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Abstract—It has been shown recently that it is possible to
sample classes of non-bandlimited signals which we call signals
with Finite Rate of Innovation (FRI). Perfect reconstruction is
possible based on a set of suitable measurements and this provides
a sharp result on the sampling and reconstruction of sparse
continuous-time signals.

In this paper, we first review the basic theory and results on
sampling signals with finite rate of innovation. We then discuss
variations of the above framework to handle noise and model
mismatch. Finally, we present some results on compression of
piecewise smooth signals based on the FRI framework.

I. INTRODUCTION

The problem of reconstructing or estimating partially ob-
served or sampled signals is an old and important one, and
finds application in many areas of signal processing and
communications. Traditional acquisition and reconstruction
approaches are heavily influences by the classical Shannon
sampling theory which gives an exact sampling and interpo-
lation formula for bandlimited signals. Recently, the classical
Shannon sampling framework has been extended to classes
of non-bandlimited structured signals. In these new sampling
schemes, the prior that the signal is sparse in a basis or in a
parametric space is put to contribution and perfect reconstruc-
tion is possible based on a set of suitable measurements.

Depending on the set-up and reconstruction method in-
volved, the above sampling problem goes under different
names like compressed sensing, compressive sampling [1], [2]
or sampling signals with finite rate of innovation (FRI) [3], [4].

The set-up considered here is the one in [3], [4], where
the acquisition process is modeled as in Fig. 1. Here the
smoothing function ϕ(t) is called the sampling kernel and
normally models the distortion due to the acquisition device.
The sampling kernel used in [3] is the sinc function, while
the work in [4] uses compactly supported functions like for
example polynomial splines (B-splines) [5] or exponential
splines (E-splines) [6]. In both works it is shown that perfect
reconstruction of classes of FRI signals from the measure-
ments yn is achievable by using a variation of Prony’s method
also known as annihilating filter method [7]. Signals that
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can be sampled with this method include streams of Diracs,
piecewise polynomial and piecewise sinusoidal signals.
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Fig. 1. Sampling setup. Here, x(t) is the continous-time signal, h(t) the
impulse response of the acquisition device and T the sampling period. The
measured samples are yn = 〈x(t), ϕ(t/T − n)〉.

In this paper, we first review the basic set-up and the
fundamental results presented in [3], [4], we then discuss the
problem of reconstructing signals when the samples have been
corrupted by noise. In this context we present a variation of
the robust reconstruction algorithm presented in [8] and we
take full advantage of the fact that the kernels considered here
have compact support.

We finally discuss the application of this new sampling
framework to compression and present a new compression
algorithm where complexity is shifted from the encoder to
the decoder. We show that the algorithm performs as well as
state-of-the-art compression algorithms based on the wavelet
transform.

II. SAMPLING SIGNALS WITH FINITE RATE OF
INNOVATION

For the sake of clarity we restrict our analysis to the case
where the observed signal x(t) is a stream of K Diracs with
amplitudes ak located at distinct instants tk ∈ [0, τ [:

x(t) =
K−1∑

k=0

akδ(t− tk). (1)

Furthermore, we assume the sampling period is T = τ/N .
Consequently, the measurements are

yn = 〈x(t), ϕ(t/T − n)〉

=
K−1∑
k=0

akϕ(tk/T − n), n, = 0, 1, ...N − 1.



In [3], [4], [8], it was shown that with a proper choice of the
acquisition kernel, it is possible to reconstruct x(t) from the
samples yn exactly. The kernels used in [3] are the sinc and
the Gaussian functions. In this paper, we concentrate on the
compact support kernels used in [4]. This includes:
• Polynomial reproducing kernels: Any kernel that satisfies

∑

n∈Z
cm,nϕ(t− n) = tm m = 0, 1, ..., P (2)

for a proper choice of coefficients cm,n.
• Exponential reproducing kernels: Any kernel that satisfies

∑

n∈Z
cm,nϕ(t−n) = eαmt with αm = α0 + mλ

and m = 0, 1, ..., P
(3)

for a proper choice of coefficients cm,n.
The coefficients cm,n in (2) are given by

cm,n =
1
T

∫ ∞

−∞
tmϕ̃(t/T − n)dt,

where ϕ̃(t) is chosen to form with ϕ(t) a quasi-biorthonormal
set [9]. This includes the particular case where ϕ̃(t) is the
dual of ϕ(t), that is, 〈ϕ̃(t − n), ϕ(t − k)〉 = δn,k. A similar
expression applies to the coefficients cm,n in (3).

