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ABSTRACT

In this paper, we consider classes of not bandlimited signaimely,
streams of Diracs and piecewise polynomial signals, ane st
these signals can be sampled and perfectly reconstructag us
wavelets as sampling kernel. Due to the multiresolutioncstire

of the wavelet transform, these new sampling theorems alftur

lead to the development of a new resolution enhancement algo

rithm based on wavelet footprints [2]. Preliminary resdtow
the potentiality of this algorithm.

1. INTRODUCTION

A critical element in modern signal processing and commna#nic
tion is sampling. Most continuous-time phenomena are aedly
through sampling. Often, the original continuous-timensige (¢)

is filtered before sampling and this filtering may be due toatie
quisition device or may be a design choice. b¢t) be the im-
pulse response of this filter. Then, the uniform sampling: @
with sampling intervall’ leads to sampleg,, given by

yn = (h(t = nT),z(t)) = /_00 h(t —nT)z(t)dt.

The key problem is to find the best way to reconstru@) from
its samples. Ifx(¢) is bandlimited, than the Shannon sampling
theorem states the conditions to reconstut(@) from y,’s.

Recently, it was shown that it is possible to develop samgplin
schemes for classes of signals that are not band-limitedr{®lar-
ticular, it was shown that it is possible to sample streani3igtcs
and piecewise polynomial signals using a sinc or a Gaussean k
nel. The common feature of these signals is that they haveaa pa
metric representation with a finite number of degrees ofdioe®
This number of degrees of freedom is called rate of innowatio
Thus, streams of Diracs and piecewise polynomial signasigr
nals with a finite rate of innovation.

In this paper, we extend the results of [8] and show thatstsea
of Diracs and piecewise polynomial signals can be sampled an
perfectly reconstructed using wavelets as sampling kerBele
to the multiresolution structure of wavelets, these newltesat-
urally lead to a new algorithm for resolution enhancemertisT
algorithm is based on the notion of wavelet footprints whicis
introduced in [2]. For an excellent review on sampling weeref
to [5]. Some pioneering works on sampling with the wave s
form can be found in [6].
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The paper is organized as follows: The next section presents
brief review of the wavelet transform. In Section 3, we présew
sampling theorems for signal with a finite rate of innovatidn
Section 4 we provide an interpretation of these samplingltem
terms of resolution enhancement and we present a footipaised
algorithm for resolution enhancement. We conclude in 8adii

2. THE WAVELET TRANSFORM

This section presents a brief review of the wavelet tramsfdfor
a more detailed treatment, we refer the reader to [1, 7, 4, 3].
Consider a wavelet functiog(t) that generates a basis of
Ly (R). That is, assume that(¢) satisfies the admissibility condi-
tion and that the set of its dilated and shifted versigns, (¢)
sz ¢(27"t —n) m,n € Zforms a basis of2(R). The dis-
crete wavelet transform is a unique and stable decompositio
any finite energy signat(t) in terms of{¢m n }mez nez OF

)= > > dmatma(t).

M=—00 N=—00

1)

The wavelet coefficienis,, ,, are given byl,, » = (z(t), m.n (t))
With ¢y, (t) Such that(tum » (t), 155 (t)) = m—j - . TO be
more precise, the Sét),m » }mez.nez represents the dual basis of
{mn}tmeznez. If {hm,n}tmeznez IS an orthonormal basis of
L»(R), then the two set§vm n tmez,nez aNd {¢m n tmez nez
coincide.

The double sum in (1) clearly shows the multiresolutionctru
ture of the wavelet transform. Since the wavelet functign) has
zero average, each tem,,, measure a local variation af(¢) at
resolution2™ and the partial sum

:E,]+1(t): Z Z dm,n'l/}m,n(t) (2)
m=J+1n=—oco

represents an approximation:oft) at resolutiore” ', The com-
pleteness of{t)m, n tmez,nez €nsures that by adding details to
zj+1(t) at finer and finer resolutions we eventually recavét).

The approximation functiom ;1 (¢) can be expressed in terms
of shifted versions of a different functiop(¢) called the scaling
function. That is

oo

Toi(t) = Y Yonpsn(t)

n=-—oo

®)



with the usual assuption thaty ., (£) = 1/27/?¢(t/2” —n). Thus,
by combining (1), (2) and (3), we see that it is possible toesent
any function inL2(R) as a combination of wavelets and scaling
functions or

=S wnpaa®+ S dunthmn(t). @)

n=—oo m=—0o0 Nn=—0o0

The scaling coefficientg s ,, tend to measure the local regularity
of z(t) at scale2”. Therefore, the terf.>7 ___ ysnpu,n(t) rep-
resents a coarse version oft) as opposed to the detail version
provided by the wavelets in the last term of (4).

