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Abstract

In spite of the success of the standamalvelet transform (WT) in image processing in recent years, the efficiency of
its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions.
One-dimensional 1¢D) discontinuities in images (edges and contours) that are very important elements in visual
perception, intersect too manyavelet basis functions and lead to a non-sparse representation. To capture efficiently
these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions,
a more complexmulti-directional (M-DIR) and anisotropic transform is required. We present a new lattice-based
perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains tiseparable filtering
and subsampling and the simplicity of computations and filter design from the standard two-dimerzsiohavT,
unlike in the case of some other directional transform constructions (e.g. curvelets, contourlets or edgelets). The
corresponding anisotropic basis functiomréctionlets) have directional vanishing moments (DVM) aloagy two
directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for non-
linear approximation (NLA) of images, achieving the approximation po@éN~—'-°%), which, while slower than

the optimal rateO(N ~?), is much better tha®(N ") achieved withwavelets, but at similar complexity.

Index Terms

Wavelets, directionlets, multiresolution, multidirection, geometry, sparse image representation, filter-banks, sepa-
rable filtering, directional vanishing moments

I. INTRODUCTION

The problem of finding efficient representations of images is a fundamental problem in many image processing
tasks, such as denoising, compression and feature extraction. An efficient transform-based representation requires

sparsity, that is, a large amount of information has to be contained in a small portion of transform coefficients.

V. Velisavljevi¢ and B. Beferull-Lozano are with the School of Computer and Communication Sciences, EPFL, CH-1015 Lausanne, Switzerland
(emails: vladan.velisavljevic@epfl.ch, baltasar.beferull@epfl.ch).

M. Vetterli is with the School of Computer and Communication Sciences, EPFL, CH-1015 Lausanne, Switzerland and with the Department
of Electrical Engineering and Computer Science, University of California, Berkeley CA 94720 (email: martin.vetterli@epfl.ch).

P. L. Dragotti is with the Department of Electrical and Electronic Engineering, Imperial College, London SW7-2AZ, UK (email:
p.dragotti@imperial.ac.uk).

This work is supported by the Swiss National Foundation under Grant No. 200020-103729. P. L. Dragotti is in part supported by EPSRC
under Grant No. GR/557631/01.

September 9, 2005 DRAFT



2 IEEE TRANSACTIONS ON IMAGE PROCESSING
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Fig. 1. The standar@-D WT is isotropic. (a) The filtering and subsampling operations are applied equally in both directions at each scale
of the transform. (b) The corresponding decomposition in frequency. The basis functions obtained in this way are isotropic at each scale as
shown in (c) for Haar and in (d) for biorthogonal "9-7-D scaling andwavelet functions. (e) The corresponding Fourier transforms of the

basis functions obtained from the "9-7-D filters.

The one-dimensionall{D) WT has become very successful in the last decade because it provides a good
multiresolution representation df-D piecewise smooth signals [1], [2]. The application of wavelets to image
processing requires the design of two-dimensiodD) wavelet bases. The most common approach is to construct
such bases usintD separable filter-banks, which consist of the direct product of two indepemne@tititer-banks
in the horizontal and vertical directions. Filtering with high-pass (HP) filters with enough vanishing moments (or
zeros atw = 0) along these two directions leads to a sparse representation of smooth signals. This method is
conceptually simple and has very low complexity while all 1hB wavelet theory carries over. These are the main

reasons why it has been adopted in the image compression standard0RE[3}.

Some notable approaches use non-sepatabldilter-banks and subsampling (e.g. quincunx) [4]-[6], but these
methods are computationally complex and the design of the asso@iefilter-banks is often challenging and
involved. Also, several general multi-dimensional multi-channel filter design methods have been proposed in [7]-
[10] resulting in filters with separable polyphase components. In this paper, we focus on the design and applications

of 2-D separable two-channel filter-banks based onitfiz wavelets, but allowing directionality and anisotropy.

Despite their success, the standard separatideWT fails to provide a sparse representation in the presence

of 1-D discontinuities, like edges or contours. These discontinuities, being highly anisotropic objects present in
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Fig. 2. A simple image with one discontinuity along a smooth curve is represented by the two types of basis functions: isotropic and anisotropic.
The support of these basis functions is shown schematically as black rectangles. (a) Isotropic basis functions generate a large number of significant
coefficients around the discontinuity. (b) Anisotropic basis functions trace the discontinuity line and produce just a few significant coefficients.

images, are characterized by a geometrical coherence that is not properly captured by the standard isotropic WT.
Namely, many wavelets intersect a discontinuity and this leads to many large magnitude coefficients (Fig. 2(a)).

The reason for the inefficiency of the standar® WT resides in thespatial isotropy of its construction, that is,
filtering and subsampling operations are applied equally along both the horizontal and vertical directions at each
scale (see Fig. 1(a)). As a result, the corresponding filters, obtained as direct prodixisfitters, are isotropic
at all scales (Fig. 1(c),(d)).

This motivates us to desiganisotropic basis functions that can “match” anisotropic objects (Fig. 2(b)). However,
ensuring an efficient matching between anisotropic basis functions and objects in images is a non-trivial task.
Anisotropic basis functions have already been considered and exploited by adaptive (e.g. bandelets [11], [12])
or non-adaptive (edgelets and wedgelets [13]-[17], curvelets [18]-[20], contourlets [21], etc.) processing. These
methods build dictionaries of anisotropic basis functions that provide a sparse representation of edges in images.
Furthermore, Cares and Donoho [18] showed that the parabolic scaling relation between the length and width
of basis functions is a key feature to achieve a good non-linear approximation (NLA) behavior. However, the
implementation of these transforms usually requeess sampling having higher complexity when compared to the
standard WT, and requingon-separable processing (convolution) andhon-separable filter design. Furthermore, in
some of these constructions (e.g. curvelets [18]) the design of the associated filters is performembritintbheus
domain and this makes it difficult to use them directly on discrete images and achieve perfect reconstruction.

Notice that the standard WT uses only horizontal and vertical directions and the HP filters in this transform have
vanishing moments only along these directions. Since characterization of features in synthetic and natural images

involves many more than these two standard directiomsti-directionality and directional vanishing moments
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(DVM) play an important role in pursuing sparse representations.

Several other approaches also analyze geometrical structures in images, like polynomial modeling with quadtree
segmentation [22], footprints and edgeprints [23], multiscale transform [24], etc. Apart from the goal of efficient
representation exploiting geometrical coherence, multi-directional (M-DIR) processing has also been applied to
image denoising and classification. Examples of such transforms are the steerable pyramids [25], the cortex
transform [26], the complex wavelets [27], the directional wavelet analysis [28], the directional filter-banks [7],
[8], [29], brushlets [30], and the associative representation of visual information [31]. Some other methods involve
directionally adaptive processing in order to preserve edges in images [32]-[35], whereas the methods proposed
in [36], [37] impose DVM in either critically sampled or oversampled filter-banks. However, all of them fail to
provide aperfect reconstruction andcritical and separable sampling while keeping filter design completely in the

discrete domain and with filters having DVM alongrbitrary directions.

