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Abstract

In spite of the success of the standardwavelet transform (WT) in image processing in recent years, the efficiency of

its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions.

One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual

perception, intersect too manywavelet basis functions and lead to a non-sparse representation. To capture efficiently

these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions,

a more complexmulti-directional (M-DIR) and anisotropic transform is required. We present a new lattice-based

perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains theseparable filtering

and subsampling and the simplicity of computations and filter design from the standard two-dimensional (2-D) WT,

unlike in the case of some other directional transform constructions (e.g. curvelets, contourlets or edgelets). The

corresponding anisotropic basis functions (directionlets) have directional vanishing moments (DVM) alongany two

directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for non-

linear approximation (NLA) of images, achieving the approximation powerO(N−1.55), which, while slower than

the optimal rateO(N−2), is much better thanO(N−1) achieved withwavelets, but at similar complexity.

Index Terms

Wavelets, directionlets, multiresolution, multidirection, geometry, sparse image representation, filter-banks, sepa-

rable filtering, directional vanishing moments

I. I NTRODUCTION

The problem of finding efficient representations of images is a fundamental problem in many image processing

tasks, such as denoising, compression and feature extraction. An efficient transform-based representation requires

sparsity, that is, a large amount of information has to be contained in a small portion of transform coefficients.
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Fig. 1. The standard2-D WT is isotropic. (a) The filtering and subsampling operations are applied equally in both directions at each scale

of the transform. (b) The corresponding decomposition in frequency. The basis functions obtained in this way are isotropic at each scale as

shown in (c) for Haar and in (d) for biorthogonal ”9-7”1-D scaling andwavelet functions. (e) The corresponding Fourier transforms of the

basis functions obtained from the ”9-7”1-D filters.

The one-dimensional (1-D) WT has become very successful in the last decade because it provides a good

multiresolution representation of1-D piecewise smooth signals [1], [2]. The application of wavelets to image

processing requires the design of two-dimensional (2-D) wavelet bases. The most common approach is to construct

such bases using2-D separable filter-banks, which consist of the direct product of two independent1-D filter-banks

in the horizontal and vertical directions. Filtering with high-pass (HP) filters with enough vanishing moments (or

zeros atω = 0) along these two directions leads to a sparse representation of smooth signals. This method is

conceptually simple and has very low complexity while all the1-D wavelet theory carries over. These are the main

reasons why it has been adopted in the image compression standard JPEG-2000 [3].

Some notable approaches use non-separable2-D filter-banks and subsampling (e.g. quincunx) [4]–[6], but these

methods are computationally complex and the design of the associated2-D filter-banks is often challenging and

involved. Also, several general multi-dimensional multi-channel filter design methods have been proposed in [7]–

[10] resulting in filters with separable polyphase components. In this paper, we focus on the design and applications

of 2-D separable two-channel filter-banks based on the1-D wavelets, but allowing directionality and anisotropy.

Despite their success, the standard separable2-D WT fails to provide a sparse representation in the presence

of 1-D discontinuities, like edges or contours. These discontinuities, being highly anisotropic objects present in
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(a) (b)

Fig. 2. A simple image with one discontinuity along a smooth curve is represented by the two types of basis functions: isotropic and anisotropic.

The support of these basis functions is shown schematically as black rectangles. (a) Isotropic basis functions generate a large number of significant

coefficients around the discontinuity. (b) Anisotropic basis functions trace the discontinuity line and produce just a few significant coefficients.

images, are characterized by a geometrical coherence that is not properly captured by the standard isotropic WT.

Namely, many wavelets intersect a discontinuity and this leads to many large magnitude coefficients (Fig. 2(a)).

The reason for the inefficiency of the standard2-D WT resides in thespatial isotropy of its construction, that is,

filtering and subsampling operations are applied equally along both the horizontal and vertical directions at each

scale (see Fig. 1(a)). As a result, the corresponding filters, obtained as direct products of1-D filters, are isotropic

at all scales (Fig. 1(c),(d)).

This motivates us to designanisotropic basis functions that can “match” anisotropic objects (Fig. 2(b)). However,

ensuring an efficient matching between anisotropic basis functions and objects in images is a non-trivial task.

Anisotropic basis functions have already been considered and exploited by adaptive (e.g. bandelets [11], [12])

or non-adaptive (edgelets and wedgelets [13]–[17], curvelets [18]–[20], contourlets [21], etc.) processing. These

methods build dictionaries of anisotropic basis functions that provide a sparse representation of edges in images.

Furthermore, Cand`es and Donoho [18] showed that the parabolic scaling relation between the length and width

of basis functions is a key feature to achieve a good non-linear approximation (NLA) behavior. However, the

implementation of these transforms usually requiresoversampling havinghigher complexity when compared to the

standard WT, and requirenon-separable processing (convolution) andnon-separable filter design. Furthermore, in

some of these constructions (e.g. curvelets [18]) the design of the associated filters is performed in thecontinuous

domain and this makes it difficult to use them directly on discrete images and achieve perfect reconstruction.

Notice that the standard WT uses only horizontal and vertical directions and the HP filters in this transform have

vanishing moments only along these directions. Since characterization of features in synthetic and natural images

involves many more than these two standard directions,multi-directionality and directional vanishing moments
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(DVM) play an important role in pursuing sparse representations.

Several other approaches also analyze geometrical structures in images, like polynomial modeling with quadtree

segmentation [22], footprints and edgeprints [23], multiscale transform [24], etc. Apart from the goal of efficient

representation exploiting geometrical coherence, multi-directional (M-DIR) processing has also been applied to

image denoising and classification. Examples of such transforms are the steerable pyramids [25], the cortex

transform [26], the complex wavelets [27], the directional wavelet analysis [28], the directional filter-banks [7],

[8], [29], brushlets [30], and the associative representation of visual information [31]. Some other methods involve

directionally adaptive processing in order to preserve edges in images [32]–[35], whereas the methods proposed

in [36], [37] impose DVM in either critically sampled or oversampled filter-banks. However, all of them fail to

provide aperfect reconstruction andcritical andseparable sampling while keeping filter design completely in the

discrete domain and with filters having DVM alongarbitrary directions.

Our goal is to construct an anisotropic perfect reconstruction and critically sampled transform with HP filters

having DVM, while retaining the simplicity of1-D processing and filter design from the standard separable2-D WT.

We propose a transform construction based on partitioning of the discrete space using integer lattices, where the

1-D filtering is performed along lines across the lattice. The corresponding basis functions are calleddirectionlets.

We show that our transform has good approximation properties (see also [38]) as compared to the approximation

achieved by some other overcomplete transform constructions [11]–[21] and is superior to the performance of the

standard separable2-D WT having the same complexity.

The outline of the paper is as follows. We present two constructions of anisotropic transforms in Section II. In

Section III, we explain the inefficiency of the M-DIR transforms built on digital lines in order to motivate the need

for integer lattice-based construction. We also give a review of integer lattices and the new construction of our

skewed anisotropic lattice-based transforms. In Section IV, we explore the asymptotic approximation behavior of

the anisotropic M-DIR transforms. We show that the achievable approximation scaling law isO(N −1.55), whereN

is the number of retained coefficients. We also present some simulation results of approximation of natural images.

Finally, we conclude and give the directions of future work in Section V.

II. A NISOTROPIC2-D WAVELET DECOMPOSITIONS

As explained in Section I, the standard WT produces isotropic basis functions, which fail to provide a sparse

representation of edges and contours. However, a new modified method that we propose retains the1-D filtering

and subsampling operations and can provide anisotropy, as we show next. In the sequel of this section, we give two

examples of constructions of anisotropic transforms that still inherit the simplicity of processing and filter design

from the standard WT. Furthermore, these two anisotropic transforms are critically sampled and lead to perfect

reconstruction.
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(a) (b) (c) (d)

Fig. 3. (a) An image from the classMondrian(k1,k2). This class is inspired by the painting style established by Piet Mondrian (1872 -

1944). The image is transformed by the three transforms: (b) standard WT, (c) FSWT, (d) AWT(2,1) with 1-D wavelet filters having enough

vanishing moments.

