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Compression of Multispectral Images by
Three-Dimensional SPIHT Algorithm

Pier Luigi Dragotti, Giovanni Poggi, and Arturo R. P. Ragozini

Abstract—We carry out low bit-rate compression of multispec-
tral images by means of the Said and Pearlman’s SPIHT algo-
rithm, suitably modified to take into account the interband de-
pendencies. Two techniques are proposed: in the first, a three-di-
mensional (3-D) transform is taken (wavelet in the spatial domain,
Karhunen–Loeve in the spectral domain) and a simple 3-D SPIHT
is used; in the second, after taking a spatial wavelet transform,
spectral vectors of pixels are vector quantized and a gain-driven
SPIHT is used. Numerous experiments on two sample multispec-
tral images show very good performance for both algorithms.

Index Terms—Compression, multispectral images, remote
sensing, transform coding.

I. INTRODUCTION

REMOTE sensing images are of interest for a large number
of applications, such as geology, earth-resource manage-

ment, pollution monitoring, meteorology, and military surveil-
lance. As a consequence, there is a constant growth both in
the number and in the performance of remote sensing facilities,
which produce larger and larger amounts of data that have to
be transmitted, processed, and stored efficiently. The problem
stems from the raw size of the images considered, and is espe-
cially urgent when dealing with multispectral1 images where the
amount of data to be managed further increases with the number
of bands. As an example, a single multispectral image acquired
by the Thematic Mapper (TM) sensor carried on board of the
Landsat V satellite, amounts to more than 200 MB. New sen-
sors are bound to have higher radiometric precision, as well as
better spatial and spectral resolution. Images composed by tens
or even hundreds of spectral bands are highly valuable because
of the wealth of information they provide on the nature of the
ground, but their management can easily overwhelm the avail-
able resources. These problems can be significantly reduced by
using some form of data compactation or data compression [1].

Data compactation, or lossless coding, is a reversible pro-
cessing in which the original data can always be recovered from
the encoded data without any loss of information. Everyday ex-
amples are the “compress” routine of Unix or the “zip” routines
available on DOS/Windows. Reversibility is no doubt a desir-
able property since the original data are always more rich of
information than any processed (possibly “enhanced”) version.
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1In the following, unless otherwise stated, we use “multispectral” also in place
of “hyperspectral,” irrespective of the number of component bands.

On the other hand, since lossless coding exploits only the statis-
tical redundancy of the image, the compression ratio achieved
rarely exceeds 2 : 1, not enough to cope with serious data man-
agement issues.

A much better performance is guaranteed by datacompres-
sion, or lossy coding, which easily achieves compression ratios
of 10 : 1 and more. As the name suggests, however, in this case,
one has to tolerate some loss of information (errors) in exchange
for the increased efficiency: the higher the compression ratio the
lower the image quality as measured by means of some suitable
distortion function.

A number of techniques have been proposed in the last few
years for the compression of multispectral images. All of them
try to take advantage, in various degrees, of the peculiarities of
these images, especially of the high intraband and interband re-
dundancies they exhibit. They can be roughly classified in two
families: techniques based on vector quantization (VQ), and
techniques based on transform coding.

Vector quantization [2], [3] is theoretically the optimal
block coding strategy. Indeed, it is the direct application
of the principles of information theory, and all other block
coding techniques (e.g., transform coding) can be seen as
structurally constrained forms of VQ. However, unconstrained
VQ is characterized by a computational complexity that
grows exponentially with the block size. As a consequence,
practical coding schemes based on VQ are forced to use
small blocks, thereby exploiting the statistical dependencies
among only a small number of pixels and/or spectral bands.
In [4], for example, VQ operates on purely spectral blocks,
thus neglecting any spatial dependency; on the contrary, in
[5] it is used with purely spatial blocks, and the spectral
dependencies are exploited through nonlinear block prediction;
a similar hybrid scheme based on VQ and address prediction
is proposed in [6]. In all of these cases, a small block size is
considered (no more than 16 pixels) with detrimental effects on
the performance. In [7], instead, large three-dimensional (3-D)
blocks are represented as the Kronecker product of smaller
vectors, which are then jointly vector quantized: although the
encoder is not optimal anymore, the use of larger blocks leads
to a better performance.

To obtain a good encoding performance with limited com-
plexity, many researchers rely on transform coding techniques
[1], where a linear transform decorrelates the input data and
concentrates most of the power in a few coefficients so that
subsequent quantization is more efficient. For example, in [8]
the Karhunen–Loeve transform (KLT) is used to decorrelate
the data in the spectral domain, followed by a two-dimensional
(2-D) discrete cosine transform (DCT) in the spatial domain;
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in [9], instead, a hybrid predictive/transform coding scheme is
proposed. In [10], to take into account the nonstationarity of the
image, pixels are first classified (by means of tree-structured
VQ) so as to use subsequent transform coding (KLT+DCT) later
on groups of homogeneous pixels.