Our goal is to construct an anisotropic perfect reconstruction and critically sampled transform with HP filters
having DVM, while retaining the simplicity of-D processing and filter design from the standard sepafabDl&VT.
We propose a transform construction based on partitioning of the discrete space using integer lattices, where the
1-D filtering is performed along lines across the lattice. The corresponding basis functions arelicatiéohlets.
We show that our transform has good approximation properties (see also [38]) as compared to the approximation
achieved by some other overcomplete transform constructions [11]-[21] and is superior to the performance of the

standard separabeD WT having the same complexity.

The outline of the paper is as follows. We present two constructions of anisotropic transforms in Section Il. In
Section Ill, we explain the inefficiency of the M-DIR transforms built on digital lines in order to motivate the need
for integer lattice-based construction. We also give a review of integer lattices and the new construction of our
skewed anisotropic lattice-based transforms. In Section IV, we explore the asymptotic approximation behavior of
the anisotropic M-DIR transforms. We show that the achievable approximation scaling (2Nis'-5°), where N
is the number of retained coefficients. We also present some simulation results of approximation of natural images.

Finally, we conclude and give the directions of future work in Section V.

II. ANISOTROPIC2-D WAVELET DECOMPOSITIONS

As explained in Section I, the standard WT produces isotropic basis functions, which fail to provide a sparse
representation of edges and contours. However, a new modified method that we propose retaiDsfittezing
and subsampling operations and can provide anisotropy, as we show next. In the sequel of this section, we give two
examples of constructions of anisotropic transforms that still inherit the simplicity of processing and filter design
from the standard WT. Furthermore, these two anisotropic transforms are critically sampled and lead to perfect

reconstruction.
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Fig. 3. (a) An image from the clagebndri an(k;,k2). This class is inspired by the painting style established by Piet Mondti&m2(-
1944). The image is transformed by the three transforms: (b) standard WT, (c) FSWT, (d)28/W(th 1-D wavelet filters having enough
vanishing moments.

A. Fully Separable Decomposition

Define a simple class of piecewise polynomial images, denotelfbasiri an(k,k2) and inspired by the
geometrical period of Piet Mondriart [39].

Definition 1. The classMondri an(ky,k2) containsM x M piecewise polynomial images with; horizontal
and ko vertical discontinuities.

An example of the image from the clab®ndri an(ky,k2) is shown in Fig. 3(a). This class is not efficiently
represented by the standard WT. The discontinuities lead to too many nonzero coefficients, as shown in the lemma
below and in Fig. 3(b).

Lemma 1. Given anM x M pixel image from the clasbbndri an(kq,k2), the number of nonzero transform
coefficients in band-pass subbands produced by the standard WT withDhsgavelets having enough vanishing
moments is given by

N =0 ((k1 + k2)M). )
Proof: The three band-pass subbands at jtie (1 < j < log, M) level of the standard WT contain
O(k1 M /27 + kg), O(ky + koM /27), andO(k1 + k) nonzero coefficients. The total number of nonzero coefficients

across scales is given by

logy M
N

M M
(O <k12—] + kg) +0 (k)l + k2§) + 0 (k)l + kg))
j=1

= O (2(k1 + ko) logy M) + O ((ky + ko) (M — 1)) = O ((ky + k2)M).

]

To improve compactness of the representation of the dassir i an(k1,k2), we define thdully separable WT
(FSWT). In this transform a full-D WT is applied in the horizontal direction (each row of image) and then, on
1The Dutch painter establishatboplasticism and De Sijl in Europe in the beginning of thedh century. The image shown in Fig. 3(a)

resembles to the paintings from hasometrical period (1930)

2A polynomial of thenth order is annihilated by wavelet that has at least+ 1 vanishing moments.
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each output a full-D WT is applied in the vertical direction (each column). The decomposition scheme is shown
in Fig. 4(a). Notice that such a decomposition has already been proposed in [40] and also in [41], [42], where it
is referred to as tensor wavelet basis.

The FSWT provides anisotropic basis functions (Fig. 4(c)) that are better adapted to the anisotropic objects such
as the discontinuities in the clasbndr i an(kq,k2). Representation efficiency is strongly improved, as can be seen
in Fig. 3(c) from the resulting sparsity and it is given in Lemma 2.

Lemma 2. Given anM x M pixel image from the clasbbndri an(kq,k2), the number of nonzero transform
coefficients in band-pass subbands produced by the FSWT withEheavelets having enough vanishing moments
is given by

O (k1 + k) (logy M)?) )
Proof: Each band-pass subband is indexed(By, j2), where j; determines the number of the horizontal

transforms, whereag, enumerates the vertical transforms. The indexes are in the fangg;, j» < log, M.

The subbandj., j2) containsO (k1 + k2) nonzero transform coefficients, therefore, the total number of nonzero

coefficients is given by

logy, M logy M

N = Zl Zl O (ki + k) = O ((k1 + k) (log, M)Q) .
|

The performance of the FSWT on the cldgmndr i an(ky,k2), given by (2), is substantially better than the result
of the standard WT, given by (1), namely, there is an exponential improvement in terfds ©he improvement
is a consequence of anisotropy of the basis functions that is matched to the anisotropy of the class. However, the
FSWT performs well only when it is applied on Mondrian-like images, while natural images contain features that
are not well represented by straight (horizontal and vertical) lines.

Notice that if a transformed image contains a curve (or any discontinuity that is not a straight line), then the
FSWT fails, as the number of nonzero coefficients grows exponentially across scales. Intuitively, the failure happens
because the FSWT enforces a higher anisotropy (or elongation of the basis functions) than the one that is required
in order to provide a compact representation of objects in natural images. To overcome this problem, we introduce

a novel anisotropic transform, which performs better on a larger class of images.

B. Anisotropic Wavelet Decomposition

In the anisotropic WT (AWT) the number of transforms applied along the horizontal and vertical directions is
unequal, that is, there are horizontal andn, vertical transforms at a scale, whete is not necessarily equal to
ny. Then, the iteration is continued in the low-pass (LP), like in the standard WT. We denote such an anisotropic
transform as AWTif;,n2). The anisotropy ratio p = n/n, determines elongation of the basis functions of the
AWT(n1,n2). An example of the construction and basis functions is shown in Fig. 5, where the2AWTH used.

Notice that both the standard WT and the FSWT can be expressed in terms of the AWT. The standard WT is simply

given by AWT(,1). However, the representation of the FSWT is more complex and is given as a concatenation
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Fig. 4. The FSWT is anisotropic, as the numberidd transforms is not equal in the two directions. (a) An example of the transform scheme.
Only 2 steps in each direction are shown. (b) The decomposition in frequency that corresponds to the construction ini(a)epihn each
direction. The anisotropic basis functions obtained from the (c) Haar and (d) biorthogonal "74caling andwavelet functions. (e) The
corresponding Fourier transform of the basis functions obtained from the "9 7ilters.

of two AWTSs. The first transform is AWT{1,4:,0) that producesiy,... + 1 subbands and it is followed by the
AWT(0,n2mq.) applied on each subband. The arguments,,. and non,.. determine the maximal number of

transforms in the two directions and depend on the size of the image.

Even though the AWT is not the most appropriate representation for the particular case of Mondrian-like images,
it improves approximation of more general classes of images, as shown in Section IV. Fig. 3(d) shows the result
of the AWT(2,1) of an image from the classbndri an(k1,k2). The order of the number of nonzero coefficients

is given by the following lemma.