A. Fully Separable Decomposition

Define a simple class of piecewise polynomial images, denoted asMondrian(k1,k2) and inspired by the

geometrical period of Piet Mondrian1 [39].

Definition 1: The classMondrian(k1,k2) containsM × M piecewise polynomial images withk1 horizontal

andk2 vertical discontinuities.

An example of the image from the classMondrian(k1,k2) is shown in Fig. 3(a). This class is not efficiently

represented by the standard WT. The discontinuities lead to too many nonzero coefficients, as shown in the lemma

below and in Fig. 3(b).

Lemma 1: Given anM × M pixel image from the classMondrian(k1,k2), the number of nonzero transform

coefficients in band-pass subbands produced by the standard WT with the1-D wavelets having enough vanishing

moments2 is given by

N = O ((k1 + k2)M) . (1)

Proof: The three band-pass subbands at thejth (1 ≤ j ≤ log 2 M ) level of the standard WT contain

O(k1M/2j +k2), O(k1 +k2M/2j), andO(k1 +k2) nonzero coefficients. The total number of nonzero coefficients

across scales is given by

N =
log2 M∑

j=1

(
O

(
k1

M

2j
+ k2

)
+ O

(
k1 + k2

M

2j

)
+ O (k1 + k2)

)

= O (2(k1 + k2) log2 M) + O ((k1 + k2)(M − 1)) = O ((k1 + k2)M) .

To improve compactness of the representation of the classMondrian(k 1,k2), we define thefully separable WT

(FSWT). In this transform a full1-D WT is applied in the horizontal direction (each row of image) and then, on

1The Dutch painter establishedneoplasticism and De Stijl in Europe in the beginning of the20th century. The image shown in Fig. 3(a)

resembles to the paintings from hisgeometrical period (1930)

2A polynomial of thenth order is annihilated by awavelet that has at leastn + 1 vanishing moments.
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each output a full1-D WT is applied in the vertical direction (each column). The decomposition scheme is shown

in Fig. 4(a). Notice that such a decomposition has already been proposed in [40] and also in [41], [42], where it

is referred to as tensor wavelet basis.

The FSWT provides anisotropic basis functions (Fig. 4(c)) that are better adapted to the anisotropic objects such

as the discontinuities in the classMondrian(k1,k2). Representation efficiency is strongly improved, as can be seen

in Fig. 3(c) from the resulting sparsity and it is given in Lemma 2.

Lemma 2: Given anM × M pixel image from the classMondrian(k1,k2), the number of nonzero transform

coefficients in band-pass subbands produced by the FSWT with the1-D wavelets having enough vanishing moments

is given by

O
(
(k1 + k2) (log2 M)2

)
. (2)

Proof: Each band-pass subband is indexed by(j1, j2), wherej1 determines the number of the horizontal

transforms, whereasj2 enumerates the vertical transforms. The indexes are in the range1 ≤ j 1, j2 ≤ log2 M .

The subband(j1, j2) containsO (k1 + k2) nonzero transform coefficients, therefore, the total number of nonzero

coefficients is given by

N =
log2 M∑
j1=1

log2 M∑
j2=1

O (k1 + k2) = O
(
(k1 + k2) (log2 M)2

)
.

The performance of the FSWT on the classMondrian(k1,k2), given by (2), is substantially better than the result

of the standard WT, given by (1), namely, there is an exponential improvement in terms ofM . The improvement

is a consequence of anisotropy of the basis functions that is matched to the anisotropy of the class. However, the

FSWT performs well only when it is applied on Mondrian-like images, while natural images contain features that

are not well represented by straight (horizontal and vertical) lines.

Notice that if a transformed image contains a curve (or any discontinuity that is not a straight line), then the

FSWT fails, as the number of nonzero coefficients grows exponentially across scales. Intuitively, the failure happens

because the FSWT enforces a higher anisotropy (or elongation of the basis functions) than the one that is required

in order to provide a compact representation of objects in natural images. To overcome this problem, we introduce

a novel anisotropic transform, which performs better on a larger class of images.

B. Anisotropic Wavelet Decomposition

In the anisotropic WT (AWT) the number of transforms applied along the horizontal and vertical directions is

unequal, that is, there aren1 horizontal andn2 vertical transforms at a scale, wheren1 is not necessarily equal to

n2. Then, the iteration is continued in the low-pass (LP), like in the standard WT. We denote such an anisotropic

transform as AWT(n1,n2). The anisotropy ratio ρ = n1/n2 determines elongation of the basis functions of the

AWT(n1,n2). An example of the construction and basis functions is shown in Fig. 5, where the AWT(2,1) is used.

Notice that both the standard WT and the FSWT can be expressed in terms of the AWT. The standard WT is simply

given by AWT(1,1). However, the representation of the FSWT is more complex and is given as a concatenation
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Fig. 4. The FSWT is anisotropic, as the number of1-D transforms is not equal in the two directions. (a) An example of the transform scheme.

Only 2 steps in each direction are shown. (b) The decomposition in frequency that corresponds to the construction in (a) with4 steps in each

direction. The anisotropic basis functions obtained from the (c) Haar and (d) biorthogonal ”9-7”1-D scaling andwavelet functions. (e) The

corresponding Fourier transform of the basis functions obtained from the ”9-7”1-D filters.

of two AWTs. The first transform is AWT(n1max,0) that producesn1max + 1 subbands and it is followed by the

AWT(0,n2max) applied on each subband. The argumentsn1max and n2max determine the maximal number of

transforms in the two directions and depend on the size of the image.

Even though the AWT is not the most appropriate representation for the particular case of Mondrian-like images,

it improves approximation of more general classes of images, as shown in Section IV. Fig. 3(d) shows the result

of the AWT(2,1) of an image from the classMondrian(k1,k2). The order of the number of nonzero coefficients

is given by the following lemma.

Lemma 3: Given anM × M pixel image from the classMondrian(k1,k2), the number of nonzero transform

coefficients in band-pass subbands produced by the AWT(n 1,n2) with 1-D wavelets having enough vanishing

moments is given by

O

((
ak1 +

1
a
k2

)
M

)
, wherea =

2n2 − 1
2n1 − 1

. (3)
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Fig. 5. The AWT allows for anisotropic iteration of the filtering and subsampling applied on the LP, similarly as in the standard WT. Although

this transform does not improve approximation of the classMondrian(k1,k2), it provides an efficient approximation tool for more general

classes of images (Section IV). (a) The filtering scheme for the AWT(2,1), where one step of iteration is shown. (b) The decomposition in

frequency. The basis functions obtained from the (c) Haar and (d) biorthogonal ”9-7”1-D scaling andwavelet functions. (e) The corresponding

Fourier transform of the basis functions obtained from the ”9-7”1-D filters.

Proof: The number of nonzero coefficients produced at thejth level of the AWT(n 1,n2) is given by

n(j) =O(k1 (2n2 − 1)
M

2n1j
+ k1 (2n1 − 1) 2n2

+k2 (2n1 − 1)
M

2n2j
+ k2 (2n2 − 1) 2n1).

The total number of nonzero coefficients across scales is, therefore,

N =

log2 M

max(n1,n2)∑
j=1

n(j) = O

((
ak1 +

1
a
k2

)
M

)
.

Notice that the result in Lemma 3 is a generalization of the result in Lemma 1. Table I summarizes the orders

of numbers of nonzero coefficients in band-pass subbands produced by the three transforms applied on the class

Mondrian(k1,k2).
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TABLE I

ORDERS OF APPROXIMATION BY THE STANDARDWT, FSWTAND AWT APPLIED ON THE CLASSMONDRIAN(k1,k2).