In the transform coding framework, wavelet transform [11],
[12] deserves a special treatment because of its peculiar char-
acteristics. Indeed, due to its implementation as a recursive fil-
tering procedure, it can easily work on large blocks (even on the
whole image) thereby providing an excellent power concentra-
tion. This is not possible with the KLT which is much more com-
plex and needs prior statistical information. Moreover, unlike
other simple transforms, notably the DCT, the wavelet transform
does not spread the power associated with discontinuities in the
whole transform domain thus providing a simple and elegant
way to deal with nonstationarity. These properties (among the
others) motivate an intense research on wavelet transform (WT)
in the image coding field [13], also with reference to multispec-
tral images (e.g., [14]). Only recently, however, with the em-
bedded zerotree wavelet (EZW) encoding technique proposed
by Shapiro [15], and subsequently refined by Said and Pearlman
[16], WT has been incorporated into a very successful encoding
technique.

In this paper, whose first results appeared in [17], we extend
the Said–Pearlman algorithm or SPIHT (set partitioning in hi-
erarchical trees) to the multispectral case and propose two new
encoding algorithms. Indeed, the SPIHT possesses a number of
desirable properties (good performance, low complexity, em-
bedded encoding) which make it a perfect candidate for the
task of compressing multispectral images, possibly on board.
Although the extension to 3-D images is conceptually straight-
forward, it presents new problems (mainly concerning imple-
mentation issues) and new opportunities (offered by the strong
interband dependencies) that have to be addressed specifically.

We propose and compare here two alternative techniques for
the compression of multispectral images. Both use the wavelet
transform in the spatial domain but they differ in how they take
into account spectral dependencies: by means of KLT in the
first case, by means of tree-structured VQ in the second case.
After transform and (in the latter case) VQ, both use the zerotree
coding approach by applying suitably modified versions of the
SPIHT on the resulting images of coefficients.

After a brief review of the SPIHT algorithm in Section II, the
proposed techniques are described in detail in Section III (ex-
cept for the VQ codebook design which is deferred to the Ap-
pendix). Section IV is devoted to the assessment of the perfor-
mance, also in comparison with those of some reference tech-
niques. Finally, Section V draws conclusions.

II. THE SPIHT ALGORITHM

In this section, we review just the basic concepts and termi-
nology concerning the SPIHT that are relevant for the remainder
of the paper; for a thorough description of the algorithm the
reader is referred to the original papers of Shapiro [15] and Said
and Pearlman [16].

All transform coding techniques consist of three main steps
(see Fig. 1): 1) transform, 2) quantization, and 3) inverse

Fig. 1. Block scheme of transform coding.

transform. The transform is usually unitary (norm-preserving)
so that quantization errors in the transform domain correspond
to equivalent errors on the reconstructed signal. It has the
main goal of concentrating the input power, spread over a
large number of samples, into as small a number of transform
coefficients as possible. In fact, for a given total power, it is
much more convenient to quantize a single large coefficient
than many small ones.

Unfortunately, an “ideal” transform does not exist. For
wide-sense stationary sources, the Karhunen–Loeve transform
is well-known to be optimal in a statistical sense [3] since it
concentrates as much power as possible in the first coefficients.
However, it is computationally expensive, requires a trans-
mission overhead, and does not work well on nonstationary
images. The data-independent DCT overcomes many of these
problems and works extremely well on flat low-pass regions
of the image. However, it does a poor job in the presence of
discontinuities (edges, boundaries between regions, impulses)
spreading the block power on a large number of coefficients.

Wavelet transform (WT) represents, in a way, the answer to
the limited ability of the DCT (and other transforms) to rep-
resent efficiently both the low-pass part and the details of an
image. A small low-pass version of the image is extracted which
accounts for most of the power, while the details can be recov-
ered by a series of directional high-pass bands (see Fig. 2). What
is especially important, an impulse in the original image con-
tributes significantly to just a small number of coefficients in
the WT, corresponding to the same spatial location at various
resolutions, and therefore it can be encoded very efficiently. Al-
though no claim of optimality can be made for the WT, it is no
doubt a powerful tool for signal processing in general and image
coding in particular [12], [13].

After the transform, be it WT, KLT, or DCT, there is the
problem of conveniently assigning the encoding resources; as
seen before, one should quantize larger coefficients first, but the
location of such coefficients is not knowna priori. The SPIHT
algorithm tackles the bit assignment problem at its root. The
basic idea is to sort all coefficients in order of decreasing magni-
tude so that an almost “perfect” bit assignment can be achieved.
More precisely, coefficients are grouped according to their sig-
nificance with respect to a set of octavely decreasing thresholds

: a coefficient whose magnitude exceeds or
equals is said to be significant for that threshold. The encoder
sends a sequence of significance maps which locate significant
coefficients at level , etc., and uses quantization bits
only for coefficients found significant thus far. For example, in
the sequence of coefficients (−5, 0,−2, 7, 2, 1,−3, −1), the first
map comprises the linear coordinates to indicate that the
first and the fourth coefficients are significant with respect to the
threshold 4; for each of these coefficients, the sign and a quan-
tization bit are immediately sent. Likewise, the second map is

, and allows the encoder to send the sign and a quanti-
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(a)

(b)

Fig. 2. Example of wavelet transform: (a) “House” original and (b) wavelet
transform, the low-pass subband is in the upper-left corner.

zation bit for the corresponding coefficients, followed by a fur-
ther bit for those of the first map. The process continues with the
following maps as desired. Thanks to the sorting information,
quantization bits can be used almost optimally by specifying bits
in order of significance. The quantization is still suboptimal for
several reasons (the sorting is only partial, the thresholds are not
optimized, the quantization is scalar and greedy) but very satis-
factory.