Lemma 3: Given anM x M pixel image from the clasbbndri an(kq,k2), the number of nonzero transform
coefficients in band-pass subbands produced by the AW®E) with 1-D wavelets having enough vanishing

moments is given by

0 <(ak1 + 11@) M) , wherea = ol (3)
a 2m — 1
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Fig. 5. The AWT allows for anisotropic iteration of the filtering and subsampling applied on the LP, similarly as in the standard WT. Although
this transform does not improve approximation of the clebsdr i an(k,k2), it provides an efficient approximation tool for more general
classes of images (Section V). (a) The filtering scheme for the RANTY,(where one step of iteration is shown. (b) The decomposition in
frequency. The basis functions obtained from the (c) Haar and (d) biorthogonal '974caling andwvavelet functions. (e) The corresponding
Fourier transform of the basis functions obtained from the "D filters.

Proof: The number of nonzero coefficients produced at jthelevel of the AWTq 1,n2) is given by

M
n(j) =O(ky (22 = 1) 5o + ky (2 = 1)2"

M
+Eky (2™ —1) omad + ko (2" —1)2™).

The total number of nonzero coefficients across scales is, therefore,

logg M

max(ni,ng)
. 1
N= > n@E=0 <(ak1 + akg) M> .

j=1
[ |
Notice that the result in Lemma 3 is a generalization of the result in Lemma 1. Table | summarizes the orders
of numbers of nonzero coefficients in band-pass subbands produced by the three transforms applied on the class
Mondr i an(kq,k2).
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TABLE |

ORDERS OF APPROXIMATION BY THE STANDARDW T, FSWTAND AWT APPLIED ON THE CLASSMONDRI AN(k1 ,k2).

Standard WT FSWT AWT
(k1 + ko) M (k1 + k2)(log, ]\/[)2 (k1a + k2/a)M

The transforms explained in this section are applied in the horizontal and vertical directions only. More general
transforms can be obtained by imposing vanishing moments along different directions. These transforms provide
an efficient representation of more general classes of images, involving more than only the two standard directions,

as shown in the next section.

IIl. L ATTICE-BASED SKEWED WAVELET TRANSFORMS

Several transform constructions that lead to anisotropic basis functions have been presented in Section Il. However,
all the constructions, including the standard WT, use only horizontal and vertical directions. Notice also that the
HP filters in these transforms have vanishing moments only along these two directions. Here, we present the novel
lattice-based transform, which exploits multi-directionality and retains the simplicity of computations and filter
design from the standard WT.

In the continuation, we explain the problem of approximation of directions in the discrete Zpaemd we
introduce the concept of directional interaction. Then, we propose a new lattice-based method that allows for a
generalization of the transform constructions from Section Il to include separabl f{itering and subsampling
across multiple directions, not only horizontal and vertical. We also give the polyphase analysis of the lattice-based

transforms.

A. Discretization of Directions

To apply a discrete transform in the discrete sp&cein a certain direction, we need to define the pixels that
approximate the chosen direction. This problem has been considered in computer graphics9is0¥h¢43] as
well as in [44], [45].

Recall that the set of pointér,y) € R? represents a continuous line with the slapand intercept if the
following equality is satisfied:

y=rzr+b. 4)

The discrete approximation of (4) is calleligital line L(r,n). To preserve critical sampling in the transform,
given a sloper, every pixel belongs to one and only one digital lihér,n). In that case, we say that, given a
sloper, the set of digital line L(r,n) : n € Z}, partitions the discrete space Z 2.

The definitions of digital lines proposed in [43]-[45] are similar and here we give the definition that is a variation

of the one given in [43]. We show also below that such digital lines partition the discrete Zgace
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Fig. 6. (a) An example of an image from the cl&svondr i an(M(ry,72),k1,k2), for M = [v1,va]T, wherevy = [1,1] andve = [—1,1].
The image is transformed using (b) S-WT, (c) S-FSWT, and (d) S-AVI{(2,1) (directionlets), where all the transforms are built on the lattice
A determined by the generator matiy = M(rq,r2).

Definition 2: Given a rational slope, the digital lineL(r,n), wheren € Z, is defined as the set of pixe{s, ;)

such that

Jj= |—7"’L—| +n, VieZ, for |7‘| <1, or

i=[j/rl+n, Vj€Z, for|r| > 1. (5)

Lemma 4: Given a rational slope, the set of digital line L(r,n) : n € Z} partitions the discrete spad?.

Proof: We give the proof only for the cage| < 1. Similar arguments can be used for the other cases.

For each pixel(i, j) € Z2, we can find the intercept = j — [ri] such that the pixel belongs to the digital line
L(r,n). Furthermore, from (5) it follows that this intercept is unique. Therefore, the digital liifes:), Vn € Z,
partitions the discrete spade®. ]

The concept of digital lines is useful for overcomplete M-DIR representation. However, in the sequel, we show
why digital lines do not provide an efficient framework when transforms are applied in different directions and

critical sampling is enforced.

B. Directional Interaction

To explain the problem oflirectional interaction, let us first generalize the claddndr i an allowing for more
directions. The clas$- Mondri an consists of the skewed Mondrian-like images along two directions with the
rational slopes; = by/a; andre = ba/aq, Whereay, aq, by, andby are integers. To simplify notation, the two

slopes are jointly denoted by the matrix

aq b1
M(Tl, 7“2) =
ag bg

Definition 3: The classS- Mondr i an(M(rq,r2),k1,k2) containsM x M piecewise polynomial images with
ky and ko discontinuities along the digital linek(r;,n) and L(rs, n), respectively, wherer € Z, r1 = b1/a,

ro = bg/ag, andal,ag,bl,bg € 7.
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Fig. 7. A 1-D WT is applied on an image from the claSs Mondri an(M(—1/2,2/3),1,1) along the digital linesL(—1/2,n). The HP
filtering annihilates the digital line with the slopel/2. However, the nonzero coefficients produced by the other line with the gi6pare
not aligned in the digital lined.(2/3,n). This is calleddirectional interaction. Although the transform along digital lines is efficient when
applied in oversampled schemes, it fails to provide a systematic subsampling method when critical sampling is enforced.

Notice that the clas®bndri an(kq,k2) is a special case of the larger claSsMondri an(M(rq,r2),k1,k2)
whenM(ry,72) = I,. An example of an image from the claSs Mondr i an(M(r1,72),k1,k2) is shown in Fig.
6(a). Notice also that only the lines with rational slopes are used in the $fd¢sndr i an. However, in spite of

this constraint, a wealth of directions is still available, as we will explain in Section IlI-C.

To provide a sparse representation of the clasdbndri an(M(rq,72),k1,k2) and following the ideas from
Section II, we apply a-D WT along the digital lines.(r1,n), for n € Z. The transform produces two types of

nonzero coefficients, that is, the coefficients corresponding to the discontinuities with thesjopedr,.

Since the HP filter has vanishing moments along digital lines with the slppthe coefficients along this direction
are annihilated in the HP subband, while the coefficients along the second direction with the shmeeretained in
both subbands. However, after subsampling, unlike in the case of the standard directions, the coefficients along the
second direction are not aligned, that is, they cannot be clustered in the digital lines with the sldpesrefore,
the following 1-D WT applied along the digital lines with the slope does not annihilate the coefficients along the
second direction and, hence, it yields a non-sparse representation. We call this phendimegtional interaction.

The proof is trivial and is omitted here. An example is shown in Fig. 7.

