basic c&# are the last codebooks already designed; now, Gdth

(b)
Fig. 20. Five-class minimum-distance classification of (a) the TM test ima
and (b) the TM test image compressed at 0.3 bpp.

APPENDIX
VQ CODEBOOK DESIGN
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givenS™ andS?™ giveng” are designed and the correspondin
encoding distortion over the training set is computed: the coc
book that leads to the smallest distortion is accepted, while t 9o
other one is simply discarded. Starting from the roots, the whc . N
encoding path is singled out. g0 g1
Another unnecessary constraint is that the tree be balan:
and, more basically, that it grow one layer at a time rath
than one node at a time. By removing such a constraint \ -~
are bound to design a sequence of gain and shape codebc
{G, G2, G3, ---} and{St, 82, &3, ---} where the(n + 1)st
is obtained by theth through the split of a single node. Again,
given G™ and §™ one has to decide which node of whict
tree to split. This is conceptually simple, as we will see, bi
computationally heavy, and in practice we will use a simplifie
version. At any given moment, through the encoding rule, tt
two codebooks partition the training set (and the input space)
n x m regions (Fig. 21)7;; comprises all the training vectors
that are encoded by* ands’". Accordingly, we define

Ea
I

S00

i >

Z,.=J7Z;, and 7.;=\J7.; 8) -
j 13

Following the usual approach for the growth of unbalancddd. 21. Schematic representation of the tree-structured gain and shape
TSVQ codebooks [3] we now want to carry out the Sp|lt th c,[odebooks and of the induced partition of the input space.
maximizes the slope along the empirical rate-distortion curve,
namely, the ratidA D /AR)|, whereA D is the decrease in dis- reproduction gair87’/4 upon discovery, we consider the root
tortion andAR is the increase in rate deriving from the splitgain codebook* as composed by the collection of all these ini-
Taking node of the gain tree, for example, these quantities at&l values3T'/4, 37°/8, - - - rather than by a single root value. It
readily evaluated as goes by itself that this difference does not change the structure

of the codebook design algorithm, but only its implementation.

£

AR = (9)

=
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