Of course, the sorting information must be sent as well for
the decoder to work properly, and this can be very expensive:
sending an explicit list of coordinates will not work. So, the core
of the SPIHT is an efficient strategy for encoding the sorting
information, which takes full advantage of the properties of
wavelet transform. The transform coefficients are organized in

Fig. 3. Tree structure used in the SPIHT algorithm.

trees (see Fig. 3) with a baseband coefficient as root; each tree
corresponds roughly to a square region of the original image,
the root itself can be considered as the low-pass version of that
region while the descendants correspond to finer and finer de-
tails. Three “spatial orientation trees” depart from the root, in
the horizontal, vertical, and diagonal subbands. Now, since the
image is for the most part smooth, significant coefficients are
usually concentrated in the upper levels of the trees and only
rarely in the bottom layers. This fact is exploited by recursively
encoding the significance of subtrees rather than that of single
coefficients. If all coefficients in a subtree are insignificant for a
given threshold a single bit, say “0,” will signal this occurrence;
otherwise a bit “1” is sent and all subtrees are analyzed in turn. If
the input image is indeed smooth, it will often happen that large
“zerotrees” will be pruned at once allowing for a very efficient
localization of the significant coefficients. On the other hand,
even in the presence of impulses or edges, only a small number
of high-pass coefficients will be significant and the recursive
pruning with its “divide and conquer” approach will single them
out efficiently.

As said before, a precise description of the SPIHT is be-
yond the scope of this paper and this qualitative synthesis over-
looks many details, which can be easily found in [16]. In the
same paper, an experimental performance analysis is carried
out on the well-known test image Lena (and on a different test
image) showing extremely good rate-distortion results. Besides
being efficient, the SPIHT is relatively simple and fast, does
not require prior information and provides embedded coding,
namely, the output data produced at a given rate can be used to
decode a meaningful (but lower quality) image at any desired
lower rate. For all these reasons, it seems sensible to extend the
SPIHT, whenever possible, to other image coding applications,
like video coding or, as in the present case, multispectral image
coding.

III. PROPOSEDTECHNIQUES

In this section, we propose two techniques that extend the
SPIHT to the case of multispectral images, the first, based on
3-D transform coding, and, the latter, on gain-shape VQ.

A. The 3-D Transform SPIHT

The obvious way to extend the SPIHT to a 3-D source is to
take a 3-D wavelet transform of the image and, from then on,
to apply the usual encoding procedure, with 3-D instead of 2-D
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trees. The interband (spectral) dependence will be automatically
exploited the same way the spatial dependence is.

This solution is certainly viable, and maybe the best pos-
sible, when the source has a significant size in the third dimen-
sion2 as in the case of video sequences or 3-D medical images
[18], but it does not work with images comprising only a few
bands like the Landsat TM images used in the experiments of
Section IV: a WT in the spectral dimension would not make
much sense in this case. On the other hand, even though the
WT possesses a number of desirable properties, it does not sat-
isfy any optimality criterion for image compression in general
or even for SPIHT-like image compression algorithms in partic-
ular. Shapiro himself suggests [15] that other subband decompo-
sitions and other hierarchical structures could lead to interesting
results. The recent work of Xionget al.[19], for example, shows
that equally good results can be achieved using an EZW-like
image coder with the DCT in place of the WT. As a matter of
fact, one ends up using a fixed transform, like the WT, only be-
cause of the complexity of a data-driven transform, but when
complexity is not an issue it is more reasonable to use the KLT
which guarantees optimal (at least in a statistical sense) power
concentration.

For these reasons, in the 3-D implementation of the SPIHT
for multispectral images, we resort to the usual WT in the spatial
domain but to a KLT in the spectral domain (this is also the solu-
tion adopted by Said and Pearlman in their color image coder.)
Of course, some additional computation is needed to evaluate
the transformation matrix as well as a small overhead to encode
it, but for vectors of small size they are both negligible. As a
matter of fact, given the limited increase in computation and en-
coding costs, it is also possible to consider more than one KLT
so as to better match the statistics of the image [10]. Therefore,
we consider two alternative transform sequences:

• spectral KLT on the whole image, followed by spatial WT
of the transform bands;

• spatial WT of the original bands, followed by subband-
adaptive spectral KLT.

In the latter case, one takes advantage of the implicit classifica-
tion carried out by the wavelet transform, which separates the
coefficients according to their resolution (fine/coarse) and ori-
entation (horizontal/vertical/diagonal). It is reasonable to expect
that different subbands have different statistics, and that the use
of subband-matched KLT matrices will improve performance.
However, only numerical experiments will make clear whether
such an improvement is actually worth the increased overhead
in terms of computation and side information.

After the transform, we have to define a 3-D hierarchical
structure to run the SPIHT algorithm. Based on a few prelimi-
nary experiments we selected the structure shown schematically
in Fig. 4. Each coefficient in the baseband of the first KLT band
is the root of a tree and has four children: three of them located
in the horizontal, vertical and diagonal lowest-resolution sub-
bands, the fourth in the baseband of the second KLT band. The

2However, note that this approach poses serious memory management prob-
lems. For a 3-D image of size, say, 512 × 512 × 512 with 16-bit coefficients, the
transformed image alone requires 256 MB of memory and the lists maintained
by the SPIHT (list of significant and insignificant pixels, list of insignificant
sets) can grow much larger than that at high rates.