Notice also that the concept of digital lines does not provide a systematic rule for subsampling in the case of
iteration of the filtering and subsampling along the directions with the slepeandr, when critical sampling is
enforced. To overcome the directional interaction and to propose an organized iterated subsampling method we use

the concept of integer lattices.
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Fig. 8. The intersections between theosets of the latticé\ given by the generator matrixl, and the digital linesL(r; = 1/2,n), where
n € 7, are the co-IineCL[()’O] (1/2, TL), CL[O,I] (1/27 n), and CL[I,I] (1/27 n)

C. Lattice-based Filtering and Subsampling

Instead of applying a transform along digital lines, we propose a novel method that is based on integer lattices
[46]. We also prove that the lattice-based transforms can avoid directional interaction and are capable of providing
the same order of approximation for the cl&sdvbndr i an as the FSWT achieves for the clagsndri an.

A full-rank integer latticeA consists of the points obtained as linear combinations of two linearly independent
vectors, where both the components of the vectors and the coefficients are integers. Any intege lattae
sublattice of the cubic integer latticd?, that is, A C Z2 The lattice A can be represented by a non-unique

generator matrix

My= | P | Y| whereay.as bty € 2. ©6)
as b ds

Recall that the cubic latticE? can be partitioned intpdet(M , )| cosets of the latticé [46], where each coset is
determined by the shift vecter,, for £ = 0,1,...,|det(My,)| — 1. Therefore, the latticA with the corresponding
generator matriXM 5 given by (6), partitions each digital linB(r; = b1 /a;, n) into co-lines. Notice that a co-line
is simply the intersection between a coset and a digital line. Similarly, the digitallling = b2/a2,n) is also
partitioned into the corresponding co-lines (Fig. 8).

We denote a€’'Ls, (r1,n) the co-line obtained as the intersection betweenkthecoset of the latticé\ and the
digital line L(ry = b1/a1,n). Notice that the co-lin€'Lg, (r1,n) consists of the pixel§c1d; + cada + s, : Ve €
Z, fixed co € Z}, wheren = [ca(ba — r1az) + sk2 — r15k,1] andsy = [sk.1, k2]

Now we apply thel-D WT (including the1-D both filtering and subsampling operations) along the co-lines
{CLs, (r1,n):n€Z, k=0,1,...,|det(M,)| — 1} (see also [47]). Notice that both filtering and subsampling
are applied in each of the cosets separately. Furthermore, each filtering operation isl frdéifter subsampling,

the retained points belong to the sublattité of the lattice A (A’ c A) with the corresponding generator matrix
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Fig. 9. (a) The latticeA is determined by the generator matid, . 1-D Filtering is applied along the co-lineC'Ls, (r1,n) : n € Z, k =
0,1,...,|det(My)| — 1}, where the slope corresponds to the vectdt, 1], that is, alongd5°. The pixels retained after the subsampling
belong to the lattice\’ C A determined by the generator matiM,,. Notice that filtering and subsampling are applied separately in two
cosets, determined by the shift vectegsands;. (b) The nonzero pixels obtained after one step of the lattice-based filtering operation applied
on the same example as in Fig. 7 are clustered in the digital lines with the 3/Gpe

given by (see Fig. 9(a))
2d,

d>

Mup =Dy -Mp =

Here,D; is the horizontal subsampling operator, that is,

2 0
0 1
We call the direction along the first vectdr, (with the sloper; = b;/a1), the transform direction. Similarly,

the direction along the second vecids we call thealignment direction.

September 9, 2005 DRAFT



14 IEEE TRANSACTIONS ON IMAGE PROCESSING

Therefore, since the filtering and subsampling are applied in each coset separately, the pixels retained after the
subsampling are clustered in co-lines along the alignment direction. This property is crucial to avoid directional
interaction (see Fig. 9(b)).

Lemma 5: Given al-D WT applied along the set of co-ling§'L, (r1,n) :n € Z, k=0,1,...,|det(Mu)|—1}
on an image from the clasS- Mondri an(M(rq,r2),k1,k2), the transform coefficients in band-pass subbands
that correspond to the discontinuities with the slopeare aligned, that is, they can be clustered in the co-lines
CLs,(r2,n), n € Z.

Proof: Recall that the co-line&C'Lg, (r1,n) consists of the pixeld(i,j) : i = cia1 + cea2 + sp1,J =
c1b1 + c2bs + sg2,Ve1 € Z, fixedco € Z}. After the subsampling, the retained pixels belong to the lattice
A’ and, thus, the corresponding co-lines consist of the pikglg) such thati = ¢ - 2a1 + coas + sg1 and
Jj =c1-2by + caby + 52 for eache; € Z and a fixedes € Z.

Notice that the co-line§'Lg, (r2,n) with the other slope; that correspond to the lattic®’ consist of the same
pixels. Therefore all the retained pixels are aligned in the direction with the slgpe [ |

Combining lattices with the different constructions given in Section I, we bskiésed wavelet transforms.

D. Skewed Wavelet Transforms

The transforms defined in Section Il (the standard WT, FSWT, and AWT) are inefficient when applied on the class
S- Mondr i an(M(r1, r2),k1,k2), unlessM(rq, r2) is the identity matrix. Since the directions of the transforms and
discontinuities in images are not matched, the transforms fail to provide a compact representation. The following
lemma gives the orders of approximation that can be achieved by the three transforms with the standard directions.

Lemma 6: Given anM x M pixel image from the clasS- Mondri an(M(rq,r2),k1,k2), whereM(rq,r2) is
not the identity matrix, the standard WT, FSWT, and AWT withD wavelets having enough vanishing moments
provide O((k1 + k2)M) nonzero transform coefficients in band-pass subbands.

Proof: The subbands produced by the FSWT are indexedjhyj2), wherel < j;,j2 < log, M. Each

subband contain®(k; M /27t + ko M /272) nonzero coefficients. The total number is given by

log, M log, M M M
N=>Y > o <k127+k223) = O ((ky + ko) M).
Ji1=1 j2=1

Notice that the standard WT, as a special case of the AWT, has the same behavior. Thus, we give the proof only
for the AWT. The AWT{1,n2) produces2™:*t"2 — 1 band-pass and HP subbands at each sgaléach of these
subbands contain(j) = O((2™+"2 — 1)M (2™ 4 27"2J)) nonzero coefficients. Therefore, the total number of

nonzero coefficients is given by
logo M
max(ni,ng)

> (i) =0 ((k + ko) M).

j=1
[ |
Using integer lattices, we define the three new transforms, whickkaned versions of the standard WT, FSWT,

and AWT. Given a latticeA, the skewed transforms are applied along co-lines in the transform and alignment
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Fig. 10. The basis functions obtained by the skewed transforms using thelHaacaling andwavelet functions: (a) S-WT, (b) S-FSWT,
(c) S-AWT(M,2,1) (directionlets). The same, but with the biorthogonal "94#D scaling andwavelet functions: (d) S-WT, (e) S-FSWT,
() S-AWT(M 4,2,1) (directionlets). In all casedly = [d1,d2]”, whered; = [1,1], andd2 = [—1,1]. The DVMs are imposed along
the vectorsd; and d», that is, along45° and —45°. The corresponding Fourier transforms: (g) S-WT, (h) S-FSWT, (i) S-AMIL(2,1)
(directionlets).

directions of the lattice\, retaining the same frequency decompositions as the corresponding transforms along the
standard directions explained in Section Il. Thus, following the notation introduced in Section II-B, we denote as
S-AWT(M,n1,n2) the skewed anisotropic transform built on the latticghat hasn; andn, transforms in one
iteration step along the transform and alignment directions, respectively. We call the basis functions of the S-AWT
directionlets since they are anisotropic and have a specific direction. Similarly, we denote the skewed standard
WT as S-WT and the skewed FSWT as S-FSWT. The corresponding basis functions are shown in Fig. 10 for the

directions along the vectord; = [1,1] andd, = [—1,1]. Notice that the skewed transforms are applied in all
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cosets of the latticé separately.

