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ABSTRACT
This paper introduces a new wavelet-based compression scheme
that combines the use of linear approximation and parametric es-
timation. Our proposed scheme differs from the conventional
wavelet-based schemes in two ways: first, the encoder uses lin-
ear approximation and second, the decoding process is non-linear
as it is combined with parametric estimation. We consider a sim-
ple model of one-dimensional (1-D) piecewise smooth function and
show that, with our scheme, it is possible to achieve the same decay
in the distortion-rate bound as conventional wavelet-based schemes
that employ non-linear approximation. A practical compression al-
gorithm that achieves the distortion bound and uses the new concept
of sampling of signal with finite rate of innovation is also presented
together with the simulation results.

1. INTRODUCTION

Wavelet theory has had a profound impact on modern signal pro-
cessing theory, particularly in the area of signal approximation and
compression (see [1] for reviews). The performance of wavelets in
compression, in relationship to their approximation properties, has
been extensively studied by means of mathematical analysis [2].
Usually, the analysis involves an important class of signals which
includes functions with finite degree of smoothness. The efficiency
of a compression scheme is normally measured by the decay rate of
its distortion-rate curve D(R).

It is well known that non-linear approximation of 1-D piecewise
smooth functions using a wavelet basis provides superior estimates
to linear approximation with the same basis. Let us first assume
that we have a smooth continuous function that satisfies a uniform
Lipschitz condition of order α . Then, the distortion-rate bound of
a wavelet-based compression scheme that allocates the bits using a
linear approximation strategy can be shown to be [2]:

D(R)≤ c1R−2α .

If we now assume that a function is piecewise smooth with a finite
number of discontinuities and each piece is α-Lipschitz. The dis-
tortion of the same wavelet-based compression scheme now follows
[2]:

D(R)≤ c2R−2α + c3R−1, (1)

where the decay of R−1 is due to the discontinuities.
In contrast, for the same piecewise smooth function, the distor-

tion of a wavelet-based compression scheme that employs a non-
linear approximation strategy is given by [2]:

D(R)≤ c4R−2α + c5
√

R2−c6
√

R. (2)

It is clear that at high rates, the decay of R−1 dominates in (1)
whereas R−2α dominates in (2). Therefore, a compression scheme
that allocates the bits in accordance with a non-linear approximation
strategy performs better as the distortion decays faster.

It has also been shown, however, that a better approximation
result does not necessarily lead to better compression algorithms.
In this paper, we show that, for piecewise smooth functions, a com-
pression scheme that uses linear approximation can indeed achieve

the same decay in the distortion-rate function as the schemes that
use non-linear approximation. This is achieved by combining the
parametric estimation procedure into the decoding process, which
allows the decoder to estimate the locations of the discontinuities.
As a result, the effect of discontinuities is removed from the dis-
tortion rate bound. This “semi-parametric” decoding is in fact a
non-linear process.

In the next section, we present our model of the signal as well as
a compression strategy. We then compute a theoretical estimate of
the distortion-rate function of the proposed compression scheme in
Section 3. A constructive compression algorithm is then presented
in Section 4 followed by simulation results in Section 5. Section
6 presents simulation results of an extended compression algorithm
that covers a wider class of signals. Finally, conclusions are drawn
in Section 7.

2. MODELING AND COMPRESSION STRATEGY

2.1 Signal Model
We consider a simplified model of a piecewise smooth function
f (t), t ∈ (0,1), consisting of two components; a step function and
a smooth function with α-Lipschitz type behavior. It is therefore
possible to write f (t) as:

f (t) = s(t)+ fα (t), (3)

where s(t) is a step function:

s(t) =
{

0 t < t0,
A t ≥ t0

(4)

and fα (t) is a α-Lipschitz smooth function, which can be written
as:

fα (t) = pα (t)+ εα (t).

The function pα (t) is a polynomial of degree m = bαc and εα (t) is
such that:

∀t ∈ (0,1) and ∀ν ∈ [0,1], |εα (t)| ≤ K|t−ν |α

with a constant K > 0. Thus, in this simplified model, the discon-
tinuity is represented by s(t) and the smooth pieces are represented
by fα (t). Note, however, that the following analysis can be general-
ized for functions whose discontinuity is represented by a piecewise
polynomial function.