Fig. 4. Tree structure used in the 3-D-SPIHT algorithm. The “black”
coefficients form a spectral vector like those used in the gs-SPIHT.

same-band children generate the usual spatial orientation trees,
while the spectral child is root of another 3-D tree. Note that
only the baseband coefficients have a spectral child, otherwise
multiple-parent coefficients would arise and the quantization al-
gorithm would not work properly.

B. Gain-Shape SPIHT

The use of vector quantization to encode image subbands is
quite common [13] and has its rationale in the well-known prin-
ciple of information theory which states that it is always pos-
sible to improve the encoding performance by quantizing vec-
tors (blocks of samples) instead of scalars. While this is cer-
tainly true, one should be aware that such improvements come at
the price of an exponential increase of the complexity (in terms
of both memory and computation) with the vector size, which
readily exceeds any reasonable bound. Although a large number
of techniques have been devised to carry out VQ with limited
complexity [3], the problem remains, so much so that transform
coding still keeps the lead in most applications.

When dealing with small vectors, however, where complexity
problems can be better controlled, VQ represents an extremely
appealing tool: its structural freedom allows one to exploit all
intrablock dependencies, be they linear or nonlinear, whereas
only linear dependencies are exploited in transform coding.

Therefore, we devised a second SPIHT-based technique for
multispectral images where vector quantization is used to en-
code spectral vectors of coefficients. More precisely, after the
WT of all bands of the image is carried out, the homologous co-
efficients from all the bands are stacked to form vectors, one for
each point, and these are then vector quantized to a given pre-
cision. In Fig. 4, one such vector has been evidenced by using
black rather than white squares for its components in the var-
ious bands. The SPIHT can now work on these vectors like it
did on scalars, with just a few changes: the magnitude of the
coefficient is replaced by the norm of the vector, while the sign
information disappears altogether, to be replaced by the direc-
tion of the vector. To implement the VQ-based SPIHT in this
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form, highly resemblant of the original algorithm, it is neces-
sary to use a gain-shape VQ codebook in which all codevectors
are obtained as products of the form

(1)

where is a unit-norm shape vector (the “direction” of the
codevector) and is a scalar gain factor. This choice not only
allows us to introduce only minimal changes to the basic en-
coding structure of the SPIHT, but also reduces considerably
both encoding complexity and memory storage with respect to
unstructured VQ.

As a matter of fact, even working at moderate bit-rates, as we
do in this work, a prohibitively large VQ codebook could turn
out to be necessary to accurately encode the most important vec-
tors, like those in the baseband.3 By using a product codebook,
one can hugely reduce such storage requirements: if the gain and
shape codebooks have size and , respectively, a total of

product codevectors are available, but the memory
occupation is only proportional to . The encoding per-
formance is slightly inferior to that of an unconstrained code-
book of the same size but the complexity saving is well worth
this price.

Progressive transmission is easily achieved by resorting to
tree-structured codebooks where a better and better approxima-
tion of the input vector is obtained with each new bit of infor-
mation, just like in ordinary scalar quantization. In particular,
to preserve the embedding, both the gain and shape codebooks
need be tree-structured. While the joint design of ordinary gain
and shape codebooks is a deeply understood problem and algo-
rithms exist [3] that provide jointly (locally) optimal codebooks,
the same is not true for tree-structured gain and shape code-
books. In the Appendix we propose a simple algorithm for the
design of the tree-structured gain and shape codebooks which
also solves the related resource assignment problem (how many
bits should be devoted to the gain, how many to the shape, and
in which order).

Once the design problems are solved, the encoding algorithm
is conceptually very similar to the original SPIHT: once a vector
is found significant, because its gain (the norm) exceeds a given
threshold, one or more bits of shape (the direction) are imme-
diately sent which, together with the average gain for that class
of significance, forms the initial reproduction vector. Then, sig-
nificant vectors are progressively refined, like in the ordinary
SPIHT, by sending gain and shape bits in the order singled out
at design time until all resources are consumed.

Also in the case of the gs-SPIHT, like for the 3-D-SPIHT de-
scribed before, it is possible to devise a subband-adaptive ver-
sion where a different gain-shape codebook is designed and used
for each WT subband. Again, numerical experiments of the next
section will clarify the usefulness of such a variation.

IV. NUMERICAL RESULTS

We present here the results of a number of experiments car-
ried out to assess the performance of the proposed algorithms,

3However, note that VQ is intrinsically lossy, hence perfect reconstruction is
not possible and the quality saturates at medium/high rates when sending more
bits will not improve the reconstruction any further.

Fig. 5. Band 5 of the TM test image.

also in comparison with that of some reference techniques pro-
posed in the literature [7], [8], [10].