The basis functions of the skewed transforms have DVMrintwo directions with rational slopes. Recall that
the Lth order DVM along the direction with a rational slope = b1 /a4 is equivalent to requiring the-transform of
a basis function to have a factar — zl““z;bl)L [21], [48]. The following lemma gives the number and directions
of the DVM in directionlets.

Lemma 7. Assume that the directionlets of the S-AVWMI(y,n1,n2) are obtained using &-D wavelet with L

vanishing moments. Then, at each scale of the iteration, there are:

(a) 2™ — 1 directionlets with theLth order DVM along the transform direction of the lattide
(b) 2™2 — 1 directionlets with thelth order DVM along the alignment direction of the lattide and
(c) (2™ —1)(2™ — 1) directionlets with theLth order DVM along both directions.
Proof: Recall first from [48] thafi-D filtering using the filterd (z) along the transform direction of the lattide

is equivalent to filtering in the-D discrete space usinﬁ(z?lzgl). Similarly, filtering along the alignment direction
of the latticeA is equivalent to filtering in th@-D discrete space using (z{225?). Since thel-D HP filter hasL
vanishing moments, its-transform has a factafl — z ~!)L. Therefore, the HP filtering along the transform and
alignment directions uses the equivalent filters with the fadtbrsz;* 2, " )= and (1 — z; “2z;, *2)7, respectively,
in the z-transforms.

Filtering using thel-D two-channel filter-bank along two directions in the construction of the S-AWT (see Fig.
5(a)) yields (a)2™ — 1 subbands with HP filtering along only the transform direction,aB) — 1 subbands with
HP filtering along only the alignment direction, and (€)** — 1)(2"2 — 1) subbands with HP filtering along both
directions. Thus, the statement of the lemma follows directly. ]

Efficiency of representation of the claSsMondr i an(M(r1, r2),k1,k2) by the three skewed transforms depends
on matching between the directions of discontinuities and the directions used in these transforms. If these directions
are matched, then the orders of nonzero coefficients in band-pass subbands are equal to the orders calculated in
Section Il (see Table I). Otherwise, they are given by the result in Lemma 6. The following lemma formalizes this
statement. The proof is omitted since it uses the same arguments as in Lemmas 1 to 3.

Lemma 8: Given anM x M pixel image from the clasS- Mondri an(M(rq, r2),k1,k2), the S-WT, S-FSWT
and S-AWTM,nq,n2) with 1-D wavelets having enough vanishing moments built on the lattiogetermined
by the generator matridv , = M(r1,72) give O((k1 + k2)M), O((k1 + k2)(logy M)?) and O((kia + ka/a)M)
nonzero coefficients in band-pass subbands, respectively. klerd2™ — 1)/(2" — 1).

The transforms of the image shown in Fig. 6(a) are given in Fig. 6(b)-(d). The applied transforms are S-WT,
S-FSWT, and S-AWTNI4,2,1), whereM(r1,72) = M. Table || summarizes the orders of nonzero coefficients
in band-pass subbands in the case of both matched and mismatched directions.

Notice that the lattice-based method allows for a more general construction of M-DIR transforms using more
than two directions in an arbitrary order. Such M-DIR transforms and their properties are beyond the scope of this

paper. More details are given in [47], [49].
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TABLE I
ORDERS OF APPROXIMATION BY THES-WT, S-FSWTAND S-AWT (DIRECTIONLETS) BUILT ON THE LATTICE A DETERMINED BY My

APPLIED ON THE CLASSS- MONDRI AN(M (71, r2),k1,k2).

My = M(r1,72) My # M(r1,r2)
SWT (k1 + k2) M (k1 + k2) M
SFSWT | (k1 + k2)(logy M)? (k1 + ko) M
SAWT (k1a + k2 /a)M (k1 + ko) M
(12)
polyphase X U &
transform ] Hp
—
. ( > Yo

Hoo(2) Hpe(2)
H10(2) H11(2)

Fig. 11. A 1-D filter-bank (Hy(z), H1(z)) with the subsampling facto is represented in the polyphase domain with the corresponding
polyphase componentfoo(z), Ho1(z), Hio(z), and H11(z).

E. Polyphase Representation

Filtering and subsampling across lattices, as explained in Section IlI-C, can be efficiently represented in the
polyphase domain. Recall first that a two-chanhé& filter-bank (H y(z), H1(z)) followed by a subsampler by the

factor 2 can be given in terms of the polyphase components as [2]
H()(Z) = Hyo (22) + zHy (22) and
Hl(z) = Hyy (22) + zHqq (2:2) .

Here, Hyo, Ho1, H19, and Hq; are the polyphase components of the filtéfs(z) and H,(z) that correspond to

even and odd samples of the impulse response, respectively. Such a polyphase representation is shown in Fig. 11.
Similarly, we can find the equivalent polyphase components ?fCafilter-bank (H (z), H1(z)), wherez =

(z1, 22), applied in the lattice-based method, as explained in Section IlI-C. Recall that the Hit¢es and H,(z)

used in this method are purelyD filters, that is,H(z) = Ho(z1) andH1(z) = Hi(z1). To illustrate this polyphase

decomposition, we consider the particular example with the latticketermined by the generator matrix

1 1
MA = )
-1 1
as shown in Fig. 9(a). Recall that the lattice-based filtering and subsampling are applied in each coset of the lattice
A separately. Thus, the equivalent scheme has two sections, which are (a) separation into two cosets-Bnd (b)

filtering and subsampling in the transform direction (Fig. 12(a)). Notice that filtering in the transform direction is
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separation into cosets: horizontal filtering and : Hoo(zy) Hp(z)) O 0
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Fig. 12. (a) The2-D two-channel filter-bank applied in the example shown in Fig. 9(a). Filtering and subsampling are appliedsats
separately. (b) Equivalent polyphase representation corfagmnponents. The polyphase transfol is block-diagonal.

performed as horizontal filtering preceded by rotation by the generator ndtpix
Since the total subsampling rate]idet (D - My )| = 4, the polyphase representation of such a filter-bank consists
of 4 polyphase components. The equivalent polyphase representation is shown in Fig. 12(b), where the polyphase

transformH,, is block-diagonal, that is,

Hoo(z1)  Ho1(21) 0 0

H, - Hyo(z1) Hii(z1) 0 0
0 0 Hoo(z1) Hoi(z1)
0 0 Hio(z1) Hui(z1)

Notice that the block-diagonal polyphase transform with two identical blocks is a consequence of the separable
transforms applied across cosets. This property allows for a simple filter design and computational efficiency in the

polyphase domain. Such separability in the polyphase domain has also been used hbffiiear-bank designs

[7], [8l.