2.2 Linear Approximation
Let ψ(t) be a wavelet function and let ϕ(t) be the corresponding
scaling function. The expansion of a function f (t), t ∈ R, is then
given by:

f (t) = ∑
n

cM,nϕM,n(t)+
M

∑
m=−∞

∑
n

dm,nψm,n(t),

where the coefficients {dm,n} are given by the inner product:

dm,n = 〈 f (t),ψm,n(t)〉



with the basis element:

ψm,n(t) = 2−m/2ψ
(
2−mt−n

)
, m,n ∈ Z

and similarly for {cM,n} and ϕM,n(t). Here, the low and high-pass
coefficients are represented by {cM,n} and {dm,n} respectively. The
N-term linear approximation of f (t), assuming N is large, can be
obtained by keeping all the coefficients from level J onwards i.e.:

f̂ (t) = ∑
n

cM,nϕM,n(t)+
M

∑
m=J

∑
n

dm,nψm,n(t). (5)

2.3 Compression Strategy
Intuitively, from (3), one can approximate f (t) by estimating the
step function s(t) and the smooth function fα (t) separately. While a
linear wavelet approximation procedure can be used to approximate
fα (t), the step function s(t) can instead be retrieved by estimating
the location t0 and the amplitude A. The reconstruction of s(t) is,
therefore, a parametric estimation problem.

Let us divide the high-pass coefficients {dm,n} into two sets;
n ∈ Ns and n ∈ Nα . The coefficients in the set Ns are influenced by
the discontinuity of s(t) and are said to be in the ‘cone of influence’.
The coefficients in Nα are, instead, outside of the cone of influence
and the wavelet coefficients decay as dm,n ≈ 2m(α+1/2) [1]. We now
propose the following ‘semi-parametric’ compression scheme.

Algorithm 1 The semi-parametric compression scheme for a func-
tion f (t) described by equation (3) is as follows:
1. N-term linear approximation: the encoder approximates f (t)

as shown in (5).
2. Quantization: the coefficients {cM,n} and {dm,n}m∈(J,M) are

uniformly quantized and transmitted.
3. Parametric estimation: the decoder estimates the location t0

and the amplitude A of s(t) from the received quantized coeffi-
cients {c̄M,n} and {d̄m,n}m∈(J,M).

4. Cone of influence prediction: the decoder predicts the coeffi-
cients {dm,n}m∈(−∞,J−1) as follows:

d̂m,n =
{

ds
m,n n ∈ Ns,
0 n ∈ Nα ,

m =−∞, ...,J−1,

where {ds
m,n} are the wavelet coefficients of the reconstructed

step function ŝ(t).
5. Final reconstruction: f (t) is reconstructed from the inverse

wavelet transform of the coefficients {c̄M,n}, {d̄m,n}m∈(J,M) and
{d̂m,n}m∈(−∞,J−1).

By using parametric estimation, the discontinuity effect of the
step function is removed by the decoder. This is because the decoder
is able to ‘predict’ the coefficients in the cone of influence, which
decays slowly otherwise, from the reconstructed step function ŝ(t).
The estimate of the distortion-rate bound of the proposed algorithm
will be computed in the next section.

3. RATE-DISTORTION ANALYSIS

3.1 Bounds on Parametric Estimation of Step Function
We start by considering the following parametric estimation prob-
lem. Given a step function s(t), which can be described by (4). As-
suming the amplitude A is known 1, the estimator (or the decoder)
has to estimate the location t0 from a set of noisy coefficients {ŷn}
given by:

ŷn = yn + εn, n = 0,1...,N−1,

1The assumption that the amplitude A is known at the decoder is for the
sake of clarity in our analysis, however, similar results also apply if both A
and t0 have to be estimated by the decoder.

where {yn} is a set of low-pass and high-pass coefficients of s(t)
and {εn} represents independent and identically distributed (i.i.d.)
additive Gaussian noise with zero mean and variance σ2