Standard WT FSWT AWT

(k1 + k2)M (k1 + k2)(log2 M)2 (k1a + k2/a)M

The transforms explained in this section are applied in the horizontal and vertical directions only. More general

transforms can be obtained by imposing vanishing moments along different directions. These transforms provide

an efficient representation of more general classes of images, involving more than only the two standard directions,

as shown in the next section.

III. L ATTICE-BASED SKEWED WAVELET TRANSFORMS

Several transform constructions that lead to anisotropic basis functions have been presented in Section II. However,

all the constructions, including the standard WT, use only horizontal and vertical directions. Notice also that the

HP filters in these transforms have vanishing moments only along these two directions. Here, we present the novel

lattice-based transform, which exploits multi-directionality and retains the simplicity of computations and filter

design from the standard WT.

In the continuation, we explain the problem of approximation of directions in the discrete space�
2 and we

introduce the concept of directional interaction. Then, we propose a new lattice-based method that allows for a

generalization of the transform constructions from Section II to include separable (1-D) filtering and subsampling

across multiple directions, not only horizontal and vertical. We also give the polyphase analysis of the lattice-based

transforms.

A. Discretization of Directions

To apply a discrete transform in the discrete space�
2 in a certain direction, we need to define the pixels that

approximate the chosen direction. This problem has been considered in computer graphics in the1960’s [43] as

well as in [44], [45].

Recall that the set of points(x, y) ∈ �
2 represents a continuous line with the sloper and interceptb if the

following equality is satisfied:

y = rx + b. (4)

The discrete approximation of (4) is calleddigital line L(r, n). To preserve critical sampling in the transform,

given a sloper, every pixel belongs to one and only one digital lineL(r, n). In that case, we say that, given a

sloper, the set of digital lines{L(r, n) : n ∈ �}, partitions the discrete space �2.

The definitions of digital lines proposed in [43]–[45] are similar and here we give the definition that is a variation

of the one given in [43]. We show also below that such digital lines partition the discrete space�
2.
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(a) (b) (c) (d)

Fig. 6. (a) An example of an image from the classS-Mondrian(M(r1, r2),k1,k2), for M = [v1,v2]T , wherev1 = [1, 1] andv2 = [−1, 1].

The image is transformed using (b) S-WT, (c) S-FSWT, and (d) S-AWT(MΛ,2,1) (directionlets), where all the transforms are built on the lattice

Λ determined by the generator matrixMΛ = M(r1, r2).

Definition 2: Given a rational sloper, the digital lineL(r, n), wheren ∈ �, is defined as the set of pixels(i, j)

such that

j = �ri� + n, ∀i ∈ �, for |r| ≤ 1, or

i = �j/r� + n, ∀j ∈ �, for |r| > 1. (5)

Lemma 4: Given a rational sloper, the set of digital lines{L(r, n) : n ∈ �} partitions the discrete space� 2.

Proof: We give the proof only for the case|r| ≤ 1. Similar arguments can be used for the other cases.

For each pixel(i, j) ∈ �2, we can find the interceptn = j − �ri� such that the pixel belongs to the digital line

L(r, n). Furthermore, from (5) it follows that this intercept is unique. Therefore, the digital linesL(r, n), ∀n ∈ �,

partitions the discrete space�2.

The concept of digital lines is useful for overcomplete M-DIR representation. However, in the sequel, we show

why digital lines do not provide an efficient framework when transforms are applied in different directions and

critical sampling is enforced.

B. Directional Interaction

To explain the problem ofdirectional interaction, let us first generalize the classMondrian allowing for more

directions. The classS-Mondrian consists of the skewed Mondrian-like images along two directions with the

rational slopesr1 = b1/a1 and r2 = b2/a2, wherea1, a2, b1, andb2 are integers. To simplify notation, the two

slopes are jointly denoted by the matrix

M(r1, r2) =


 a1 b1

a2 b2


 .

Definition 3: The classS-Mondrian(M(r1, r2),k1,k2) containsM × M piecewise polynomial images with

k1 and k2 discontinuities along the digital linesL(r1, n) and L(r2, n), respectively, wheren ∈ �, r1 = b1/a1,

r2 = b2/a2, anda1, a2, b1, b2 ∈ �.
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Fig. 7. A 1-D WT is applied on an image from the classS-Mondrian(M(−1/2, 2/3),1,1) along the digital linesL(−1/2, n). The HP

filtering annihilates the digital line with the slope−1/2. However, the nonzero coefficients produced by the other line with the slope2/3 are

not aligned in the digital linesL(2/3, n). This is calleddirectional interaction. Although the transform along digital lines is efficient when

applied in oversampled schemes, it fails to provide a systematic subsampling method when critical sampling is enforced.

Notice that the classMondrian(k1,k2) is a special case of the larger classS-Mondrian(M(r1, r2),k1,k2)

whenM(r1, r2) = I2. An example of an image from the classS-Mondrian(M(r1, r2),k1,k2) is shown in Fig.

6(a). Notice also that only the lines with rational slopes are used in the classS-Mondrian. However, in spite of

this constraint, a wealth of directions is still available, as we will explain in Section III-C.

To provide a sparse representation of the classS-Mondrian(M(r1, r2),k1,k2) and following the ideas from

Section II, we apply a1-D WT along the digital linesL(r1, n), for n ∈ �. The transform produces two types of

nonzero coefficients, that is, the coefficients corresponding to the discontinuities with the slopesr 1 andr2.

Since the HP filter has vanishing moments along digital lines with the sloper1, the coefficients along this direction

are annihilated in the HP subband, while the coefficients along the second direction with the sloper 2 are retained in

both subbands. However, after subsampling, unlike in the case of the standard directions, the coefficients along the

second direction are not aligned, that is, they cannot be clustered in the digital lines with the sloper 2. Therefore,

the following1-D WT applied along the digital lines with the sloper2 does not annihilate the coefficients along the

second direction and, hence, it yields a non-sparse representation. We call this phenomenondirectional interaction.

The proof is trivial and is omitted here. An example is shown in Fig. 7.

Notice also that the concept of digital lines does not provide a systematic rule for subsampling in the case of

iteration of the filtering and subsampling along the directions with the slopesr 1 andr2 when critical sampling is

enforced. To overcome the directional interaction and to propose an organized iterated subsampling method we use

the concept of integer lattices.
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Fig. 8. The intersections between the3 cosets of the latticeΛ given by the generator matrixMΛ and the digital linesL(r1 = 1/2, n), where

n ∈ �, are the co-linesCL[0,0](1/2, n), CL[0,1](1/2, n), andCL[1,1](1/2, n).

C. Lattice-based Filtering and Subsampling

Instead of applying a transform along digital lines, we propose a novel method that is based on integer lattices

[46]. We also prove that the lattice-based transforms can avoid directional interaction and are capable of providing

the same order of approximation for the classS-Mondrian as the FSWT achieves for the classMondrian.

A full-rank integer latticeΛ consists of the points obtained as linear combinations of two linearly independent

vectors, where both the components of the vectors and the coefficients are integers. Any integer latticeΛ is a

sublattice of the cubic integer lattice�2, that is, Λ ⊂ �
2. The latticeΛ can be represented by a non-unique

generator matrix

MΛ =


 a1 b1

a2 b2


 =


 d1

d2


 , wherea1, a2, b1, b2 ∈ �. (6)

Recall that the cubic lattice�2 can be partitioned into| det(MΛ)| cosets of the latticeΛ [46], where each coset is

determined by the shift vectorsk, for k = 0, 1, . . . , | det(MΛ)|− 1. Therefore, the latticeΛ with the corresponding

generator matrixMΛ given by (6), partitions each digital lineL(r1 = b1/a1, n) into co-lines. Notice that a co-line

is simply the intersection between a coset and a digital line. Similarly, the digital lineL(r2 = b2/a2, n) is also

partitioned into the corresponding co-lines (Fig. 8).