The first family of kernels includes any function satisfying
the so-called Strang-Fix conditions [10]. Namely, ϕ(t) satisfies
Eq. (2) if and only if

ϕ̂(0) 6= 0 and ϕ̂(m)(2nπ) = 0 for n 6= 0 and m = 0, 1, ..., P,

where ϕ̂(ω) is the Fourier transform of ϕ(t) and the super-
script (m) stands for the m-th derivative of ϕ(t).

One important example of functions satisfying Strang-Fix
conditions is given by the family of B-splines [5]. A B-spline
of order P is a function of compact support L = P + 1 and
can reproduce polynomials up to degree P . It is obtained by
the (P + 1)-fold convolution of the zero order B-spline and
has the following Fourier transform

β̂P (ω) =
(

1− ejω

jω

)P+1

.

Strang-Fix conditions are used extensively in wavelet theory as
well. In that context, the focus is on the design of wavelets with
a certain number of vanishing moments [11]. The interesting
point, here, is that a wavelet with P +1 vanishing moments is
generated by a scaling function that can reproduce polynomials
of degree P . This means that such a scaling function can be
included in our family of sampling kernels. Given the central
role played by wavelets in compression, we immediately
realized the potential impact that these kernels may have not
only for sampling but also for compression. This will become
more evident in the following sections.

The family of E-splines represents an extension of the
polynomial splines and the Fourier transform of the P -th order
E-spline is:

β̂~α(ω) =
P∏

m=0

(
1− eαm−jω

jω − αm

)
. (4)

The above E-spline is able to reproduce the exponentials eαmt,
m = 0, 1, ..., P . Notice that the exponent αm in Eq. (4) can
be complex which indicates that E-splines are usually complex
functions. However, this can be avoided by choosing complex
conjugate exponents.

The reconstruction scheme of [4] operates as follows: First
the samples are linearly combined with the coefficients cm,n

of (2),(3) to obtain the new measurements

sm =
N∑

n=0

cm,nyn m = 0, 1, ..., P. (5)

Then, if the original signal is a stream of Diracs as the one
in (1), one can show that

sm =
K−1∑

k=0

akum
k ,

where uk = tk/T when polynomial splines are used and
uk = eλtk/T when exponential splines are involved. In either
cases, the pairs of unknowns {ak, uk} can be retrieved from
the power series sm =

∑K−1
k=0 akum

k using the classical
Prony’s method. The key ingredient of this method is the
annihilating filter. Call hm, m = 0, 1, ..., K the filter with
z-transform

H(z) =
K∑

m=0

hmz−m =
K−1∏

k=0

(1− ukz−1).

That is, the roots of H(z) correspond to the locations uk. It
clearly follows that

hm ∗ sm =
K∑

i=0

hism−i =
K−1∑

k=0

akum
k

K∑

i=0

hiu
−i
k

︸ ︷︷ ︸
H(uk)

= 0. (6)

The filter hm is thus called annihilating filter since it annihi-
lates the observed series sm. Moreover, the zeros of this filter
uniquely define the set of locations uk since the locations are
distinct. The identity in (6) can be written in matrix/vector
form as follows:

SH = 0 (7)

which reveals that the Toeplitz matrix S is rank deficient. By
solving the above system, we retrieve the uk’s and therefore
the locations tk. Given the locations, the weights ak are then
obtained by solving a system of linear equations. Notice that
the problem can be solved only when P ≥ 2K − 1.

