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ABSTRACT

In this paper, we discuss a framework for the distributed
compression of vector sources, based on our previous work
on distributed transform coding [1, 2, 3, 4]. In particular, our
goal is to develop a strategy of first applying a suitable dis-
tributed Karhunen-Lòeve transform, whereafter each com-
ponent can be handled by standard distributed compression
techniques. In the present paper, we first study the scenario
where all but one terminal furnish a noisy approximation of
their observation. For the case where the underlying vector
is Gaussian, and the added noise is also Gaussian, we estab-
lish that indeed, it is optimal for the last terminal to apply a
(local) transform to its observations, and to separately com-
press each component in the transform domain. Then, we
outline how this leads to a general simple distributed com-
pression strategy for Gaussian vector sources: Each termi-
nal applies a suitable local transform to its observations, and
encodes the resulting components separately in a Wyner-
Ziv fashion, i.e., treating the compressed descriptions of all
other terminals as side information available to the decoder.
This achieves the best known performance. The optimum
performance in unknown to date.

1. INTRODUCTION

The implementation of distributed compression strategies
has recently received considerable attention [5, 6, 7, 8, 9,
10]. In this paper, we address the situation where multiple
terminals each sample a part of a large object, characterized
by a vectorX of lengthN , and the goal is to reconstruct
the entire large object to within the smallest mean-squared
error possible. For the scope of the present paper, we re-
strict attention to the case whereX is a vector of jointly
Gaussian random variables. One task is to determine the
smallest rates required to achieve a fixed distortion level.
However, this problem is unsolved to date, even for the case
N = 2. Bounds appear in [11, 12]. Our goal is to extend the
currently known best achievable rates to the scenario where
each terminal observes a sub-vector of the overall vectorX.
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Fig. 1. The distributed KLT problem: Distributed compres-
sion of multiple correlated vector sources.

We discuss a scheme where each terminal applies a suitable
transform, whereafter each component can be compressed
separately. Hence, there are two key parts to the solution:
the optimal transform, and the bit allocation between the
components. These two tasks have to be addressed jointly.

In the present paper, we first study in detail a simplified
scenario of the general distributed compression problem,
where all but one of the terminals furnish noisy approxima-
tions of their observations to the decoder, and the last termi-
nal is asked to optimally compress its observations, consid-
ering that the decoder has access to side information. This
is a slight variation on the problem studied by Wyner and
Ziv [13, 14], the variation being in thedistortion criterion:
the ultimate goal of the overall coding effort is to enable
the decoder to furnish the best approximation of the entire
vectorX. Then, we outline how this leads to a certain dis-
tributed compression strategy. It cannot be shown that this
strategy is optimal since the optimum is unknown to date,
but it can be shown that this strategy achieve the currently
known best performance for the case of a Gaussian random
vectorX and a mean-squared error fidelity criterion.



2. PROBLEM STATEMENT

The distributed compression problem addressed in this pa-
per is illustrated in Figure1. There areL terminals (in the
figure,L = 3), each observation a part of the vector

X
def
= X1, X2, . . . , XM . (1)

Throughout this paper, we assume thatX is a vector ofN
jointly Gaussian random variables, with mean zero and co-
variance matrixΣ. The assumption thatX has zero mean
is not crucial, but it considerably simplifies the notation.
Therefore, it is kept throughout the paper. Moreover, through-
out the paper, we assume that the fidelity (or distortion) cri-
terion is the mean-squared error between the vectorX and
the best estimatêX that the decoder can produce based on
the approximation furnished by the encoders,

D = E‖X − X̂‖2. (2)

3. THE CONDITIONAL KLT WITH NOISY SIDE
INFORMATION

In this section, we extend our previous results [1, 2, 4] to
the scenario illustrated in Figure 2: The decoder has access
to side information about the vectorX, as follows. The
encoder samples the firstM components of the vectorX,
denoted by

XS = (X1, . . . , XM ), (3)

with zero mean and covariance matrix denoted byΣS . The
side information at the decoder is derived from the remain-
ingN −M components of the vectorX, denoted by

XSc = (XM+1, . . . , XN ). (4)

We denote the covariance matrix betweenXS andXSc by
ΣSSc . However, the decoder cannot directly accessXSc .
Instead, a transformed and noisy version is available,

Y ′Sc = C2aXSc + Z, (5)

whereZ = (ZM+1, . . . , ZM−1+k2) denotes the vector of
added Gaussian noise. We assume it to be of zero mean
and covariance matrixΣZ . For most of our derivations in
the sequel,Z need not be independent ofXSc ; denote their
cross-correlation matrix byΣZSc .