We denote asCLsk
(r1, n) the co-line obtained as the intersection between thekth coset of the latticeΛ and the

digital line L(r1 = b1/a1, n). Notice that the co-lineCLsk
(r1, n) consists of the pixels{c1d1 + c2d2 + sk : ∀c1 ∈

�, fixed c2 ∈ �}, wheren = �c2(b2 − r1a2) + sk,2 − r1sk,1� andsk = [sk,1, sk,2].

Now we apply the1-D WT (including the1-D both filtering and subsampling operations) along the co-lines

{CLsk
(r1, n) : n ∈ �, k = 0, 1, . . . , | det(MΛ)| − 1} (see also [47]). Notice that both filtering and subsampling

are applied in each of the cosets separately. Furthermore, each filtering operation is purely1-D. After subsampling,

the retained points belong to the sublatticeΛ ′ of the latticeΛ (Λ′ ⊂ Λ) with the corresponding generator matrix
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MΛ
1 1

1– 1
=

s0 0 0=

s1 0 1=
MΛ′

2 2

1– 1
=

(a)

MΛ
2 1–

3 2
= HP filtering

across -1/2

(b)

Fig. 9. (a) The latticeΛ is determined by the generator matrixMΛ. 1-D Filtering is applied along the co-lines{CLsk (r1, n) : n ∈ �, k =

0, 1, . . . , |det(MΛ)| − 1}, where the sloper1 corresponds to the vector[1, 1], that is, along45◦. The pixels retained after the subsampling

belong to the latticeΛ′ ⊂ Λ determined by the generator matrixMΛ′ . Notice that filtering and subsampling are applied separately in two

cosets, determined by the shift vectorss0 ands1. (b) The nonzero pixels obtained after one step of the lattice-based filtering operation applied

on the same example as in Fig. 7 are clustered in the digital lines with the slope2/3.

given by (see Fig. 9(a))

MΛ′ = Ds ·MΛ =


 2d1

d2


 .

Here,Ds is the horizontal subsampling operator, that is,

Ds =


 2 0

0 1


 .

We call the direction along the first vectord1 (with the sloper1 = b1/a1), the transform direction. Similarly,

the direction along the second vectord2 we call thealignment direction.
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Therefore, since the filtering and subsampling are applied in each coset separately, the pixels retained after the

subsampling are clustered in co-lines along the alignment direction. This property is crucial to avoid directional

interaction (see Fig. 9(b)).

Lemma 5: Given a1-D WT applied along the set of co-lines{CLsk
(r1, n) : n ∈ �, k = 0, 1, . . . , | det(MΛ)|−1}

on an image from the classS-Mondrian(M(r1, r2),k1,k2), the transform coefficients in band-pass subbands

that correspond to the discontinuities with the sloper2 are aligned, that is, they can be clustered in the co-lines

CLsk
(r2, n), n ∈ �.

Proof: Recall that the co-lineCLsk
(r1, n) consists of the pixels{(i, j) : i = c1a1 + c2a2 + sk,1, j =

c1b1 + c2b2 + sk,2, ∀c1 ∈ �, fixed c2 ∈ �}. After the subsampling, the retained pixels belong to the lattice

Λ′ and, thus, the corresponding co-lines consist of the pixels(i, j) such thati = c 1 · 2a1 + c2a2 + sk,1 and

j = c1 · 2b1 + c2b2 + sk,2 for eachc1 ∈ � and a fixedc2 ∈ �.

Notice that the co-linesCLsk
(r2, n) with the other sloper2 that correspond to the latticeΛ′ consist of the same

pixels. Therefore all the retained pixels are aligned in the direction with the sloper 2.

Combining lattices with the different constructions given in Section II, we buildskewed wavelet transforms.

D. Skewed Wavelet Transforms

The transforms defined in Section II (the standard WT, FSWT, and AWT) are inefficient when applied on the class

S-Mondrian(M(r1, r2),k1,k2), unlessM(r1, r2) is the identity matrix. Since the directions of the transforms and

discontinuities in images are not matched, the transforms fail to provide a compact representation. The following

lemma gives the orders of approximation that can be achieved by the three transforms with the standard directions.

Lemma 6: Given anM × M pixel image from the classS-Mondrian(M(r1, r2),k1,k2), whereM(r1, r2) is

not the identity matrix, the standard WT, FSWT, and AWT with1-D wavelets having enough vanishing moments

provideO((k1 + k2)M) nonzero transform coefficients in band-pass subbands.

Proof: The subbands produced by the FSWT are indexed by(j 1, j2), where1 ≤ j1, j2 ≤ log2 M . Each

subband containsO(k1M/2j1 + k2M/2j2) nonzero coefficients. The total number is given by

N =
log2 M∑
j1=1

log2 M∑
j2=1

O

(
k1

M

2j1
+ k2

M

2j2

)
= O ((k1 + k2)M) .

Notice that the standard WT, as a special case of the AWT, has the same behavior. Thus, we give the proof only

for the AWT. The AWT(n1,n2) produces2n1+n2 − 1 band-pass and HP subbands at each scalej. Each of these

subbands containn(j) = O((2n1+n2 − 1)M(2−n1j + 2−n2j)) nonzero coefficients. Therefore, the total number of

nonzero coefficients is given by
log2 M

max(n1,n2)∑
j=1

n(j) = O ((k1 + k2)M) .

Using integer lattices, we define the three new transforms, which areskewed versions of the standard WT, FSWT,

and AWT. Given a latticeΛ, the skewed transforms are applied along co-lines in the transform and alignment
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. The basis functions obtained by the skewed transforms using the Haar1-D scaling andwavelet functions: (a) S-WT, (b) S-FSWT,

(c) S-AWT(MΛ,2,1) (directionlets). The same, but with the biorthogonal ”9-7”1-D scaling andwavelet functions: (d) S-WT, (e) S-FSWT,

(f) S-AWT(MΛ,2,1) (directionlets). In all casesMΛ = [d1,d2]T , whered1 = [1, 1], and d2 = [−1, 1]. The DVMs are imposed along

the vectorsd1 and d2, that is, along45◦ and −45◦. The corresponding Fourier transforms: (g) S-WT, (h) S-FSWT, (i) S-AWT(MΛ,2,1)

(directionlets).

directions of the latticeΛ, retaining the same frequency decompositions as the corresponding transforms along the

standard directions explained in Section II. Thus, following the notation introduced in Section II-B, we denote as

S-AWT(MΛ,n1,n2) the skewed anisotropic transform built on the latticeΛ that hasn1 andn2 transforms in one

iteration step along the transform and alignment directions, respectively. We call the basis functions of the S-AWT

directionlets since they are anisotropic and have a specific direction. Similarly, we denote the skewed standard

WT as S-WT and the skewed FSWT as S-FSWT. The corresponding basis functions are shown in Fig. 10 for the

directions along the vectorsd1 = [1, 1] and d2 = [−1, 1]. Notice that the skewed transforms are applied in all
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cosets of the latticeΛ separately.

The basis functions of the skewed transforms have DVM inany two directions with rational slopes. Recall that

theLth order DVM along the direction with a rational sloper1 = b1/a1 is equivalent to requiring thez-transform of

a basis function to have a factor(1− z−a1
1 z−b1

2 )L [21], [48]. The following lemma gives the number and directions

of the DVM in directionlets.