We thus conclude that perfect reconstruction of a stream
of Diracs is possible with any kernel able to reproduce
exponentials or polynomials. The reconstruction procedure is
the same, the only difference is in the choice of the coefficients
cn,m, which depends on the properties of the chosen kernel.

Other FRI signals can be sampled and reconstructed us-
ing the same procedures. FRI signals that can be sampled
and perfectly reconstructed include piecewise polynomial and
piecewise sinusoidal signals [3], [4], [12], multidimensional
signals [13], [14] and signals that have a sparse representation
in a basis [15].



III. THE NOISY SCENARIO

The signal and acquisition models discussed before are
ideal and perturbations to this model need to be considered.
For simplicity we assume the perturbation is introduced after
sampling and is modeled as additive noise. Consequently, the
new measurements are

ŷn = 〈x(t), ϕ(t/T − n)〉+ εn, n = 0, 1, ..., N − 1,

where εn is assumed to be i.i.d. additive Gaussian noise with
zero mean and variance σ2.

In order to reduce the effect of noise, the reconstruc-
tion procedure discussed in the previous section need to be
modified. The retrieval of the signal parameters in the FRI
sampling framework is similar to a classical harmonic retrieval
problem [7] and so standard techniques used in noisy harmonic
retrieval can be used in this context. First of all because of
noise Eq. (7) is not satisfied any more. We thus look for
a solution that minimizes ‖SH‖2 under the constrain that
‖H‖2 = 1. This is a classical total-least-square (TLS) problem
that can be solved using Singular Value Decomposition (SVD).

The algorithm may be further improved by denoising S
before applying TLS. This is done by using the Cadzow
iterative algorithm [16].

Cadzow algorithm is based on the fact that, in the absence
of any perturbation, the matrix S is Toeplitz and rank deficient
(i.e., it has rank K, where K represents the number of Diracs
in the signal). When noise is present S becomes full rank.
So in the first step of the Cadzow iteration an SVD of S is
performed leading to S = UΛV , where Λ is a diagonal matrix.
Then only the first K diagonal elements of Λ are kept and S
is reconstructed. The new matrix S is now by construction
rank deficient but is not Toeplitz anymore. This condition is
then imposed by averaging the diagonal elements of S. The
procedure is then iterated.

Finally, we further improve resilience to noise by exploiting
the fact that the sampling kernels considered are of compact
support. This means that in absence of noise many of the
samples yn are exactly zero. When noise is present this is not
the case, we therefore set to zero the small observed samples
which are probably carrying only noise and no signal infor-
mation. The important point here is that after thresholding,
groups of consecutive non-zero samples are separated by zero
samples. We use this fact as an indication that the Diracs
have generated samples that do not interfere with each other
and can therefore be treated independently. We thus run the
reconstruction algorithm on each group of non-zero samples
independently.

The overall algorithm can summarized as follows:
1) Given the observed measurements ŷn, set to zero those

whose amplitude is smaller than a predetermined thresh-
old Th (typically, Th = 3σ).

2) For each group of consecutive non-zero samples, Do
a) Construct the rectangular matrix S.
b) Estimate K.
c) Apply Cadzow iterative algorithm to S.

d) Apply TLS method: Perform the singular value
decomposition of S and choose the eigenvec-
tor [h0, h1, ..., hK ]T corresponding to the smallest
eigenvalue.

e) Compute the roots of H(z) =
∑K

k=0 hkz−k and
retrieve the locations tk, k = 0, ...,K − 1.

3) End.

An example of the behavior of the algorithm is shown in
Fig. 2. In this example we have K = 6 Diracs and we observe
N = 128 samples. The noiseless and the noisy samples
are shown in Fig. 2(a), they are obtained using a real E-
spline of order P = 13. In this example the SNR=5dB. The
reconstructed Diracs are shown against the original signal in
Fig. 2(b).
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Fig. 2. Reconstruction of K = 6 Diracs from N = 128 noisy samples.