The wavelet function and the scaling function are intimatel
related and their link does not reduce to the expansion sthowe
in (4). Indeed, the scaling function represents the basimeht in
the construction of a wavelet basis and many properties o¢lets
can be inferred directly from the scaling function. In pawtar, an
important and well known property of the wavelet transfosrthiat
of the vanishing moments. We say that a wavelet&agnishing
moments if

/Oo t*p(t)dt = 0,

(oo}

k=0,1,.., K —1.

This vanishing moments property translates directly ihtogoly-
nomial approximation property of the scaling function. qre-
cisely, a wavelet ha& vanishing moments if and only if its corre-
sponding scaling function can reproduce polynomials ofimar
degreeK — 1, thatis,

Z Cknp(t —m) = ¥

ne”Z

k=0,1,...,K—1. (5

In the next section, we will use the properties of the scaling
function to present new sampling results for classes ofa$igith
a finite rate of innovation. In addition, we will use the lin&tlveen
wavelets and scaling functions and the multiresolutiorureabf
wavelets to give an interpretation of these sampling resulerms
of resolution enhancement.

3. WAVELET SAMPLING OF SIGNALSWITH FINITE
RATE OF INNOVATION

In this section, we consider scaling functions of compagpsut

L, that is,p(t) # 0 fort € [-L/2, L/2] whereL is for simplic-

ity an integer; and we assume that a linear combination(@§

can reproduce polynomials of degr&e— 1. We concentrate on

one class of signals, namely streams of Diracs. In particula

show that the sampling problem reduces to the problem ofreplv

a system of polynomial equations and that there is a traideeof

tween the complexity of this set of equations and the lodal o&

innovation of the sampled signal. Eventhough we focus only o

streams of Diracs, most of the results which are valid fos thass

of signals can be extended to piecewise polynomial signals.
Consider a stream of Diracg(t) = >, ., and(t — tn) and

t € R and assume that there is at most one Dirac in an interval of

length LT It follows

Proposition 1 Given is a scaling functiog(t) of compact sup-
port L and that can reproduce polynomials of maximum degree
one. An infinite-length stream of Diraest) = >° ., and(t —

t») is uniquely determined from the samples definedyby=
(p(t/T — n),z(t)) if and only if there is at most one Dirac in
an interval of lengthLT'.

Proof: We first show how to localize a Dirac in an interval of size
T, then we show how to find the exact location and amplitude of
that Dirac.

LetT = 1 and let the support gb(t) be L, assume the signal
is known fort < n — L/2. If there is no Dirac iMn — L/2,n +
L/2] theny, = 0. If there is one Dirac in that interval (call it
ard(t — tr)), theny, # 0. Now, consider the inner product
yn—r+1 if there is no Dirac in the intervdlh — 3L/2 + 1,n —
L/2] andy,—1 # 0, then the diraed(t — t) is in the interval
[n—L/2,n—L/2+1]. If a Dirac was already found in the interval
[n—3L/2+1, —L/2n] (recall thatz(t) is known fort < n—L/2)
orif y,—1 = 0thena,d(t—t) cannotbe ifn—L/2, n—L/241],
but mustbe ifn—L/2+1,n+L/2]. We then need,,— 1.2 to see
if apd(t—tx)isin[n—L/24+1,n— L/2+2]. The process is iter-
ated until we find an interval of siZE where we know:d(t — tx)
is. Assumey, n =0, 1, ..., L — 1 are the inner products that over-
lap this interval. Since the scaling function has compappstt L
and there is at most one Dirac in an interval of lengthwe are
sure that onlyL inner products overlap;d(t — t;) and no other
Diracs are in the same inner products. Therefore usingtioartf
unity and equation (5), we have that

L—-1
ax =Y yn (6)
n=0
and
ty = (Z C1,nYn)/ak (7)
where the coefficients; ,, are known and given by (5).
|

In equations (6) and (7), we have used the fact that, in thaityc
of tx, the scaling function is reproducing polynomial of degree
zero and one respectively. In fact, we have that

SE e = {awd(t — tr), S B2 ot —n))
= % ard(t—tx)(C o et —n))dt  (8)

ak Y nZg @t —n) = ax

where in the last equality we have used the property thatutre s
of the translated versions gf(¢) is constant and equal to 1 in.
Likewise, we have that

L—-1 L—-1
> einyn =ar Y cinp(te —n) = axty 9)
n=0 n=0

where in the last equality we used the polynomial approxmonat
property (5). Figure 1 illustrates this result with a simplample.