Remark 1. The additive noisesZM+1, . . . , ZM−1+k2 can
be thought of as modeling the effect of compressing the side
informationXSc . Note that at this point, we are assuming
the noise componentsZM+1, . . . , ZM−1+k2 neither to be
mutually independent, nor to be independent of the signal
XSc . However, clearly, the Gaussian assumption does im-
pose certain limitations to our model.
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Fig. 2. Compression involving partial observation (or sub-
sampling) and side information.

As a consequence of the assumption thatX is a vector
of jointly Gaussian random variables, and that the additive
noiseZ is also Gaussian, we can write

XSc = AXS +A2Y
′
Sc + V, (6)

where(XS , Y
′
Sc) andV ∈ CN−M are independent Gaus-

sian random vectors, andA ∈ CN−M×N−M andA2 ∈
C
N−M×k2 are constant matrices. By the same token, we

can write

(IMA )XS = BY ′Sc +W, (7)

whereY ′Sc andW ∈ CN are independent Gaussian random
vectors, andB ∈ CN×k2 is a constant matrix.

The goal of our consideration is to minimize the distor-
tion

E
[
‖X − X̂‖2|Y ′Sc = y′Sc

]
. (8)

As we will see, at least in the Gaussian case considered in
this paper, the minimizing solution will not require the en-
coder to know the value of the realizationy′Sc . In line with
our previous work [1, 2, 4], two perspectives are of inter-
est to our further considerations: First, the problem of find-
ing the bestk-dimensional approximation, and second, the
problem of compressingXS using the least number of bits.

3.1. Bestk-dimensional Approximation

For the problem illustrated in Figure 2, suppose that En-
coder 1 may furnish ak-dimensional approximation of its
M -dimensional observation. Thek dimensions should be
picked such as to minimize the distortion criterion (8). What
is the best set ofk dimensions? To determine this, we



rewrite the distortion criterion as follows:

E
[
‖X − X̂‖2|Y ′Sc = y′Sc

]
= E

[
‖XS − X̂S‖2|Y ′Sc = y′Sc

]
+ E

[
‖XSc − X̂Sc‖2|Y ′Sc = y′Sc

]
The key step is to relate the estimatêXSc to the estimate
X̂S . SinceX̂Sc is the (conditional) minimum mean-squared
error estimate ofXSc , it can be expressed as

X̂Sc = E [XSc |T, Y ′Sc = y′Sc ] ,

whereT is the approximation furnished by Encoder 1. Us-
ing (6), this can be rewritten as

X̂Sc = E [AXS +A2Y
′
Sc + V |T, Y ′Sc = y′Sc ]

= E [AXS + V |T, Y ′Sc = y′Sc ] .

Finally, sinceT is only a function ofXS , it is independent
of V , hence,

X̂Sc = AE [XS |T, Y ′Sc = y′Sc ]
= AX̂S .

Using this insight, we find

E
[
‖X − X̂‖2|Y ′Sc = y′Sc

]
= E

[
‖XS − X̂S‖2|Y ′Sc = y′Sc

]
+ E

[
‖AXS + V −AX̂S‖2|Y ′Sc = y′Sc

]
(9)

Noting thatV is, by construction, independent ofY ′Sc , and
collecting terms, the mean-squared error can be expressed
as

E
[
‖(IMA )XS − (IMA )X̂S‖2|Y ′Sc = y′Sc

]
+ E‖V ‖2. (10)

The last step is to apply a transformC1 to (IMA )XS such that
the resulting components, denoted byYS , are conditionally
uncorrelated givenY ′Sc . In the considered Gaussian sce-
nario, such a transform exists: it is simply the eigendecom-
position of the conditional covariance matrix of(IMA )XS

givenY ′Sc . This conditional covariance matrix is simply the
covariance matrixΣW ofW as defined in Equation (7). De-
note the eigendecomposition ofΣW byQΛQH , whereQ is
a unitary matrix, andΛ is diagonal. Then,YS = QXS , and
in terms ofYS , the distortion can be written as