We use a TM multispectral image of a region near Lisbon in
Portugal. There are six bands in the range 0.4–2.5m, each con-
sisting of 2401 lines of 2401 pixel quantized at 8 bit per pixel
(bpp), plus a thermal band of different spatial resolution which
is not considered in the experiments for the sake of simplicity.
To test the algorithms under conditions of higher spectral cor-
relation we also use a 63-band hyperspectral image acquired by
the GER (geophysical environmental research) airborne sensor
which portrays an agricultural area in Germany near the river
Rhein. Each band consists of 1953 lines of 512 pixels quan-
tized at 16 bpp; in particular, we use 16 bands (from 6 to 21)
that have a constant spectral resolution of 25.4 nm, and only 9
bpp of meaningful information. In both cases, a square region
of 512 512 pixels which exhibits all the land covers present
in the image is selected and used as a test set, while the rest of
the image or part of it is used as a training set to design the VQ
codebook. The wavelet transform in the SPIHT has five levels
of decomposition and is based on the symmlet-16 orthogonal
wavelet [20]. Fig. 5 shows band 5 of the TM test image, while
Fig. 6 shows band 12 of the GER test image.

Performance is assessed through the analysis of suitable
rate-distortion curves. For now, we use the mean square error
distortion measure, as is customary in the data compression
field, but later on, we will consider other distortion criteria,
more closely related to possible applications of compressed
images, such as maximum error and probability of misclassifi-
cation.

Rates are given on a per-band basis, i.e., 8 bpp means 8 bit
per pixel for each band. The mean square error is defined as

(2)
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Fig. 6. Band 12 of the GER test image.

or, equivalently, by the SNR

(3)

where denotes statistical average. In practice, lacking an
accurate probabilistic model, statistical averages are replaced
by sample averages. All bands are normalized to zero mean and
unitary power prior to encoding in order to obtain homogeneous
subjective results; otherwise, a minimum-MSE strategy would
privilege high-power bands and underencode low-power ones.
To facilitate the analysis of the results we will often use average
(on bands) rate and distortion, namely

(4)

Under the normalized-power condition, such averages indeed
make sense.

A. Selecting the Encoding Algorithm

In this subsection we analyze the results of several experi-
ments in order to select the encoding scheme that better satis-
fies the contrasting requirements of good performance, and low
design and encoding complexity.

Let us begin with the Landsat TM image. Fig. 7 shows the
encoding results of the 3-D-SPIHT; the average SNR already
exceeds 12 dB at 0.2 bpp (a compression ratio of 40), and im-
proves rapidly with the rate, up to more than 16 dB at 0.5 bpp.
Such values of the SNR (by definition, the SNR is 0 at 0 bpp)
correspond to medium and high quality images, as the reader can
verify by taking a look already at Figs. 13 and 14 discussed later.

Fig. 7. Rate-distortion performance of the 3-D-SPIHT for the TM test image:
(a) 3-D-SPIHT, (b) subband-adaptive 3-D-SPIHT, and (c) 2-D-SPIHT (band by
band encoding).

Fig. 8. Rate-distortion performance of the gs-SPIHT for the TM test image: (a)
gs-SPIHT, (b) subband-adaptive gs-SPIHT, and (c) 2-D-SPIHT (band by band
encoding).

Compared to the 2-D-SPIHT (band by band SPIHT), whose re-
sults are also shown in the figure, the 3-D version guarantees
a 2–4 dB improvement at all rates. The 3-D-SPIHT is imple-
mented both with the usual KLT-WT sequence (solid line), and
with the WT-KLT sequence (dashed line), in which case a dif-
ferent KLT is used for each subband. It is clear that the neg-
ligible performance gain granted by this latter approach is not
worth the extra complexity, so it will not be considered anymore
in the experiments.

Fig. 8 shows results for the gs-SPIHT, and compares the
use of a single codebook for all subbands (solid line) with that
of subband-matched codebooks (dashed line); as a reference,
2-D-SPIHT performance is also reported again. With respect
to the 3-D-SPIHT algorithm, only small differences in the
performance are observed, hence the choice between the
two should be guided mainly by other considerations, such
as implementation complexity, and prior information on the
source. For the gs-SPIHT, however, the subband adaptivity does
provide some limited improvement over the single-codebook
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Fig. 9. Rate-distortion performance of the 3-D-SPIHT for the GER test image;
the 16 bands are encoded in groups ofB = 16, 8, 4 or 1 (2-D-SPIHT) bands.

Fig. 10. Rate-distortion performance of the gs-SPIHT for the GER test image;
the 16 bands are encoded in groups ofB = 16, 8, 4 or 1 (2-D-SPIHT) bands.

case, so it could be considered as a convenient choice when
complexity is not an issue.

Results for the GER image are presented in Fig. 9 (3-D-
SPIHT, single KLT) and Fig. 10 (gs-SPIHT, single codebook).
The general behavior is similar to that observed in the TM image
case, but the same values of the SNR are obtained at much
smaller rates, as a consequence of the stronger interband depen-
dency which characterizes this image.