Finally, it is worth pointing out that the scaling functiotigat
generate some of the most commonly used wavelets such as€laed
wavelets and Splines, satisfy the hypotheses of the thearem
can, therefore, be used to sample streams of Diracs.

The proposition above has shown conditions under which we
can sample streams of Diracs. The reconstruction algoridies
on the ability of the scaling functions to reproduce polyielsof
degree one. However, we need to assume that there is at neost on
Dirac in an interval of sizd.T. We can loosen this condition by
assuming thaip(t) can reproduce higher order polynomials. In
particular we have that:
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Fig. 1. lllustration of the sampling result of Proposition 1 usiig
splines of degree two. In this casds equal to three and only three
translated versions of the scaling function overlap the@irThe
three dashed functions in part (a) and (b) are the three iBespl
overlapping the Dirac. In part (b), they are opportunelyghé&id

to reproduce a degree-one polynomial. The two solid-limefu
tions in (a) and (b) represens(t) + ¢(t — 1) + ¢(t — 2) and
c1,09(t) + c1,10(t — 1) + c1,20(t — 2) respectively. Because of
the polynomial reproduction property of the scaling fuoitithe
following is true:yo +y1 +y2 = [ ard(t —tx)(@(t) +o(t —

1) + o(t — 2))dt = ax where in the last equality, we have used
the fact that around,, the sum of the scaling functions is constant
and equal to one. Similarly; oyo + ¢1,1y1 + ¢1,2y2 = akty as
illustrated in Figure 1(b).

Proposition 2 Given is a scaling functiop(t) that can reproduce
polynomials of maximum degree three and of compact sughort
An infinite-length stream of Diracs(t) = >, ., and(t — tn) iS
uniquely determined from the samples defined.by= (o (t/T —
n),z(t)), if and only if there are at most two Diracs in an interval
of length2LT.

Proof: In a way similar to the one presented in Proposition 1, we
can find the interval that contains the two Diracs (call the(t—

to) + a16(t — t1) with the assumption that < ¢1). Assumey,

n = 0,1,..., L' are the only inner products that overlap the two
Diracs. The following is true

Y yn=arta (10)

Z C1,nYn = aoto + a1ty (11)
2 2

D conyn = aoth + arty 12

Z C3,nYn = a()tg + alt? (13)

n

This is a system of four polynomial equations in four unknewn
(ao, a1, to, t1), we need to show that it admits only one solution.

It is easy to see that after few manipulations this system can
be written in triangular form as follows

sot7 — sokt1 + s1k — so = 0, (14)
to =k— t17 (15)
a; = (81 — Soto)/(tl - if())7 (16)
ap = S0 — a1 a7)

With so = 3> yn, S1 = X2, CLn¥n, S2 = ), C2.n¥n, S3 =
Y, C3nYn andk = (s152 — s0s3)/(s1 — sosz2). Thus, we can
solve equation (14) iy and then substitute the valuestgfin the
other equations to find the exact value$ofa., ao. Equation (14)
has two solutions, therefore the whole system has appgrsvl
possible sets of solutions. However, notice that the rolg ahdt,
in equations (14) and (15) can be exchanged. This meanghbat,
two pairs of solutions that we obtain fég and¢; are symmetric.
That is, if ¢, admits solutionsy and 3, than the corresponding
solutions fort; are anda respectively. Therefore, following our
convention thaty < ¢; and assuming: < 3, we have thaty = a
andt; = 8 and the complete system admits only one solution.
|
Finally, it is also possible to show thht

Proposition 3 An infinite-length stream of fixed amplitude Diracs
z(t) = Y,z 0(t — tn) is uniquely determined from the samples
defined byy, = (p(t/T — n),z(t)), wherep(t) is a scaling
function of compact suppoft and that can reproduce polynomials
of maximum degre&, if and only if there are at mosk Diracs

in an interval of lengthK LT

Before concluding this section, we would like to highliglatin
to extend these sampling results to the case of piecewisagol
mial signals. By differentiation, a piecewise polynomiiginal can
be reduced to a stream of Diracs. Thus, using integratiorabg p
one can sample piecewise polynomial sighals using dere/ati
the scaling functions. We omit this proof for lack of space.