ε .
Our aim here is to determine the Cramér-Rao bound (CRB) for

the above estimation problem, which will be used in the derivation
of the distortion-rate bound in the sequel. The CRB gives us the
lower bound on the variance of an unbiased estimator, which defines
the best possible accuracy among all unbiased methods. If we have
a vector of K deterministic parameters Θ = (θ1,θ2, ...,θK), then we

have that CRB(t0) ≤ E
[(

Θ̂−Θ
)(

Θ̂−Θ
)T

]
, where Θ̂ is obtained

from any unbiased estimation procedure and E[·] denotes an expec-
tation operator. The CRB can be calculated from the inverse of the
Fisher Information Matrix I(Θ) as:

CRB(Θ) = I−1(Θ) =
(

E
[
∇l(Θ)∇l(Θ)T

])−1
,

where l(Θ) is the log-likelihood function. With our current estima-
tion problem setup, it is possible to show that:

CRB(Θ) = σ2
ε

(
N−1

∑
n=0

∇yn∇yT
n

)−1
(a)
= σ2

ε

(
N−1

∑
n=0

∂yn

∂ t0

2
)−1

, (6)

where (a) follows from the fact that Θ = t0 and ∇yn =(
∂yn
∂θ1

, ∂yn
∂θ2

, ..., ∂yn
∂θK

)
.

If, for example, ϕ(t) is a B-spline of order P≥ 0 given by:

ϕ(t) =
1
P!

P+1

∑
l=0

(
P+1

l

)
(−1)l (t− l)P

+

with:

(t)P
+ =

{
0 t < 0,
tP t ≥ 0,

then, using (6), it can be shown that:

CRB(t0) = σ2
ε

CP2M

A2 = CP10−0.1PSNR2M , (7)

where PSNR = 10log10
A2

σ 2
ε

is the peak signal-to-noise ratio and CP

is a constant.

3.2 D(R) Estimate for Semi-Parametric Compression
We now derive the distortion-rate bound of our proposed semi-
parametric compression scheme. Here, the function f (t) is given
by our signal model shown in (3). The decoder described in Algo-
rithm 1 essentially reconstructs s(t) and fα (t) separately since the
two functions are independent. Therefore, the total distortion D is
given by:

D = Dα +Ds, (8)

where Dα and Ds are the distortion from the reconstruction of the
smooth function fα (t) and the step function s(t) respectively. Since
fα (t) does not contain any discontinuity, assuming that the wavelet
basis has at least bαc vanishing moments, a compression scheme
that uses N-term wavelet linear approximation gives:

Dα (R1)≤ c7R−2α
1 , (9)

where R1 is the total rate (in bits) allocated to represent fα (t). Our
next task is then to estimate Ds.

Assuming that the amplitude A is known and that the de-
coder only uses the low-pass coefficients to estimate t0, let
{yn}n∈(0,1,..,N−1) denotes a set of low-pass coefficients of f (t),
which can be expressed as:

yn =
〈

f (t),ϕM,n(t)
〉

(a)
=

〈
s(t),ϕM,n(t)

〉
+

〈
fα (t),ϕM,n(t)

〉
= ys

n + yα
n ,



where (a) follows from (3). We can then write the quantized coeffi-
cients as:

ȳn = yn + εq
n = ys

n + yα
n + εq

n = ys
n + εs

n, (10)

where εq
n represents the quantization noise. Therefore, the quan-

tized coefficients ȳn can be written as the coefficients of the step
function ys

n plus the noise term εs
n = εq

n + yα
n .

Let L be the number of coefficients that the decoder uses to
estimate t0. Since a uniform scalar quantizer is used, the variance
σ2

q of the quantization noise {εq
n}n∈(0,1,...,L−1) is given by:

σ2
q = C2−2R2/L, (11)

where C is a constant and R2 is the total rate allocated to represent
{yn}n∈(0,1,...,L−1).

In order to compute Ds, we also make the following assump-
tions: the probability density function (PDF) of yα

n is Gaussian
with zero mean 2 and variance σ2

α ; both εq
n and yα

n are indepen-
dent, which implies εs

n is Gaussian distributed with zero mean and
variance σ2

ε , where:

σ2
ε =

(
σ2

q +σ2
α

)
, (12)

and, finally, we assume that the estimator of t0 is a minimum vari-
ance estimator that achieves the CRB.