Lemma 7: Assume that the directionlets of the S-AWT(MΛ,n1,n2) are obtained using a1-D wavelet withL

vanishing moments. Then, at each scale of the iteration, there are:

(a) 2n1 − 1 directionlets with theLth order DVM along the transform direction of the latticeΛ,

(b) 2n2 − 1 directionlets with theLth order DVM along the alignment direction of the latticeΛ, and

(c) (2n1 − 1)(2n2 − 1) directionlets with theLth order DVM along both directions.

Proof: Recall first from [48] that1-D filtering using the filterH(z) along the transform direction of the latticeΛ

is equivalent to filtering in the2-D discrete space usingH(z a1
1 zb1

2 ). Similarly, filtering along the alignment direction

of the latticeΛ is equivalent to filtering in the2-D discrete space usingH(z a2
1 zb2

2 ). Since the1-D HP filter hasL

vanishing moments, itsz-transform has a factor(1 − z−1)L. Therefore, the HP filtering along the transform and

alignment directions uses the equivalent filters with the factors(1−z−a1
1 z−b1

2 )L and(1−z−a2
1 z−b2

2 )L, respectively,

in the z-transforms.

Filtering using the1-D two-channel filter-bank along two directions in the construction of the S-AWT (see Fig.

5(a)) yields (a)2n1 − 1 subbands with HP filtering along only the transform direction, (b)2 n2 − 1 subbands with

HP filtering along only the alignment direction, and (c)(2n1 − 1)(2n2 − 1) subbands with HP filtering along both

directions. Thus, the statement of the lemma follows directly.

Efficiency of representation of the classS-Mondrian(M(r1, r2),k1,k2) by the three skewed transforms depends

on matching between the directions of discontinuities and the directions used in these transforms. If these directions

are matched, then the orders of nonzero coefficients in band-pass subbands are equal to the orders calculated in

Section II (see Table I). Otherwise, they are given by the result in Lemma 6. The following lemma formalizes this

statement. The proof is omitted since it uses the same arguments as in Lemmas 1 to 3.

Lemma 8: Given anM × M pixel image from the classS-Mondrian(M(r1, r2),k1,k2), the S-WT, S-FSWT

and S-AWT(MΛ,n1,n2) with 1-D wavelets having enough vanishing moments built on the latticeΛ determined

by the generator matrixMΛ = M(r1, r2) give O((k1 + k2)M), O((k1 + k2)(log2 M)2) andO((k1a + k2/a)M)

nonzero coefficients in band-pass subbands, respectively. Here,a = (2 n2 − 1)/(2n1 − 1).

The transforms of the image shown in Fig. 6(a) are given in Fig. 6(b)-(d). The applied transforms are S-WT,

S-FSWT, and S-AWT(MΛ,2,1), whereM(r1, r2) = MΛ. Table II summarizes the orders of nonzero coefficients

in band-pass subbands in the case of both matched and mismatched directions.

Notice that the lattice-based method allows for a more general construction of M-DIR transforms using more

than two directions in an arbitrary order. Such M-DIR transforms and their properties are beyond the scope of this

paper. More details are given in [47], [49].
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TABLE II

ORDERS OF APPROXIMATION BY THES-WT, S-FSWTAND S-AWT (DIRECTIONLETS) BUILT ON THE LATTICE Λ DETERMINED BY MΛ

APPLIED ON THE CLASSS-MONDRIAN(M(r1, r2),k1,k2).

MΛ = M(r1, r2) MΛ �= M(r1, r2)

S-WT (k1 + k2)M (k1 + k2)M

S-FSWT (k1 + k2)(log2 M)2 (k1 + k2)M

S-AWT (k1a + k2/a)M (k1 + k2)M

2

2z
y0

y1

x
Hp

H00 z( ) H01 z( )

H10 z( ) H11 z( )
=Hp

2

2

H1 z( )

H0 z( )
y0

y1

x
polyphase
transform

Fig. 11. A 1-D filter-bank (H0(z), H1(z)) with the subsampling factor2 is represented in the polyphase domain with the corresponding

polyphase componentsH00(z), H01(z), H10(z), andH11(z).

E. Polyphase Representation

Filtering and subsampling across lattices, as explained in Section III-C, can be efficiently represented in the

polyphase domain. Recall first that a two-channel1-D filter-bank(H 0(z), H1(z)) followed by a subsampler by the

factor 2 can be given in terms of the polyphase components as [2]

H0(z) = H00

(
z2

)
+ zH01

(
z2

)
and

H1(z) = H10

(
z2

)
+ zH11

(
z2

)
.

Here,H00, H01, H10, andH11 are the polyphase components of the filtersH0(z) andH1(z) that correspond to

even and odd samples of the impulse response, respectively. Such a polyphase representation is shown in Fig. 11.

Similarly, we can find the equivalent polyphase components of a2-D filter-bank (H 0(z), H1(z)), wherez =

(z1, z2), applied in the lattice-based method, as explained in Section III-C. Recall that the filtersH 0(z) andH1(z)

used in this method are purely1-D filters, that is,H0(z) = H0(z1) andH1(z) = H1(z1). To illustrate this polyphase

decomposition, we consider the particular example with the latticeΛ determined by the generator matrix

MΛ =


 1 1

−1 1


 ,

as shown in Fig. 9(a). Recall that the lattice-based filtering and subsampling are applied in each coset of the lattice

Λ separately. Thus, the equivalent scheme has two sections, which are (a) separation into two cosets and (b)1-D

filtering and subsampling in the transform direction (Fig. 12(a)). Notice that filtering in the transform direction is
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H0 z1( )

DS

DS

Mz2

x

y0′

y1′
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1– 1
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0 1
=
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subsampling

Λ

Λ

Λ

(a)

DS MΛ⋅

DS MΛ⋅
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z2

z1 z2⋅

z1 z2
2⋅

y0′

y1′

y1″

y0″

x
Hp

H00 z1( ) H01 z1( ) 0 0

H10 z1( ) H11 z1( ) 0 0

0 0 H00 z1( ) H01 z1( )

0 0 H10 z1( ) H11 z1( )

=Hp

(b)

Fig. 12. (a) The2-D two-channel filter-bank applied in the example shown in Fig. 9(a). Filtering and subsampling are applied in2 cosets

separately. (b) Equivalent polyphase representation contains4 components. The polyphase transformHp is block-diagonal.

performed as horizontal filtering preceded by rotation by the generator matrixM Λ.

Since the total subsampling rate is| det(Ds ·MΛ)| = 4, the polyphase representation of such a filter-bank consists

of 4 polyphase components. The equivalent polyphase representation is shown in Fig. 12(b), where the polyphase

transformHp is block-diagonal, that is,

Hp =




H00(z1) H01(z1) 0 0

H10(z1) H11(z1) 0 0

0 0 H00(z1) H01(z1)

0 0 H10(z1) H11(z1)




.

Notice that the block-diagonal polyphase transform with two identical blocks is a consequence of the separable

transforms applied across cosets. This property allows for a simple filter design and computational efficiency in the

polyphase domain. Such separability in the polyphase domain has also been used in other2-D filter-bank designs

[7], [8].

IV. N ON-LINEAR APPROXIMATION AND COMPRESSION

The main task of approximation is to represent a signal by a portion of transform coefficients, while the rest of

them is set to zero. The transform can be critically sampled (bases) or oversampled (frames). The approximation with

N retained transform coefficients is also calledN-term approximation. We distinguish between linear approximation

(LA) and non-linear approximation (NLA). In the first, the indexes of the retained coefficients are fixed, whereas

in the latter, they are adapted to the content of the signal.

Owing to truncation of the coefficients, the approximating signal does not match exactly the original one. The

quality of the approximation is commonly measured in terms ofmean-square error (MSE), that is, for a signalx

DRAFT September 9, 2005
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and itsN -term approximation̂xN , the MSE is given by‖x− x̂N‖2. Notice that, given a signalx and its transform

y = F · x, whereF is a tight frame or an orthogonal basis, we have the following inequality

‖x− x̂N‖2 ≤ 1
A
‖y − ŷN‖2, (7)

where ŷN corresponds to the truncated version ofy with N retained coefficients, theN -term approximationx̂N

is given byx̂N = A−1FT · ŷN , andA is the frame bound ofF (for more details see Appendix I). Equality in (7)

holds if the transformF is an orthogonal basis.