Dealing with a 16-band image, we now have the opportunity
to study the effects of jointly encoding many bands; in partic-
ular, we use groups of (isolated encoding), 4, 8, and 16
bands. Of course, the performance improves within general,
but the gain is smaller and smaller asincreases. So, going
from to guarantees a 1–1.5 dB improvement,
while going from to adds just another 0.5 dB
on the average. Moreover, higher’s call for more encoding
resources, which are not always available. In the 3-D-SPIHT,
which maintains large lists of coordinates, memory is the critical
resource, and could not even be implemented (with 128
MB of memory). The gs-SPIHT is less memory and computa-
tion intensive because it has to manage a single spectral vector in

Fig. 11. Rate-distortion performance of various techniques for the TM test
image: (a) 3-D-SPIHT (proposed), (b) macroblock-adaptive KLT-DCT [8], (c)
class-adaptive KLT-DCT [10], and (d) Kronecker-representation VQ [7].

place of individual scalars and hence maintains much smaller
lists of coordinates. However it exhibits the saturation phenom-
enon already described in Section III, and clearly visible above
0.2 bpp in the curves and .

Summing up all this experimental evidence, 3-D-SPIHT and
gs-SPIHT appear to provide approximately equivalent perfor-
mance. The former requires much less design effort and memory
storage (the KLT matrix can even be computed on line) so it will
be our choice for subsequent experiments. Nonetheless, when
central memory is the more precious resource, or when non-
linear dependencies are dominant, the gs-SPIHT should be pre-
ferred. In the following experiments we will use for the
TM image, and for the GER image.

B. Comparison with Conventional Methods

The performance of the selected technique (3-D-SPIHT with
single KLT) is now compared to that of three “conventional”
methods, based on transform coding and vector quantization,
proposed specifically for the compression of multispectral im-
ages. The technique proposed by Saghriet al.[8] (referred to as
KLT-DCT, here) uses spectral KLT followed by spatial DCT; to
account for the nonstationarity of the image, a different KLT ma-
trix is computed and used for each image macroblock. Gelli and
Poggi [10] use VQ to classify each pixel of the image, and then
encode the residuals by means of class-adaptive spectral KLT,
and spatial DCT. Finally, Canta and Poggi [7] carry out VQ by
means of a Kronecker-product gain-shape codebook (KRVQ)
which enables the use of large 3-D blocks with reasonable com-
plexity.

Fig. 11 presents encoding results for the TM image: 3-D-
SPIHT outperforms all reference techniques at all rates gaining
more than 2 dB on the average over both KLT-DCT and KRVQ.
Only the classification-based technique (Class. KLT-DCT) has a
comparable performance but it requires a considerable training
to design the classifier and the class-adaptive KLT. A similar
behavior is observed for the GER image (Fig. 12) with the only
difference that here the performance gain is significant also with
respect to the Class (KLT-DCT) technique. In summary, the



DRAGOTTI et al.: COMPRESSION OF MULTISPECTRAL IMAGES BY 3-D SPIHT ALGORITHM 423

Fig. 12. Rate-distortion performance of various techniques for the GER test
image: (a) 3-D-SPIHT (proposed), (b) macroblock-adaptive KLT-DCT [8], (c)
class-adaptive KLT-DCT [10], and (d) Kronecker-representation VQ [7].

3-D-SPIHT seems to be preferable to conventional methods (at
least the set we could test) because of its limited complexity,
its fully progressive transmission ability, the absence of any
training phase, and also, as the experiments show, for its better
rate-distortion performance.

C. Assessing the Image Quality

As said before, the mean square error (and related SNR) is
a convenient performance measure because of its universality,
tractability, and fairly good agreement with other measures, but
cannot be the only performance criterion when images must be
used for further (possibly unknown) processing and their se-
mantic value should be carefully preserved. Therefore, we are
going to consider here some alternative criteria.

Subjective as it can be, it is important to first gain some insight
about the visual appearance of images encoded at various bit
rates. In each of Figs. 13–16 we show a section of the original,
encoded, and difference image (the errors are multiplied by five
and shifted around 128 for display) of a single band of a test
image.

Fig. 13 shows band 5 of the TM test image encoded at 0.2 bpp:
many fine details are lost and the borders between different re-
gions are often blurred; the difference image is highly structured
(confirming that not all relevant information has been encoded)
showing peaks of error in the border regions. Hence, this image
is likely not to be accurate enough for the most demanding ap-
plications. On the contrary, at 0.5 bpp (Fig. 14) the difference
image is almost flat and also fine details and borders are faith-
fully encoded, despite the high compression ratio, 16 : 1.

The GER image presents a different behavior: both at 0.2 bpp
(Fig. 15) and at 0.3 bpp (Fig. 16) the encoding quality is very
high, and also the difference images hardly show any structure,
looking more like white noise. With respect to the original, the
most relevant differences are in homogeneous regions, which
appear to be more flat after compression. Our guess is that al-
ready at 0.2 bpp all (or most of) the structural information has
been correctly reproduced, and all further encoding resources go
to refine the noise present in the original image. In other words,

(a)

(b)

(c)

Fig. 13. Detail of band 5 of the TM test image: (a) original, (b) compressed at
0.2 bpp, and (c) Fig. 5 difference image (five times amplified).

(a)

(b)

(c)

Fig. 14. Detail of band 5 of the TM test image: (a) original, (b) compressed at
0.5 bpp, and (c) difference image (five times amplified).
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(a)

(b)

(c)

Fig. 15. Detail of band 12 of the GER test image: (a) original, (b) compressed
at 0.2 bpp, and (c) difference image (five times amplified).

low rate compression has the effect of removing sensor noise,
and the compressed imagelookseven better than the original.
To be more conservative, it is at least reasonable to conclude
that lossless encoding is often an unnecessary (but expensive)
requirement.