IV. NON-LINEAR APPROXIMATION AND COMPRESSION

The main task of approximation is to represent a signal by a portion of transform coefficients, while the rest of
them is set to zero. The transform can be critically sampled (bases) or oversampled (frames). The approximation with
N retained transform coefficients is also calldderm approximation. We distinguish between linear approximation
(LA) and non-linear approximation (NLA). In the first, the indexes of the retained coefficients are fixed, whereas
in the latter, they are adapted to the content of the signal.

Owing to truncation of the coefficients, the approximating signal does not match exactly the original one. The

quality of the approximation is commonly measured in termsnedin-square error (MSE), that is, for a signak
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and its N-term approximatiork y, the MSE is given by|x — %x||?. Notice that, given a signat and its transform

y = F - x, whereF is a tight frame or an orthogonal basis, we have the following inequality
~ 2 1 ~ 2
% = %" = Zlly =gl @)

whereyy corresponds to the truncated versionyofvith N retained coefficients, th&/-term approximationx
is given byxy = A™'FT .y, and A is the frame bound oF (for more details see Appendix I). Equality in (7)
holds if the transforn¥ is an orthogonal basis.

In the orthogonal case, the optimal strategy to minimize the MSE is to retain the largest-magnitude transform
coefficients [50]. Notice that the MSE decays as the number of retained coefficients (approxiMagmsys.

Compression using orthogonal transforms is an extension of NLA that consists of (a) approximation, (b) indexing
the retained coefficients, and (c) quantization of the coefficigfisus, the MSE (in this case also calldigtortion)
is affected by the two factors: (a) truncation error due to NLA and (b) quantization error.

The asymptotiaate of decay of the MSE, asN tends to infinity, is a fundamental approximation property of
the transform and this value allows us to compare approximation performance of different transforms. The higher
the rate of decay, the more efficient the transform is. Similarly, the rate of decay in compression is defined as the
asymptotic behavior of the distortial, as the bitrate? tends to infinity (this is frequently calleR-D behavior).

Mallat [50] and DeVore [53] showed that, for2aD piecewiseC'? smooth signalf (z1, z2) with a 1-D C'? smooth
discontinuity curvé (which we callC?/C? signal), the lower bound of the MSE is given BN ~2).

Notice that the standard WT is far from optimal since its rate of deca}(i§ —!) [1], [50]. Some other adaptive
or non-adaptive methods have been shown to improve substantially the approximation power. Curvelets [18]-[20]
and contourlets [21] can achieve the r&éN —2(log N)?), which is nearly optimal. Furthermore, bandelets [11],

[12] and wedgelets [13]-[17] have been shown to perform indeed optimally. However, notice that none of these
methods is based on critically sampled filter-banks, which are very convenient for compression. Furthermore, a
complex non-separable processing is sometimes required.

As we showed in Section Il and Ill, anisotropy and multi-directionality improve the approximation power of
the WT while keeping separability, simplicity, and critical sampling. However, the S-FSWT cannot yield a high
rate of decay since it fails to provide a sparse representatiégi’gt"? images. On the other hand, the S-AWT is
capable of producing a compact representation, but it is still sensitive to the choice of the transform and alignment
directions.

Synthetic (including alsa”?/C?) and natural images have geometrical features that vary over the space. Di-
rectionality, thus, can be considered as a local characteristic, defined in a small neighborhood. This implies the
necessity forspatial segmentation as a way of partitioning an image into smaller segments with one or a few

dominant directions per segment.

3Some algorithms merge quantization and NLA into a single operation producing an embedded bitstream, like zero-trees [51] or SPIHT [52].

4C2 smoothness of both-D and 2-D functions means that the functions are twice continuously differentiable.
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Fig. 13. An example of NLA of an image from the cla€8/C?. (a) An image from the clas§€?/C? is approximated using the standard
WT and the S-AWT(,2,1) with spatial segmentation. (b) The MSE expressed in terms of PSNR is significantly reduced in the case of the
S-AWT(A,2,1).

The S-AWT is applied on a segmented image, where the transform and alignment directions are chosen inde-
pendently in each segment. The transform outperforms the standard WT in both approximation and compression
rate of decay of the MSE (i.e. distortion). The following theorem gives the rate of deca&y €2 images.

Theorem 1. Given a2-D C2/C? function f(z,z2) anda = (V17 — 1)/2 ~ 1.562,

(a) TheN-term approximation by the S-AWT using spatial segmentation achieves
MSE= ||f — fx[?> = O (N79).

In that case the optimal anisotropy ratiog$ = «.
(b) Compression by the S-AWT, using spatial segmentation and ésbits for encoding, can achieve the distortion
D given by
D=0 (R™).

The proof of the theorem is given in Appendix II.

Notice that anisotropic segmentation is used here in the iteration, that is, an image is partitioned into vertical strips
of equal widths. The number of segmentation steps depends on the anisotropy ratio, the number of approximants, the
number of transform directions, and the first derivative of dhecurve (see the proof of Theorem 1). In particular,
when the optimal anisotropy ratio* = « is used, the number of segmentation steps does not increase with the
number of approximants. However, in reality, because of the discreteness of the transform, this anisotropy ratio
cannot be exactly achieved and, in general, the number of segmentation steps has to be increased with the number

of approximants. Notice that the S-AWX,2) approximates well the optimal transfoPmvhile retaining iterative
5There are other possible transforms with the anisotropy ratio even closer to optimal but we choose this one for the sake of simplicity.
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TABLE IlI
DEPENDENCE OF THE APPROXIMATION RATEMSE:O(N—"'T) AND THE NUMBER OF SEGMENTATION LEVELSs = 71 log,(IN) ON THE

GROWTH RATE OF THE NUMBER OF TRANSFORM DIRECTIONS IN THE CASE OF THES-AWT(A,3,2)

8 2 1 0.5 | 0.25
m | 1/51 | 1/26 | 2/27 | 4/29
er | 155 | 1.50 | 1.41 | 1.24

segmentation. It follows from the proof of Theorem 1 that the number of required transform directions grows with
the number of segmentation steps@Q”*). Table Il gives the achievable approximation and segmentation rates
for the S-AWT(A,3,2) and different values of.

Although the obtained approximation rate is slower than the ones obtained in [13]-[21], we want to emphasize
that the S-AWTA(\,3,2) is critically sampled and uses onlgeparable processing. This is important for compression
because, in the case of orthogoriaD filter-banks, the Lagrangian optimization-based algorithms still can be
applied, making it easier to achieve very good compression.

In order to perform compression, the chosen transform directions in each segment have to be encoded together
with the indexes and quantized values of the retained transform coefficients. The bitrate of this overhead information
depends on the number of spatial segments and allowed number of transform directions per segment. Recall from
Appendix |l that the number of spatial segments is equ& towhereas the number of bits needed to encode the
choice of directions in each segment behave®fsg,(2°%))=0(3s). Thus, the number of overhead bits is given
by Ry = O(Bs - 2%). However, even though this number grows exponentially with the number of segmentation
stepss, the growth rate for the values ¢f given in Table Il is smaller than the growth rate of the number of
indexing and quantization bits and, thus, the dominant asymptotic beh2yi®y remains the same.

Recall also from Section IlI-C that the S-AWA,2) is applied in thg det(M )| cosets separately. The separate
filtering and subsampling in the cosets affect the order of decay of the MSE, but only up to a constant factor and,
thus, the rate of decay remains the same.