In the orthogonal case, the optimal strategy to minimize the MSE is to retain the largest-magnitude transform

coefficients [50]. Notice that the MSE decays as the number of retained coefficients (approximants)N grows.

Compression using orthogonal transforms is an extension of NLA that consists of (a) approximation, (b) indexing

the retained coefficients, and (c) quantization of the coefficients.3 Thus, the MSE (in this case also calleddistortion)

is affected by the two factors: (a) truncation error due to NLA and (b) quantization error.

The asymptoticrate of decay of the MSE, asN tends to infinity, is a fundamental approximation property of

the transform and this value allows us to compare approximation performance of different transforms. The higher

the rate of decay, the more efficient the transform is. Similarly, the rate of decay in compression is defined as the

asymptotic behavior of the distortionD, as the bitrateR tends to infinity (this is frequently calledR-D behavior).

Mallat [50] and DeVore [53] showed that, for a2-D piecewiseC 2 smooth signalf(x1, x2) with a 1-D C2 smooth

discontinuity curve4 (which we callC2/C2 signal), the lower bound of the MSE is given byO(N −2).

Notice that the standard WT is far from optimal since its rate of decay isO(N −1) [1], [50]. Some other adaptive

or non-adaptive methods have been shown to improve substantially the approximation power. Curvelets [18]–[20]

and contourlets [21] can achieve the rateO(N −2(log N)3), which is nearly optimal. Furthermore, bandelets [11],

[12] and wedgelets [13]–[17] have been shown to perform indeed optimally. However, notice that none of these

methods is based on critically sampled filter-banks, which are very convenient for compression. Furthermore, a

complex non-separable processing is sometimes required.

As we showed in Section II and III, anisotropy and multi-directionality improve the approximation power of

the WT while keeping separability, simplicity, and critical sampling. However, the S-FSWT cannot yield a high

rate of decay since it fails to provide a sparse representation ofC 2/C2 images. On the other hand, the S-AWT is

capable of producing a compact representation, but it is still sensitive to the choice of the transform and alignment

directions.

Synthetic (including alsoC 2/C2) and natural images have geometrical features that vary over the space. Di-

rectionality, thus, can be considered as a local characteristic, defined in a small neighborhood. This implies the

necessity forspatial segmentation as a way of partitioning an image into smaller segments with one or a few

dominant directions per segment.

3Some algorithms merge quantization and NLA into a single operation producing an embedded bitstream, like zero-trees [51] or SPIHT [52].

4C2 smoothness of both1-D and2-D functions means that the functions are twice continuously differentiable.
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Fig. 13. An example of NLA of an image from the classC2/C2. (a) An image from the classC2/C2 is approximated using the standard

WT and the S-AWT(Λ,2,1) with spatial segmentation. (b) The MSE expressed in terms of PSNR is significantly reduced in the case of the

S-AWT(Λ,2,1).

The S-AWT is applied on a segmented image, where the transform and alignment directions are chosen inde-

pendently in each segment. The transform outperforms the standard WT in both approximation and compression

rate of decay of the MSE (i.e. distortion). The following theorem gives the rate of decay forC 2/C2 images.

Theorem 1: Given a2-D C2/C2 function f(x1, x2) andα = (
√

17 − 1)/2 ≈ 1.562,

(a) TheN -term approximation by the S-AWT using spatial segmentation achieves

MSE = ‖f − f̂N‖2 = O
(
N−α

)
.

In that case the optimal anisotropy ratio isρ∗ = α.

(b) Compression by the S-AWT, using spatial segmentation and usingR bits for encoding, can achieve the distortion

D given by

D = O
(
R−α

)
.

The proof of the theorem is given in Appendix II.

Notice that anisotropic segmentation is used here in the iteration, that is, an image is partitioned into vertical strips

of equal widths. The number of segmentation steps depends on the anisotropy ratio, the number of approximants, the

number of transform directions, and the first derivative of theC 2 curve (see the proof of Theorem 1). In particular,

when the optimal anisotropy ratioρ∗ = α is used, the number of segmentation steps does not increase with the

number of approximants. However, in reality, because of the discreteness of the transform, this anisotropy ratio

cannot be exactly achieved and, in general, the number of segmentation steps has to be increased with the number

of approximants. Notice that the S-AWT(Λ,3,2) approximates well the optimal transform5 while retaining iterative

5There are other possible transforms with the anisotropy ratio even closer to optimal but we choose this one for the sake of simplicity.
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TABLE III

DEPENDENCE OF THE APPROXIMATION RATEMSE=O(N−e∗1 ) AND THE NUMBER OF SEGMENTATION LEVELSs = η1 log2(N) ON THE

GROWTH RATE OF THE NUMBER OF TRANSFORM DIRECTIONSβ IN THE CASE OF THES-AWT(Λ,3,2)

β 2 1 0.5 0.25

η1 1/51 1/26 2/27 4/29

e∗1 1.55 1.50 1.41 1.24

segmentation. It follows from the proof of Theorem 1 that the number of required transform directions grows with

the number of segmentation steps asO(2βs). Table III gives the achievable approximation and segmentation rates

for the S-AWT(Λ,3,2) and different values ofβ.

Although the obtained approximation rate is slower than the ones obtained in [13]–[21], we want to emphasize

that the S-AWT(Λ,3,2) is critically sampled and uses onlyseparable processing. This is important for compression

because, in the case of orthogonal1-D filter-banks, the Lagrangian optimization-based algorithms still can be

applied, making it easier to achieve very good compression.

In order to perform compression, the chosen transform directions in each segment have to be encoded together

with the indexes and quantized values of the retained transform coefficients. The bitrate of this overhead information

depends on the number of spatial segments and allowed number of transform directions per segment. Recall from

Appendix II that the number of spatial segments is equal to2 s, whereas the number of bits needed to encode the

choice of directions in each segment behaves asO(log 2(2βs))=O(βs). Thus, the number of overhead bits is given

by RH = O(βs · 2s). However, even though this number grows exponentially with the number of segmentation

stepss, the growth rate for the values ofβ given in Table III is smaller than the growth rate of the number of

indexing and quantization bits and, thus, the dominant asymptotic behaviorD(R) remains the same.

Recall also from Section III-C that the S-AWT(Λ,3,2) is applied in the| det(MΛ)| cosets separately. The separate

filtering and subsampling in the cosets affect the order of decay of the MSE, but only up to a constant factor and,

thus, the rate of decay remains the same.

Figure 13 illustrates the gain obtained by NLA using the S-AWT(Λ,2,1) with spatial segmentation applied on an

image from the classC2/C2 when compared to the results of NLA obtained using the standard WT. Furthermore,

Figure 14 shows an example of the NLA results with a natural image. The image Cameraman shown in Figure 14(a)

is transformed using the standard2-D WT without segmentation and the S-AWT(Λ,2,1) with segmentation. The

MSE obtained by retaining a part of the transform coefficients is presented in Figure 14(b). The two reconstructions

obtained with0.98% of retained coefficients for the two methods are shown in Figure 14(c) and (d). Finally, the

segmentation and adaptation of transform directions for the case in Figure 14(d) is illustrated in Figure 15.