Notice that the sampling of FRI signals is equivalent to a
parametric estimation problem. It is therefore possible to eval-
uate the performance of the algorithm by using the Cramer-
Rao bounds (CRB). In [8], [17] such bounds were computed
and it was shown that the proposed algorithm exhibit an almost
optimal behavior since it can achieve the CRB up to noise
levels of about 5dB.



IV. APPLICATIONS TO SIGNAL COMPRESSION

We have seen in the previous sections that specific classes
of signals can be parsimoniously sampled using FRI sampling
theory. Moreover, the sampling kernels involved include the
scaling functions used in the construction of wavelet bases
such as, for example, B-splines or Daubechies scaling func-
tion.

We are now going to concentrate on this type of kernels
and we want to investigate the potential impact of such
sampling schemes in compression where samples are also
quantized and represented with a bit stream. In this context,
the best way to analyze the compression algorithm is by using
standard rate-distortion (R-D) theory since this gives the best
achievable trade-off between the number of bits used and the
reconstruction fidelity. It is often assumed that the error due
to quantization can be modeled as additive noise. While this
assumption is normally not accurate, it allows us to connect
R-D theory with the CRB discussed in the previous section
and therefore connect the theory of sampling FRI signals with
compression.

The classes of signals we consider here are piecewise
smooth functions, that is, functions which are made of regular
pieces. The regularity of a function is normally measured using
the Lipschitz coefficients [11]. We thus assume that the signals
we consider are made of pieces with Lipschitz regularity α.

The FRI-based compression algorithm we propose is char-
acterized by a simple linear encoding strategy and a more
complex decoding. This is in contrast with standard wavelet-
based compression algorithms that involve a fairly sophisti-
cated encoding strategy, but simple decoding. There might
be situations, however, where it is important to have simple
encoders.

In our set-up, at the encoder the signal is decomposed using
a standard wavelet transform and the resulting coefficients are
quantized linearly. This means that the low-pass coefficients
(equivalent to the samples in the FRI framework) are quantized
first followed by the wavelet coefficients from the coarse to
the finest scale.

At the decoder, the FRI reconstruction strategy is used to
estimate the discontinuities in the signal using the scaling
coefficients, while the other coefficients are used to reconstruct
the smooth parts of the signals.

By modeling the quantization error and any model mismatch
as additive noise, one can use the CRB to estimate the
performance of this compression strategy and it turns out that
the rate-distortion behavior of this FRI-based algorithm is [18]:

DFRI(R) ≤ c1R
−2α + c2, (8)

where c2 is a systematic estimation error due to the model
mismatch.

Standard wavelet-based compression algorithms instead are
characterized by a complex encoder and a simple decoder and
can achieve the optimal rate distortion behavior [19]:

Dwave(R) ≤ c3R
−2α. (9)

This indicates that if the systematic error in (8) is suffi-
ciently small the FRI-based algorithm which shift the com-
plexity from the encoder to the decoder can achieve the same
performance of the best wavelet-based compression algorithms
for a wide range of bit rates.

The R-D behavior derived in (8) has been validated through
numerical simulations. In Figure 3, we show that the R-D
decay of the proposed semi-parametric method is of the order
R−2α as anticipated by the theory. The signal considered is
depicted in Fig. 4 where the achieved reconstruction at 544
bits is shown and compared against an algorithm based only
on the linear approximation of the wavelet coefficients.
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Fig. 3. R-D performance of the proposed semi-parametric reconstruction
algorithm.
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Fig. 4. Reconstruction of a piecewise smooth signal with the FRI-based
reconstruction method discussed in Section IV.

V. CONCLUSIONS

Recent developments in sampling theory have shown that
some classes of sparse signals can be sampled below the
Nyquist rate.

In this paper, we have briefly reviewed the main aspects
of the theory and then discussed variations of the method
to handle noise and for compression. In both applications



numerical results have shown the potential impact of this new
framework.
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