Figure 13 illustrates the gain obtained by NLA using the S-AW,Z(1) with spatial segmentation applied on an
image from the clas€'?/C? when compared to the results of NLA obtained using the standard WT. Furthermore,
Figure 14 shows an example of the NLA results with a natural image. The image Cameraman shown in Figure 14(a)
is transformed using the standa2eD WT without segmentation and the S-AWNY,@,1) with segmentation. The
MSE obtained by retaining a part of the transform coefficients is presented in Figure 14(b). The two reconstructions
obtained with0.98% of retained coefficients for the two methods are shown in Figure 14(c) and (d). Finally, the

segmentation and adaptation of transform directions for the case in Figure 14(d) is illustrated in Figure 15.

V. CONCLUSION AND FUTURE WORK

We have proposed novel anisotropic transforms for images that use separable filtering in many directions, not

only horizontal and vertical. The associated basis functions, called directionlets, have DVM along any two directions
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Fig. 14. An example of NLA of a natural image. (a) The original image Cameraman. The image is approximated using the standard WT and
the S-AWT(\,2,1) with spatial segmentation. For both transforms, the maximal decomposition le$e(li$ The PSNR of the approximated
image is significantly improved in the case of the anisotropic transform. (c) The reconstructed image obtained using the standadd&¥d for

retained coefficients and quality 48.93dB. (d) The reconstructed image obtained using directionlets with spatial segmentation for the same
number of retained coefficients and quality 25.09dB.

Fig. 15. The transform directions are adapted to the dominant directions in each segment of the image Cameraman shown in Figure 14(a).
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with rational slopes. These transforms retain the computational efficiency and the simplicity of filter design from
the standard WT. Still, multi-directionality and anisotropy overcome the weakness of the standard WT in presence
of edges and contours, that is, they allow for sparser representations of these directional anisotropic features.

The NLA power of directionlets is substantially superior to that of the standard WT providing an order of decay
of the MSE equal taD(N ~1-5%) for the C?/C? class of images. Even though this decay is slower than the one
provided by some other schemes, the directionlets allow critical sampling. This is important for applications in
image compression, since, in the case of orthogosalfilter-banks, Lagrangian optimization can be implemented
straightforwardly. For instance, the performance of the compression algorithm based on spatial-frequency quantiza-
tion (SFQ) [54], [55] can be improved by replacing the standard WT with directionlets and allowing for adaptation
of the transform and alignment directions and segmentation. Some details on the analysis of the applications of
directionlets in image compression can be found in [49].

The directionlets built on digital lines using tHeD oversampled transforms yield overcomplete tight frames
(tightness is trivial as it follows from the tightness of the oversamplddl wavelet transforms). We distinguish
this shift-invariant oversampling and the oversampling in directions as explained in Section IV. The redundant
oversampled directionlets provide a promising framework for image denoising since they can efficiently capture
geometrical structures in images [56]. An adaptive denoising algorithm that enforces coherence in images across

space, scales, and directions is currently under investigation.

APPENDIX |

RELATION BETWEEN THEMSE IN THE ORIGINAL AND TRANSFORMDOMAINS

Assume that, given a frame € R™*™, the vectory € R™ is defined ayy = Fx for anyx € R". Herem > n.
Recall that the inverse transform is givenvy= (F7F)~1F” .y [50]. Recall also that if the framF is tight then

llyll2 = A|x||2, where A is called theframe bound. Then, it also holds that
FT.F = AL, (8)

wherel,, is then xn identity matrix. In that case, the inverse transform is simplified and it is givensyA ~'FT.y.
Now, assume that a non-linear operator (e.g. NLA, thresholding, BtcR™ — R™ is applied ony yielding

¥, that is,y = T'(y). It holds thatx = (FTF)~'F7T .y.
The MSE in the original domain is defined f& — x||3 and, similarly, the MSE in the transform domain is given

by |ly — ¥||3. Assuming that the framg is tight we can write
. 1 . 1 .
I = %I = | 7F" - v =92 < IF1E - Iy - 15,
where equality holds wheR' is orthogonal.

From [57] we have thafF7'||3 = |F||3 = A. Hence, the MSE in the original and transform domains are related

as

. 1 .
e = %[I7 < —lly = ¥13-
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(@) (b)

Fig. 16. The2-D function f(x1,x2) is C? smooth on the unit square away from(& discontinuity curve. The curve can be locally
approximated by a quadratic polynomiglz) = ax? + bz 4 c. The E-type transform coefficients intersect the curve and have a slower decay of
magnitudes across scales than the S-type coefficients, which correspond to the smooth regions. (a) The S-AWT produces the E-type coefficients
within the strip along the slope. (b) The width of the stripd; is minimized forr = a + b.

APPENDIXII

PROOF OFTHEOREM 1

Recall first that aC? curve can be locally represented by the Taylor series expansion, that is, by a quadratic

polynomial

y(x) = ax® + br +c, 9)

wherea andb are related to the second and first derivative of the curve (curvature and linear component), respectively.
Without loss of generality, we assume that tHé discontinuity curve isHorizon [13] on the unit squaré0, 1] 2.

Since the smooth regions of the functigfu 1, z2) are C?, assume that the-D filters used in the S-AWT are
orthogonal and have at least two vanishing moments. Let the transform be applied along the class of straight lines

defined by
{y(z) =rx+d:deR}. (10)

Here, the slope determines the transform direction, whereas the alignment direction is vertical. Equalizing (9) and

(10) we can write

d(z) = az* + (b—r)z +c.

The transform coefficients of the S-AWT that intersect the discontinuity curve are &atigsb coefficients. The
number of the E-type coefficients at the scalés given byNéO) (7) = O(2"27A,4). Here,ny is the number of
transforms applied along the vertical directidh; = maxo<z<1 d(z) — ming<,<1 d(z) is the width of the strip

along the transform direction that contains the curve (see Fig. 16), and zero in the supersMLi?f @9 denotes
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that no segmentation has been applied yet. The transform direction with the slope
r=a+b (11)

minimizes the widthA ; (and, thereofNe(O)(j)) on the unit square. In that case the number of the E-type coefficients
is given by
NOG) =0 (%2"21) .
Notice that an increment in the scale indgis equivalent to a step to a finer scale.
The transform coefficients of the S-AWT, which do not intersect the discontinuity curve are &alige
coefficients. The number of the S-type coefficients depends on the number of transfornesd n, at a scale

along the transform and vertical directions, respectively, as
NO () = o(mi+n2)i _ NO) () = O (2<m+n2>j _ 92”2]') .
s () ¢ () 1

An anisotropic spatial segmentation is applied on the unit square. It partitions the unit square into vertical strips
using the dyadic rule, that is, there &#@vertical strips at theth level of segmentation, where the width of each is
2—% (Fig. 17). The optimal transform direction, according to (11), is chosen for each segment independently. Since
each segment is rescaled again to the unit square, the number of the E-type transform coefficients in a segment is
reduced and is given by
a : c
0 (12”21 : 2—26) .

The total number of the E-type coefficients is given by the sum across all the segments, that is,

2°—1
. _ a Nnoj—2s _ a noj—s
N.(j,s) = kZ_O 19 (12 12] ) -0 (12 12] ) . (12)
Similarly, the total number of the S-type coefficients is given by
2°—1
N.(j, _ 10 (2(71,1-1-71,2)3' _ Ezngj—Qs) -0 (2(n1+nz)j+s _ Eanj—s) ] 13
<(9) kzzo 1 1 (13)

Notice that the exact number of the two types of coefficients given by (12) and (13) depends on the length of the
1-D filters used in the transform. However, the dependence is only up to a constant and, thus, the order of growth
of these numbers across scales remains the same.