The norm, namely, the maximum encoding error over the
whole image, is also a performance measure often considered in
the literature. In fact, it is assumed that a small maximum error
is a guarantee that the diagnostic value of the images is fully
preserved; in such a case it is customary to speak ofnear-loss-
lesscoding. The 3-D-SPIHT proposed here becomes lossless for
sufficiently high rates, but we want to investigate its behavior
at lower bit-rates. Fig. 17 reports the global maximum error on
the TM image as a function of the rate. Although generally de-
creasing with the rate, it is still pretty large (44 out of 256 levels)
even at 0.5 bpp. However, this is mainly due to a small number
of outliers, as is clear by the analysis of Fig. 18 which shows the
histogram of the errors at 0.3 bpp: the probability of errors larger
than 20 is clearly negligible, even though the maximum error is
64. Therefore, we experimented with a simple error correction
scheme, in which the coordinates (band and spatial location) of
each of the pixels with the largest errors are sent, together with
their value in the original domain quantized at 5-bit precision.
By choosing one controls the amount of side information re-
quired. In this way, much better results are obtained, as shown in
Fig. 17. Taking again the case of 0.5 bpp as a reference, the max-
imum error decreases to 25 and 20, respectively, when 0.001

(a)

(b)

(c)

Fig. 16. Detail of band 12 of the GER test image: (a) original, (b) compressed
at 0.3 bpp, and (c) difference image (5 times amplified).

Fig. 17. Maximum error as a function of the rate for the TM test image: (a)
no correction of the outliers, (b) correction of 63 values (0.001 bpp of side
information), and (c) correction of 630 values (0.01 bpp of side information).

bpp and 0.01 bpp of side information are sent. The same consid-
erations hold for the GER image, Fig. 19, with the only differ-
ence that the errors are generally smaller here when compared
to the maximum value of 511, and the results at 0.3 bpp are sim-
ilar to those obtained at 0.5 bpp for the TM.

Finally, to analyze the usefulness of compressed images for
subsequent applications, we carried out some classification ex-
periments. A simple minimum distance classifier was designed
on the original image for a variable number of classes:
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Fig. 18. Histogram of the encoding errors at 0.3 bpp for the TM test image.

Fig. 19. Maximum error as a function of the rate for the GER test image: (a)
no correction of the outliers, (b) correction of 161 values (0.001 bpp of side
information), and (c) correction of 1613 values (0.01 bpp of side information).

TABLE I
ERROR RATES IN THE CLASSIFICATION OF

THE TM TEST IMAGE COMPRESSED AT0.1, 0.3,AND 0.5 bpp
USING TWO TO EIGHT CLASSES

. In the absence of ground truth data, the classification
of the original image is assumed as a reference against which to
compare the results of the classification of the compressed im-
ages.

We report the probability of misclassification for
to 8 classes and for some values of the rate in Table I for the
TM image and Table II for the GER image. The results are in

TABLE II
ERROR RATES IN THE CLASSIFICATION OF

THE GER TEST IMAGE COMPRESSED AT0.1, 0.2,AND 0.3 bpp,
USING TWO TO EIGHT CLASSES

good agreement with the SNR and maximum error performance,
namely, the TM image needs at least 0.3 bpp to achieve a reason-
able level of accuracy, and results improve steadily with the rate.
Much better results are obtained for the GER image already at
0.2 bpp, while going to 0.3 bpp does not reduce significantly the
error. When the number of classes increases, the misclassifica-
tion rate becomes relatively large, but this comes as no surprise
given the very high activity of these images. Better results could
probably be achieved using context-based classifiers and having
some prior knowledge on the images.

In particular, note that these results are rather conservative
since the original image is characterized itself by a nonzero mis-
classification rate with respect to the (unknown) ground truth,
due to the presence of noise. Compression tends to smooth out
edges (introducing errors) but also to filter noise (correcting er-
rors). Only the net increase should be really accounted for. It is
not easy to tell the classification of the original from classifi-
cation of the compressed image, as evidenced by Fig. 20 with
reference to the TM, classes, and 0.3 bpp.

V. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we proposed several modified SPIHT algo-
rithms for the compression of multispectral images, using either
KLT or VQ in the spectral dimension in order to take advantage
of the strong interband dependencies that such images exhibit.
Our experiments show an approximately equivalent rate-dis-
tortion performance for the various algorithms proposed, but
the nonadaptive KLT-based version (3-D-SPIHT) seems to
be preferable because of its lower design complexity. It also
compares favorably with other techniques proposed recently
for the same task, both when multispectral and hyperspectral
images are considered.

To better assess the absolute quality of the compressed im-
ages, we considered, besides the usual SNR measure, visual in-
spection, maximum error measure, and misclassification rate.
According to all measures, it is clear that the encoding is far
from being lossless or near-lossless, as is also obvious given the
compression ratios used, 16 : 1 or more for the TM image, 30 : 1
or more for the GER. However, it is also clear that often these
requirements are not necessary, as the degradation introduced
by compression is much less than the intrinsic noise level of the
images.

Work is currently under way to investigate in more depth this
point. In particular, a joint project with other research groups in
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(a)

(b)

Fig. 20. Five-class minimum-distance classification of (a) the TM test image
and (b) the TM test image compressed at 0.3 bpp.