V. CONCLUSION AND FUTURE WORK

We have proposed novel anisotropic transforms for images that use separable filtering in many directions, not

only horizontal and vertical. The associated basis functions, called directionlets, have DVM along any two directions
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Fig. 14. An example of NLA of a natural image. (a) The original image Cameraman. The image is approximated using the standard WT and

the S-AWT(Λ,2,1) with spatial segmentation. For both transforms, the maximal decomposition level is3. (b) The PSNR of the approximated

image is significantly improved in the case of the anisotropic transform. (c) The reconstructed image obtained using the standard WT for0.98%

retained coefficients and quality of13.93dB. (d) The reconstructed image obtained using directionlets with spatial segmentation for the same

number of retained coefficients and quality of23.09dB.

Fig. 15. The transform directions are adapted to the dominant directions in each segment of the image Cameraman shown in Figure 14(a).

DRAFT September 9, 2005
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with rational slopes. These transforms retain the computational efficiency and the simplicity of filter design from

the standard WT. Still, multi-directionality and anisotropy overcome the weakness of the standard WT in presence

of edges and contours, that is, they allow for sparser representations of these directional anisotropic features.

The NLA power of directionlets is substantially superior to that of the standard WT providing an order of decay

of the MSE equal toO(N−1.55) for the C2/C2 class of images. Even though this decay is slower than the one

provided by some other schemes, the directionlets allow critical sampling. This is important for applications in

image compression, since, in the case of orthogonal1-D filter-banks, Lagrangian optimization can be implemented

straightforwardly. For instance, the performance of the compression algorithm based on spatial-frequency quantiza-

tion (SFQ) [54], [55] can be improved by replacing the standard WT with directionlets and allowing for adaptation

of the transform and alignment directions and segmentation. Some details on the analysis of the applications of

directionlets in image compression can be found in [49].

The directionlets built on digital lines using the1-D oversampled transforms yield overcomplete tight frames

(tightness is trivial as it follows from the tightness of the oversampled1-D wavelet transforms). We distinguish

this shift-invariant oversampling and the oversampling in directions as explained in Section IV. The redundant

oversampled directionlets provide a promising framework for image denoising since they can efficiently capture

geometrical structures in images [56]. An adaptive denoising algorithm that enforces coherence in images across

space, scales, and directions is currently under investigation.

APPENDIX I

RELATION BETWEEN THEMSE IN THE ORIGINAL AND TRANSFORMDOMAINS

Assume that, given a frameF ∈ �m×n , the vectory ∈ �m is defined asy = Fx for anyx ∈ �n . Herem ≥ n.

Recall that the inverse transform is given byx = (FT F)−1FT ·y [50]. Recall also that if the frameF is tight then

‖y‖2
2 = A‖x‖2

2, whereA is called theframe bound. Then, it also holds that

FT ·F = AIn, (8)

whereIn is then×n identity matrix. In that case, the inverse transform is simplified and it is given byx = A−1FT ·y.

Now, assume that a non-linear operator (e.g. NLA, thresholding, etc.)T : �m → �
m is applied ony yielding

ŷ, that is,ŷ = T (y). It holds thatx̂ = (FT F)−1FT · ŷ.

The MSE in the original domain is defined as‖x− x̂‖2
2 and, similarly, the MSE in the transform domain is given

by ‖y − ŷ‖2
2. Assuming that the frameF is tight we can write

‖x− x̂‖2
2 = ‖ 1

A
FT · (y − ŷ) ‖2

2 ≤ 1
A2

‖FT ‖2
2 · ‖y − ŷ‖2

2,

where equality holds whenF is orthogonal.

From [57] we have that‖FT ‖2
2 = ‖F‖2

2 = A. Hence, the MSE in the original and transform domains are related

as

‖x − x̂‖2
2 ≤ 1

A
‖y − ŷ‖2

2.
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Fig. 16. The2-D function f(x1, x2) is C2 smooth on the unit square away from aC2 discontinuity curve. The curve can be locally

approximated by a quadratic polynomialy(x) = ax2 + bx+c. The E-type transform coefficients intersect the curve and have a slower decay of

magnitudes across scales than the S-type coefficients, which correspond to the smooth regions. (a) The S-AWT produces the E-type coefficients

within the strip along the sloper. (b) The width of the strip∆d is minimized forr = a + b.

APPENDIX II

PROOF OFTHEOREM 1

Recall first that aC2 curve can be locally represented by the Taylor series expansion, that is, by a quadratic

polynomial

y(x) = ax2 + bx + c, (9)

wherea andb are related to the second and first derivative of the curve (curvature and linear component), respectively.

Without loss of generality, we assume that theC 2 discontinuity curve isHorizon [13] on the unit square[0, 1]2.

Since the smooth regions of the functionf(x1, x2) areC2, assume that the1-D filters used in the S-AWT are

orthogonal and have at least two vanishing moments. Let the transform be applied along the class of straight lines

defined by

{y(x) = rx + d : d ∈ �}. (10)

Here, the sloper determines the transform direction, whereas the alignment direction is vertical. Equalizing (9) and

(10) we can write

d(x) = ax2 + (b − r)x + c.

The transform coefficients of the S-AWT that intersect the discontinuity curve are calledE-type coefficients. The

number of the E-type coefficients at the scalej is given byN
(0)
e (j) = O(2n2j∆d). Here,n2 is the number of

transforms applied along the vertical direction,∆d = max0≤x≤1 d(x) − min0≤x≤1 d(x) is the width of the strip

along the transform direction that contains the curve (see Fig. 16), and zero in the superscript ofN
(0)
e (j) denotes
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that no segmentation has been applied yet. The transform direction with the slope

r = a + b (11)

minimizes the width∆d (and, thereof,N (0)
e (j)) on the unit square. In that case the number of the E-type coefficients

is given by

N (0)
e (j) = O

(a

4
2n2j

)
.

Notice that an increment in the scale indexj is equivalent to a step to a finer scale.

The transform coefficients of the S-AWT, which do not intersect the discontinuity curve are calledS-type

coefficients. The number of the S-type coefficients depends on the number of transformsn 1 and n2 at a scale

along the transform and vertical directions, respectively, as

N (0)
s (j) = 2(n1+n2)j − N (0)

e (j) = O
(
2(n1+n2)j − a

4
2n2j

)
.

An anisotropic spatial segmentation is applied on the unit square. It partitions the unit square into vertical strips

using the dyadic rule, that is, there are2s vertical strips at thesth level of segmentation, where the width of each is

2−s (Fig. 17). The optimal transform direction, according to (11), is chosen for each segment independently. Since

each segment is rescaled again to the unit square, the number of the E-type transform coefficients in a segment is

reduced and is given by

O
(a

4
2n2j · 2−2s

)
.

The total number of the E-type coefficients is given by the sum across all the segments, that is,

Ne(j, s) =
2s−1∑
k=0

O
(a

4
2n2j−2s

)
= O

(a

4
2n2j−s

)
. (12)

Similarly, the total number of the S-type coefficients is given by

Ns(j, s) =
2s−1∑
k=0

O
(
2(n1+n2)j − a

4
2n2j−2s

)
= O

(
2(n1+n2)j+s − a

4
2n2j−s

)
. (13)

Notice that the exact number of the two types of coefficients given by (12) and (13) depends on the length of the

1-D filters used in the transform. However, the dependence is only up to a constant and, thus, the order of growth

of these numbers across scales remains the same.

The magnitudes|we(j)| of the E-type coefficients decay across scales asO(2−(n1+n2)j/2). The S-type coefficients

correspond to the smooth regions of the functionf(x 1, x2) and their magnitudes|ws(j)| are upper bounded by

O(2−n3j/2). Notice that, since the1-D HP filters have vanishing moments, the decay of the magnitudes of the

S-type coefficients is faster than the one of the E-type coefficients, that is,n 3 > n1 + n2.