4. SAMPLING AND RESOLUTION ENHANCEMENT
WITH FOOTPRINTS

In this section we investigate the use of footprints to retarct or
to increase the resolution of a sampled signal. Wavelepfous
were introduced in [2].

We have seen that a signa(t) € L2(R) can be decomposed
in terms of wavelets and scaling functions or

oo J oo
x(t) = Z Yan@an(t) + Z Z dimnm.n(t). (18)

n=—oo m=—00 N=—00

Now, assume that(¢) andy(t) satisfies the hypotheses of the the-
orems in Section 3. That ig(t) is a stream of Diracs or a piece-
wise polynomial signal with a finite rate of innovation, apdr)

is a compact support scaling function that can reproducg- pol
nomials of a certain degree. Then the sampling theoremseof th
previous section ensure that, for a proper choice othe inner
productsy s, of equation (18) are sufficient to characterizg)

or, in other words, that the finite resolution version,1(t) =

1We omit this proof due to the lack of space.



oo Yuanean(t) is sufficient to reconstruct the signal exactly.
This means that by knowing(¢) at a finite resolution, we can in-
fer the value of the wavelet coefficients, , with m < J and,
therefore, arbitrary increase the resolution of our apipnaxion to
eventually recover the original signal.

These sampling results can also by interpreted in termof fo
prints. Consider, for instance, the case whet# is a stream of
Diracs, thatisg(t) = ), o, ard(t — tx). We know that we can
write z(t) as

z(t) = Z Ysn@sn(t) + Z b ft,, (1)

n=-—oo kEZ

wherefs, (t) is the footprint related to the Dirac at location As-
sume that we observe the finite resolution versigp;1(t). The
representation of ;41 in terms of footprints is given by

oo K-1
Tar1(t) = D yrnpaa() + D befe(t)
k=0

n=—oo

with f}k representing the finite resolution version fof . If z(t)
satisfies the hypotheses of propositions in Section 3, treenam
reconstruct the infinite resolution versionﬁL (t) by comparing it
with all the possible finite resolution footprin)‘?;m (t) at arbitrary
locationt, and by choosing the one that maximizg, , fz. ).
More precisely, assume that is close enough te, then

<:E(]0+1(t), fta: (t» = bk<ftk ) fta:>

and, itis possible to show that the maximuny{#f_, f:. ) is achieved
only whent, = tx.

In practice, it is not feasible to compute all the possibleein
products(f}k,ftx) sincet,, is real. However, if one is only inter-
ested in enhancing the resolutionzof, +1(¢), then one has to test
only a limited number of footprints. Assume, for instant¢mttthe
new resolution one wants to achievei§ with J; < Jo, then the
footprints that we need to consider are only at discretetimes
t, = n -2’1 with n € Z and the footprintf;, (¢) closest to the
actual valug, gives the highest inner produgf;, , f,.) -

An example of the algorithm is illustrated in Figure 2. We
consider a periodic piecewise linear signal with periog= 128
(Figure 2(a)). The signal is sampled with a Daubechies il
two vanishing moments. The coarse approximation of theasign
(what we have called s,11(t)) is shown in Figure 2(b). In this
caseJy = 4. The reconstruction with footprints af(¢) is shown
in Figure 2(c) and is exact to machine precisfon.

5. CONCLUSIONS

In this paper, we have shown that it is possible to sample somel[S]

classes of signals using a wavelet sampling kernel. We Heare t
developed a new resolution enhancement algorithm basdueea t
sampling results and on the notion of footprints. Futureaesh
will focus on the generalization of these sampling theorenibe

case of two-dimensional signals and on the design of new- algo [7]

rithms for image resolution enhancement.

2Preliminary results seem also to indicate that this algoriis quite
resilient to noise. A more precise analysis of this resieis under inves-
tigation.

(@

(b)

©

Fig. 2. lllustration of the reconstruction algorithm based ontfoo
prints. (a) Original discrete-time piecewise linear sigria this
case the original signal has 128 samples. (b) Coarse vestibe
signal using Daubechies filters with two vanishing momentss
coarse version is obtained taking only 16 samples. This mean
Jo = 4. (c) Reconstruction with footprints of the original signal
using thel6 samples of the coarse version.
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