Let us denote the reconstructed step function with ŝ(t) where:

ŝ(t) =
{

0 t < t0 + εt ,
A t ≥ t0 + εt .

Here the error in the estimation of t0 is represented by εt whose
variance σ2

t is given by the CRB of the estimator shown in (6),
where, from (10), σ2

ε is given by (12). It then follows that the mean
square error, MSE (ŝ(t)), is given by:

MSE (ŝ(t)) =
∫

(s(t)− ŝ(t))2 dt =
∫ t+εt

t
A2dt = A2|εt |.

Thus, the expected distortion Ds can be computed by:

Ds = E
[
A2|εt |

]
= A2E [|εt |] ,

where E [|εt |] is the mean absolute deviation of εt . Using Jensen’s
inequality for concave functions, we can show that:

E[|εt |] = E
[√

(εt −E[εt ])2
]
≤

√
E

[
(εt −E[εt ])2

]
= σt

as E[εt ] = 0. Therefore, the expected distortion can be expressed as:

Ds ≤ A2σt = A2
√

CRB(t0).

By using the expression for the CRB in (6) together with the
relationship given in (10), we arrive at the following distortion-rate
bound for the estimation of the step function:

Ds(R2) ≤ A2 (
σ2

ε
) 1

2

(
L−1

∑
n=0

(
∂ys

n
∂ t0

)2
)− 1

2

︸ ︷︷ ︸
=C

(a)
= c8

(
σ2

q +σ2
α
) 1

2

(b)
= c8

(
c92

−2R2
L +σ2

α

) 1
2
,

(13)

2The PDF of yα
n is arbitrarily assumed to be zero-mean Gaussian as this

allows us to use the analytical expression of the CRB, given by (6), in the
derivation of the D(R) curve (as shown in (13)). The derived distortion-rate
bound is then verified with simulations.

where (a) and (b) follow from substituting in (12) and (11) respec-
tively. The expression for the total distortion-rate bound can now be
obtained by substituting (9) and (13) into (8), which gives:

D(R)≤ c7R−2α
1 + c8

(
c92

−2R2
L +σ2

α

) 1
2
, (14)

where the total rate R, in bits, is equal to:

R = R1 +R2. (15)

We now need to consider the following bit allocation problem;
given a total rate R, how should we allocate the bits among R1 and
R2 so that the distortion in (14) is minimized subject to the con-
straint in (15). This is a well known constrained optimization prob-
lem, which can be solved using a Lagrange multiplier method. One
necessary condition for the optimal bit allocation is that the deriva-
tives of the distortion D with respect to R1 and R2 must be equal
i.e.:

∂D
∂R1

=
∂D
∂R2

. (16)

Assuming a high rate regime, where c92
−2R2

L < σ2
α , the distor-

tion given in (14) can be approximated with a Taylor series expan-
sion of the square root function as follows:

D(R)≈ c7R−2α
1 +

c8c9

2σα
2
−2R2

L + c8σα . (17)

By solving the equal gradient condition in (16), where D is approx-
imately given by (17), we obtain the following rate allocation:

R2 =
L
2
(2α +1) log2 R1 +C′ (18)

with a constant C′. The total rate R is thus given by:

R = R1 +
L
2
(2α +1) log2 R1 +C′ ≈ R1 (19)

at high R. Therefore, by substituting (18) into (17) and using the
approximation shown in (19), the overall distortion-rate function of
our semi-parametric compression scheme described in Algorithm 1
is:

D(R)≤ c7R−2α + c10R−(2α+1) + c8σα . (20)

Note that the term c10R−(2α+1) represents the distortion caused by
the discontinuity, which decays faster than the distortion from the
encoding of the smooth function.

In comparison to a compression scheme that only uses a lin-
ear approximation strategy, where the distortion decays as R−1 (see
(1)), our proposed scheme achieves a faster decay rate of R−2α in
the high rate regime. Furthermore, the dominating decay rate of
R−2α is comparable to a compression scheme that employs non-
linear wavelet approximation as shown in (2). Note, however, that
the term c8σα represents the systematic error in the modeling of our
parametric estimation problem.