We estimaten3 considering that the applied1-D wavelets have at least two vanishing moments. It is shown in

[50] that, the decay of the magnitudes|ws(j)| in a smooth region after two consecutive transforms with alternated

transform directions is2−3. Therefore, the decay raten3 is given by

n3 = 6 · min (n1, n2) + |n2 − n1| =
{

n1 + 5n2, n1 ≥ n2

5n1 + n2, n1 ≤ n2

. (14)
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Fig. 17. Anisotropic segmentation partitions the unit square into2s equally wide vertical strips. After rescaling, the curvature parametera

(related to the second derivative of theC2 curve) is reduced in each segment by the factor22s. Since there are2s segments that intersect

the discontinuity, the total number of the E-type transform coefficients is reduced by2s. At the same time, the total number of the S-type

coefficients is increased by the same factor.

To approximate the functionf(x1, x2), we keep all the coefficients with the magnitudes larger than or equal to

the threshold2−m, wherem ≥ 0, and discard (set to zero) the others. The retained coefficients can be divided into

two groups:

(1) The E-type coefficients at the scales0 ≤ j ≤ 2m/(n1 + n2),

(2) The S-type coefficients at the scales0 ≤ j ≤ 2m/n3.

From (12), (13) and decays of the magnitudes across scales, we compute the order of the total number of retained

coefficientsN(m, s) and the corresponding MSE. The numberN(m, s) is the sum of the retained E and S-type

coefficients:

N(m, s) =
2m/(n1+n2)∑

j=0

Ne(j, s) +
2m/n3∑

j=0

Ns(j, s)

= O
(
2

2n2
n1+n2

m−s
)

+ O

(
2

2(n1+n2)
n3

m+s

)
. (15)

The MSE is given by

MSE(m, s) =
+∞∑

j=2m/(n1+n2)+1

Ne(j, s)|we(j)|2 +
+∞∑

j=2m/n3+1

Ns(j, s)|ws(j)|2

= O
(
2−

2n1
n1+n2

m−s
)

+ O

(
2−

2(n3−n1−n2)
n3

m+s

)
. (16)

Assuming that the number of segmentation levels depends on the exponentm of the threshold ass = ηm, where

the segmentation rate η ≥ 0, we distinguish the two cases, as follows:

(1) The terms in (15) and (16) produced by the E-type coefficients dominate, in which case we have

η ≤ η∗ =
n2

n1 + n2
− n1 + n2

n3
=

1
ρ + 1

− ρ + 1
ρ + 5

,
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whereρ = n1/n2 ≥ 1. Then the MSE decays as

MSE = O
(
N−e1

)
, wheree1 =

2n1 + η(n1 + n2)
2n2 − η(n1 + n2)

=
2ρ + η(ρ + 1)
2 − η(ρ + 1)

.

(2) The terms in (15) and (16) produced by the S-type coefficients dominate, that is,η ≥ η ∗ and

MSE = O
(
N−e2

)
, wheree2 =

2(n3 − n1 − n2) − ηn3

2(n1 + n2) + ηn3
=

8 − η(ρ + 5)
2(ρ + 1) + η(ρ + 5)

.

Plugging (14) in the relations above and knowing that the segmentation rateη is a non-negative value, we obtain

the maximal decay rate MSE= O(N−α), with α = (
√

17 − 1)/2 ≈ 1.562. The optimal rate is attained for the

anisotropy ratioρ∗ = n1/n2 = α ≈ 1.562 and the segmentation rateη∗ = 0.

Notice that the analysis above is based on two assumptions: (a) the optimal transform direction given by (11)

is chosen and (b) theC2 curve is globally represented by a quadratic polynomial given by (9). Here, we address

these two assumptions showing that they do not constrain severely the approximation rate.

(a) Assume that the transform direction is given by the suboptimal sloper = a+ b+ ε, where|r| ≤ 1. Then it can

be shown that∆d = a/4 + |ε|/2 + ε2/4a = O(a) for |ε| ≤ a and∆d = |ε| + o(ε) for |ε| > a. Furthermore,

assume thatε decays exponentially with the number of segmentation steps, that is,ε � 2−βs, whereβ > 0. If

β < 2, then the expression ofNe(j, s) given by (12) becomesO(2n2j−(β−1)s) and the optimal segmentation

rateη∗ is multiplied by the factor2/β. In that case the exponente1 is given by

e1 =
2ρ + (β − 1)η(ρ + 1)
2 − (β − 1)η(ρ + 1)

,

whereas the exponente2 is unchanged. However, even though some of these parameters are changed, the

optimal approximation rate remains the same, that is, MSE= O(N −α) if ρ∗ = α andη∗ = 0. On the other

hand, the required number of transform directions is finite now and behaves as1/|ε| � 2 βs.

(b) The analysis that leads to the approximation rate holds only for the case when the slope of the tangent direction

(or, equivalently, the first derivative) of theC 2 curve is in the interval[−1, 1]. However, the first derivative of

a generalC2 curve is not constrained on that interval and, therefore, the optimal approximation rate cannot

be achieved in the same way as in the case of a quadratic polynomial. In order to be able to achieve the same

rate we need to introduce an initial number of segmentation steps prior to the iteration. Recall that one step

of anisotropic segmentation attenuates twice the first derivative of theC 2 curve.6 Thus, it suffices to apply

enough segmentation steps so that the maximal magnitude of the first derivative is less than or equal to1. Then,

the iterated segmentation and transform are continued on each of these initial segments and this construction

results in the same optimal approximation rate. Notice that the necessity for reducing the magnitude of the

first derivative below1 is caused by the assumption that theC 2 curve is Horizon. However, if this assumption

is not satisfied, then an appropriate combination of initial segmentation steps and transposition of the axes can

6One step of the anisotropic segmentation is equivalent to stretching the abscissa by the factor2 and, therefore, the equivalent first derivative

of the curve is also attenuated by2.
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rescale the curve so that each segment of the curve is Horizon. Therefore, the optimal approximation rate can

be achieved in the case of a generalC 2 curve.

For the compression application, the retained coefficients have to be indexed and quantized. For a given MSE

(or distortion) each of these operations carries a cost in terms of the required bits.

The N retained S-AWT coefficients within a spatial segment can be organized in an embedded tree-structure,

similar to the structures produced by the standard WT and exploited in the other compression algorithms (zero-trees

[51], SPIHT [52], SFQ [54], [55]). The main difference between the tree-structures of the standard WT and S-AWT

is in the number of descendants of each transform coefficient. While this number is fixed in the standard WT, it

depends on the number of transform steps applied at each scale in the S-AWT. However, the S-AWT tree-structure

allows also for indexing the retained coefficients using approximately1 bit per transform coefficient.

A variable length coding scheme allocatesl bits to encode coefficients with magnitudes in the interval[2 −m2l−1,

2−m2l). Thus, using (15) and the optimal choice forn1, n2, n3, andη, the total number of encoding bitsR is

given by:

R(m) = N(m, 0) +
∞∑

l=1

N(m − l, 0)

= O
(
2

α
2 m

)
+

∞∑
l=1

2
α
2 (m−l) = O

(
2

α
2 m

)
. (17)

The distortionD consists of two components: (a) the MSE resulting from the truncation of small coefficients

in the approximation given by (16), and (b) distortion caused by the quantization of the retained coefficients. The

second component is given byN(m, 0) · 2−2m and, thus, the total distortion is

D(m) = MSE(m, 0) + N(m, 0) · 2−2m = O
(
2−

α2
2 m

)
. (18)

The R-D behavior follows from (17) and (18) and it is given by

D(R) = O
(
R−α

)
.
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[6] J. Kovačević and M. Vetterli, “Nonseparable multidimensional perfect reconstruction filter banks andwavelet bases for�n,” IEEE Trans.

Inform. Theory, pp. 533–555, Mar. 1992.

[7] R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional decomposition of images: Theory and design,”IEEE Trans. Signal

Processing, pp. 882–893, Apr. 1992.

DRAFT September 9, 2005
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