Italy is under development with the goal (among others) to as-
sess the quality of compressed remote sensing images for envi-
ronment monitoring application. More immediate experiments
will concern the use of contextual classifier (based on Markov
random field models) which can partly make up for the noise of
the image and provide more reliable results.

APPENDIX

VQ CODEBOOK DESIGN

In this Appendix, we describe the design of the tree-struc-
tured gain-shape codebooks used in the gs-SPIHT algorithm.
The reader is assumed to be already familiar with the basic con-

cepts of vector quantization [3], and especially with the GLA
(or LBG algorithm) for the codebook design.

We want to design a product codebook where both compo-
nent codebooks are tree-structured, so as to carry out low-com-
plexity progressive encoding of large vectors. In order to ob-
tain a good performance the two codebooks should be designed
jointly. However, we show that a truly optimal design is not
feasible, and propose a simple, greedy, design procedure which
provides satisfactory experimental performance.

For the sake of clarity, we will now make a number of sim-
plifying assumptions, to be removed later. So, let us suppose
that both component codebooks, sayand , are described by
balancedtrees, and have the same size; in addition, let us as-
sume that for each input vectorthe encoder sends alternately
one bit for the gain and one for the shape. Under these condi-
tions, a joint codebook design procedure is readily outlined. Let

(5)

be the set of codebooks corresponding to the various layers of
the gain tree, where

(6)

The last layer corresponds to the full-resolution codebook,
while is composed of a single element,which is the root
of the tree. Analogous definitions will hold for the shape code-
books, with the only difference that these will be composed by
unit-norm vectors, rather than scalars.

Now, it is a trivial task to design the optimal size-1 codebooks
and over the training set . It re-

sults in

(7)

where is the centroid of . At 0 bits, all input vectors are
reproduced as . If a single encoding bit per vector is avail-
able, for the assumptions made above it goes to refine the gain,
so we should now design . This is a straightforward task as
well, since it simply consists in the application of the ordinary
GLA. The gain root is split in two new values, say,
and , which, given , partition the training set in
and according to a minimum distortion criterion. Then, the
values of and and the corresponding partition are updated
until convergence. A similar procedure is carried out to design
all other layers, for example, given , where each couple
of codewords is designed on the subtraining set relative to their
parent codeword.

Note that, contrary to what happens in conventional product-
codebook VQ, each codebook is designedgiven, rather than
jointly with, some other codebooks. This makes the design very
easy, just like in ordinary TSVQ, but also introduces some per-
formance loss.

Now, let us remove the simplifying assumptions considered
above, beginning with the fixed encoding path (alternation of
gain and shape bits). Indeed, it is easy to envision situations
where an unequal resource assignment is more desirable. The
design procedure needs only minor changes. Supposeand

are the last codebooks already designed; now, both
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given and given are designed and the corresponding
encoding distortion over the training set is computed: the code-
book that leads to the smallest distortion is accepted, while the
other one is simply discarded. Starting from the roots, the whole
encoding path is singled out.

Another unnecessary constraint is that the tree be balanced
and, more basically, that it grow one layer at a time rather
than one node at a time. By removing such a constraint we
are bound to design a sequence of gain and shape codebooks

and where the st
is obtained by the th through the split of a single node. Again,
given and one has to decide which node of which
tree to split. This is conceptually simple, as we will see, but
computationally heavy, and in practice we will use a simplified
version. At any given moment, through the encoding rule, the
two codebooks partition the training set (and the input space) in

regions (Fig. 21): comprises all the training vectors
that are encoded by and . Accordingly, we define

and (8)

Following the usual approach for the growth of unbalanced
TSVQ codebooks [3] we now want to carry out the split that
maximizes the slope along the empirical rate-distortion curve,
namely, the ratio , where is the decrease in dis-
tortion and is the increase in rate deriving from the split.
Taking node of the gain tree, for example, these quantities are
readily evaluated as

(9)

(10)

where indicates the cardinality of , while and
are the gain and shape selected by the encoder forin the

codebooks and . In a similar way, the same quantities are
evaluated for the generic nodeof the shape tree. The split that
produces the maximum rate-distortion benefit is then accepted
and the corresponding codebook is updated accordingly. We ex-
plicitly note that this is agreedyprocedure, since the long-term
effects of a split are not taken into account.

Unfortunately, this procedure is computationally very inten-
sive, opposite to our goal. Therefore, as a reasonable compro-
mise between complexity and performance, we decided to grow
the gain codebook one layer at a time and to retain the reg-
ular structure used in the original SPIHT. On the contrary, the
shape codebook is grown one node at a time; the choice be-
tween growing a layer of the gain codebook or a node of the
shape codebook is again based on the slope of the rate-distor-
tion curve. Finally, since in the SPIHT algorithm a vector whose
norm is in the range is automatically assigned the initial

Fig. 21. Schematic representation of the tree-structured gain and shape
codebooks and of the induced partition of the input space.

reproduction gain upon discovery, we consider the root
gain codebook as composed by the collection of all these ini-
tial values rather than by a single root value. It
goes by itself that this difference does not change the structure
of the codebook design algorithm, but only its implementation.
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