4. CONSTRUCTIVE COMPRESSION ALGORITHM

We start this section by introducing a practical parametric estima-
tion technique based on the recently developed concept of sam-
pling of signals with finite rate of innovation (FRI). FRI signals are,
loosely speaking, a class of signals or functions f (t) that can be de-
scribed by a finite number of free parameters over a given interval
t ∈ [ta, tb]. The definition and sampling schemes of FRI signals are
given in details in [3, 4]. Clearly, a step function s(t) also belongs
to this class of function as it can be completely described by at most
two parameters, the location t0 and the amplitude A.



Let us present one of the key results from the sampling schemes
of FRI signals described in [3, 4]. Given a function f (t) and a scal-
ing function ϕ(t). In the context of sampling, the samples or the
coefficients are given by:

yn = 〈 f (t),ϕ(t/T −n)〉 ,

where T is the sampling period. Assume that ϕ(t) together with its
shifted versions can reproduce polynomials of maximum degree P
i.e. ϕ(t) satisfies:

∑
n∈Z

cp
n ϕ(t/T −n) = t p p = 0,1, ...,P (21)

for a proper set of coefficients {cp
n}. The polynomial reproduction

coefficients can be calculated as:

cp
n = 〈t p, ϕ̃(t/T −n)〉 ,

where ϕ̃(t) is the dual of ϕ(t). It then follows that the continuous
moment mp of order p of the signal f (t) is given by:

mp =
∫

f (t)t pdt

=

〈
f (t), ∑

n∈Z
cp

n ϕ(t/T −n)

〉

= ∑
n∈Z

cp
n 〈 f (t),ϕ(t/T −n)〉

= ∑
n∈Z

cp
n yn.

(22)

Therefore, given {cp
n}, one can retrieve the continuous moments of

f (t) from the coefficients {yn} provided that f (t) lies in the region
where the condition given by (21) is satisfied.

In addition, a sampling scheme for a piecewise constant signal
was presented in [4]. Let z(1)

n denotes a finite difference yn+1− yn.
It was shown that:

z(1)
n = yn+1− yn =

〈
d f (t)

dt
,ϕ(t/T −n)∗β0(t/T −n)

〉
,

where β0(t) denotes a zeroth order B-spline function. Therefore,
from (22), we have that:

m′p = ∑
n∈Z

c′pn zn, (23)

where m′p is the p-th order continuous moment of d f (t)
dt and {c′pn }

are the polynomial reproduction coefficients of the new scaling
function ϕ(t/T −n)∗β0(t/T −n).

Assuming a step function s(t) as shown in (4), it is easy to show
that the zeroth and first order moments of ds(t)

dt are given by m′0 = A
and m′1 = At0. Hence, the location t0 can be calculated as:

t0 =
m′1
m′0

. (24)

We now present a FRI-based parametric estimation algorithm that
uses the results in (23) and (24).

Algorithm 2 Given a set of noisy low-pass coefficients {c̄M,n} of a
step function s(t), where c̄M,n = 〈s(t),ϕM,n(t)〉+ εs

n and ϕ(t) satis-
fies the polynomial reproduction condition in (21), the location of
the step t0 can be estimated as follows:
1. Finite difference: the finite difference is obtained as:

z̄n = c̄M,n+1− c̄M,n.
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Figure 1: Plots of the observed variance (log scale) in the estima-
tion of t0 and the corresponding CRB. The estimator uses the FRI-
principle described in Algorithm 2.

2. Moments estimation: the zeroth and first order moments of ds(t)
dt

are estimated as:

m̄′p = ∑
n∈Z

c′pn z̄n p = 0,1.

3. Location estimation: the location of the step is approximated
as:

t̄0 =
m̄′1
m̄′0

.

Therefore, a practical semi-parametric compression scheme can
be constructed using Algorithm 1, where the parametric estimation
step is implemented with Algorithm 2. This allows the decoder to
approximate the step function from the quantized low-pass coeffi-
cients {c̄M,n}. The simulation results of this compression scheme
are shown in the next section.