E
[
‖YS − ŶS‖2|Y ′Sc = y′Sc

]
+ E‖V ‖2

=
M∑
m=1

E
[
|Ym − Ŷm|2|Y ′Sc = y′Sc

]
+ E‖V ‖2

The last expression permits a simple characterization of
the solution to the considered problem, as follows.
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Fig. 3. Compression involving subsampling and side infor-
mation: An optimal strategy.

Theorem 1. The bestk-dimensional approximation that En-
coder 1 can furnish is a subspace of the eigenvectors of the
matrix ΣW . The bestk dimensions are the eigenvectors
corresponding to thek largest eigenvaluesλ2

i of the matrix
ΣW .

3.2. Compression Problem

Reconsider the problem illustrated in Figure 2, but suppose
now that Encoder 1 may furnish a description usingR bits
per sample (i.e.,R bits for each observedM -dimensional
vector). Again, this description should be shaped in such a
way as to minimize the distortion criterion (8).

Theorem 2. The rate-distortion function for the problem
with side information, illustrated in Figure 2, whereX is a
vector of jointly Gaussian random variables, is given by

R(D) = min
Di

M∑
i=1

max
{

1
2

log2

ν2
i

Di
, 0
}

(11)

whereν2
i are the eigenvalues of the matrixΣW , and where

the minimum is over allDi satisfying
∑M
i=1Di+E‖V ‖2 ≤

D.

4. DISTRIBUTED COMPRESSION STRATEGIES

In an information-theoretic setting, the optimal codebooks
to achieve the promises of Theorem 2 are Gaussian. The
fact that each component in the transform domain is en-
coded separately means that the encoding operation can be
thought of as adding independent (across theM compo-
nents) and white (across time) Gaussian noise to the com-
ponentsY1, Y2, . . . , YM . The components that get zero rate
in the rate allocation problem (11) are simply omitted.



This insight suggests a simple algorithm to design cod-
ing strategies: Once theM encoding terminals in Figure 3
have been replaced by additive (white) Gaussian noise (or
simply omitted wheneverRi = 0), the overall situation be-
comes symmetric, and we can proceed in a round robin fash-
ion: We fix the transformC1 and the additive noises for En-
coder 1, and optimize the transform and the rate allocation
for Encoder 2. The convergence of this procedure will be
studied later. Notice, however, that thetotal rates for each
encoder, denoted byR(l), for l = 1, 2, . . . L, (i.e., for exam-
ple, from Figure 3, we seeR(1) = R1 + R2 + . . . + RM ),
arecoupled. In particular, they have to satisfy sum rate con-
ditions that can be derived in extension of the arguments
presented in [11] This compression strategy is analyzed in
more detail in [4].

5. CONCLUSIONS AND EXTENSIONS

This paper develops the key building block of a distributed
compression strategy for Gaussian vector sources. The strat-
egy consists in applying a local transform (a distributed KLT)
to each vector source independently, whereafter the compo-
nents of that vector source are encoded using standard side
information encoding. The full strategy will be described
and analyzed in [4].

A. FORMULAE

The matricesA andA2 in Equation (6) can be calculated
from standard results about multivariate Gaussian distribu-
tions. In the simple case where the additive noiseZ is inde-
pendent of the signal vectorX, this can be expressed as(

A
A2

)
= Cov(XSc , X)

(
IM 0
0 C2a

)H
·

((
IM 0
0 C2a

)
Σ
(
IM 0
0 C2a

)H
+
(

0 0
0 ΣZ

))−1

. (12)

Similarly, the covariance matrixΣW of the random vector
W in Equation (7) also follows from standard results about
multivariate Gaussian distributions. In the simple case where
the additive noiseZ is independent of the signal vectorX,
it can be written as

ΣW = (IMA )ΣS(IMAH)

−(IMA )ΣSScCH2a(C2aΣScCH2a + ΣZ)−1

C2aΣHSSc(IMA
H). (13)
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