5. SIMULATION RESULTS

Let us first compare the variance of an estimator that uses the FRI
principle presented in the previous section to the CRB described in
section 3. In our simulation, we applied a ten-level bi-orthogonal
2.2 wavelet decomposition to the step function s(t), where the scal-
ing function ϕ(t) is given by the first order B-spline. Gaussian noise
was then added to the low-pass coefficients {cM,n}. The value of the
amplitude A was assumed to be known and the location t0 was esti-
mated using Algorithm 2. Figure 1 shows the plots of the observed
variance and the CRB, which is given by (7). It is clear that the
decays on both plots are the same even though the estimator does
not achieve the bound. Thus, the squared error of the estimate of t0
decays as 10−0.1PSNR.

We now present the simulation results of the proposed semi-
parametric compression scheme described in Algorithm 1, where
the parametric estimation step is implemented with Algorithm 2.
The piecewise smooth function was generated with the model de-
scribed by (3), where the degree of smoothness was set to α = 1.75.
Once again, we used the bi-orthogonal 2.2 wavelet decomposition
with a first order B-spline scaling function. The rates were then al-
located in accordance with (18). Figure 2 shows the distortion-rate
plot of our proposed semi-parametric compression scheme in com-
parison with the plot for a scheme based on linear approximation.
At high rates, our scheme achieves a decay rate of R−2α = R−3.5,
which is in line with our analysis in section 3. In contrast, the linear
approximation based scheme decays as R−1. Therefore, we were
able to achieve the same decay in the distortion-rate curve as a com-
pression scheme that employs a non-linear approximation strategy.
Note also that the systematic error in the parametric estimation was
insignificant in this simulation. Finally, the reconstructed functions
are shown in Figure 3.

6. EXTENSION TO WIDER CLASS OF SIGNALS

The distortion-rate analysis presented in this paper can be general-
ized to cover a wider, less restrictive, class of signals whose dis-
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Figure 2: Distortion-rate plots (log scale); at high rates, the pro-
posed semi-parametric compression scheme has the decay rate
of R−2α whereas the distortion of a linear approximation based
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Figure 3: Plots of the original signal, the reconstructed signals with
linear approximation scheme at R = 736 bits and semi-parametric
scheme at R = 544 bits.

continuity is described by a piecewise polynomial function rather
than a step function. The bound on the performance of the optimal
compression scheme for piecewise polynomial signals was derived
in [5]. By using the results from the FRI-based sampling scheme
of piecewise polynomial signals presented in [4], the compression
strategy shown in section 4 can be extended to include signals with
piecewise polynomial discontinuity. The details are omitted here
due to a limited space.

Figure 4 and Figure 5 show the simulation results of the ex-
tended semi-parametric compression scheme, where the signal was
constructed from a piecewise quadratic function and a smooth α-
Lipschitz function. At high rates, the modified scheme also achieves
a decay rate of R−2α .

7. CONCLUSION

In this paper, we have introduced a new wavelet-based compression
scheme for piecewise smooth functions, where the decoder uses
a parametric estimation technique. While the encoding process
is based on a linear approximation strategy, our distortion-rate
analysis and simulation results have shown that the proposed
semi-parametric compression scheme can achieve the same decay
in the distortion-rate curve as conventional wavelet-based schemes
that employ a non-linear approximation strategy.
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Figure 4: Distortion-rate plots (log scale); at high rates, the ex-
tended semi-parametric compression scheme for signals with piece-
wise polynomial discontinuity also achieves the decay rate of R−2α .
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linear approximation scheme at R = 6144 bits and extended semi-
parametric scheme at R = 4992 bits.

REFERENCES

[1] Martin Vetterli, “Wavelets, approximation, and compression,”
IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 59–73,
2001.

[2] A. Cohen, I. Daubechies, O.G. Guleryuz, and M.T. Orchard,
“On the importance of combining wavelet-based nonlinear ap-
proximation with coding strategies,” IEEE Transactions on In-
formation Theory, vol. 48, no. 7, pp. 1895–1921, Jul 2002.

[3] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with
finite rate of innovation,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 6, pp. 1417–1428, 2002.

[4] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments
and reconstructing signals of finite rate of innovation: Shannon
meets Strang-Fix,” IEEE Transactions on Signal Processing,
vol. 55(5), pp. 1741–1757, May 2007.

[5] A. Maleki and G. Carlsson, “ε-entropy of piecewise polyno-
mial functions and tree partitioning compression,” IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing., pp. 1181–1184, April 2008.