The magnitudegw. (7)| of the E-type coefficients decay across scale®@s ("1 t72)i/2), The S-type coefficients
correspond to the smooth regions of the functif{m: 1, z2) and their magnitude&w,(j)| are upper bounded by
O(27™s3/2). Notice that, since theé-D HP filters have vanishing moments, the decay of the magnitudes of the
S-type coefficients is faster than the one of the E-type coefficients, thag is, ny + nas.

We estimatens considering that the appliettD wavelets have at least two vanishing moments. It is shown in
[50] that, the decay of the magnitudks,(j)| in a smooth region after two consecutive transforms with alternated

transform directions i€ —3. Therefore, the decay raie; is given by

. ny +5nz, N1 > ng
n3:6-m1n(n1,n2)+|n2—n1|:{ . (14)
oni +nz, ni < ng
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Fig. 17. Anisotropic segmentation partitions the unit square #tequally wide vertical strips. After rescaling, the curvature parameter
(related to the second derivative of tii# curve) is reduced in each segment by the fa&dr Since there ar@s segments that intersect
the discontinuity, the total number of the E-type transform coefficients is reducedl. it the same time, the total number of the S-type

coefficients is increased by the same factor.

To approximate the functiorfi(z1,z2), we keep all the coefficients with the magnitudes larger than or equal to
the threshol®2~™, wherem > 0, and discard (set to zero) the others. The retained coefficients can be divided into
two groups:
(1) The E-type coefficients at the scales< j < 2m/(ni + n2),
(2) The S-type coefficients at the scalest j < 2m/ns.
From (12), (13) and decays of the magnitudes across scales, we compute the order of the total number of retained

coefficientsN (m, s) and the corresponding MSE. The numb¥é(m, s) is the sum of the retained E and S-type

coefficients:
2m/(ni1+mnz) 2m/ns
Nim,s)= > N(Gs)+ > Nl(j,s)
§=0 §=0
=0 (20" ") 10 (2‘““”) . (15)
The MSE is given by
+oo “+o0
MSE(m, s) = > NG s)we(DP+ D NG o) lws (5)]?
j=2m/(ni1+n2)+1 j=2m/n3z+1
-0 (2—%m—s) +0 (Z_Wm-i-s) . (16)

Assuming that the number of segmentation levels depends on the expormédrhe threshold as = nm, where
the segmentation rate > 0, we distinguish the two cases, as follows:
(1) The terms in (15) and (16) produced by the E-type coefficients dominate, in which case we have

* n2 n1 + ng 1 p+1
ngn = — = — 5
ni + ng ns p+1 p+5
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()

wherep = ny/ne > 1. Then the MSE decays as

2m +n(m +n2) _ 2p+n(p+1)
2ny —n(na+nz)  2-nlp+1)

MSE= O (N~“), wheree; =

The terms in (15) and (16) produced by the S-type coefficients dominate, thatig,* and
2 — — — —
MSE— 0 (V) , wheree, — 208 ——n2) —nns 8- nlp+5)
2(n1 +n2) +1n3 2(p+1) +n(p+5)

Plugging (14) in the relations above and knowing that the segmentation rat& non-negative value, we obtain

the maximal decay rate MSEO(N ~2), with a = (v/17 — 1)/2 ~ 1.562. The optimal rate is attained for the

anisotropy ratiop™ = n1/ns = a =~ 1.562 and the segmentation ratg¢ = 0.

Notice that the analysis above is based on two assumptions: (a) the optimal transform direction given by (11)

is chosen and (b) the’? curve is globally represented by a quadratic polynomial given by (9). Here, we address

these two assumptions showing that they do not constrain severely the approximation rate.

(a) Assume that the transform direction is given by the suboptimal slepe + b+ ¢, where|r| < 1. Then it can

(b)

be shown that\; = a/4 + |e|/2 + €2/4a = O(a) for |¢| < a and Ay = |e| + o(¢) for |¢| > a. Furthermore,
assume that decays exponentially with the number of segmentation steps, thati®, ~7%, whereg > 0. If
B < 2, then the expression d¥.(j, s) given by (12) become® (2727~ (8~1)s) and the optimal segmentation
raten* is multiplied by the factoR/s. In that case the exponeat is given by
_2p+(B-1n(p+1)
e = s
2—=(B-1n(p+1)

whereas the exponemt, is unchanged. However, even though some of these parameters are changed, the

optimal approximation rate remains the same, that is, MSEN ~¢) if p* = « andn* = 0. On the other

hand, the required number of transform directions is finite now and behaviggeas- 2 7%,

The analysis that leads to the approximation rate holds only for the case when the slope of the tangent direction
(or, equivalently, the first derivative) of th@? curve is in the interval—1, 1]. However, the first derivative of

a generalC? curve is not constrained on that interval and, therefore, the optimal approximation rate cannot
be achieved in the same way as in the case of a quadratic polynomial. In order to be able to achieve the same
rate we need to introduce an initial number of segmentation steps prior to the iteration. Recall that one step
of anisotropic segmentation attenuates twice the first derivative oCtheurve® Thus, it suffices to apply
enough segmentation steps so that the maximal magnitude of the first derivative is less than orlequradrio

the iterated segmentation and transform are continued on each of these initial segments and this construction
results in the same optimal approximation rate. Notice that the necessity for reducing the magnitude of the
first derivative belowl is caused by the assumption that thé curve is Horizon. However, if this assumption

is not satisfied, then an appropriate combination of initial segmentation steps and transposition of the axes can

60ne step of the anisotropic segmentation is equivalent to stretching the abscissa by the fatptherefore, the equivalent first derivative

of the curve is also attenuated By
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rescale the curve so that each segment of the curve is Horizon. Therefore, the optimal approximation rate can

be achieved in the case of a genefA curve.

For the compression application, the retained coefficients have to be indexed and quantized. For a given MSE
(or distortion) each of these operations carries a cost in terms of the required bits.

The N retained S-AWT coefficients within a spatial segment can be organized in an embedded tree-structure,
similar to the structures produced by the standard WT and exploited in the other compression algorithms (zero-trees
[51], SPIHT [52], SFQ [54], [55]). The main difference between the tree-structures of the standard WT and S-AWT
is in the number of descendants of each transform coefficient. While this number is fixed in the standard WT, it
depends on the number of transform steps applied at each scale in the S-AWT. However, the S-AWT tree-structure
allows also for indexing the retained coefficients using approximatddif per transform coefficient.

A variable length coding scheme allocatdsits to encode coefficients with magnitudes in the intefral™2!~1,
2-m2!), Thus, using (15) and the optimal choice foi, no, n3, andn, the total number of encoding bitg is

given by:

=1
=0(28m)+> 25D =0 (25™m). (17)

The distortionD consists of two components: (a) the MSE resulting from the truncation of small coefficients
in the approximation given by (16), and (b) distortion caused by the quantization of the retained coefficients. The

second component is given bBy(m, 0) - 2~2™ and, thus, the total distortion is
D(m) = MSE(m, 0) + N(m,0) - 272" = O (2*%2”1) . (18)
The R-D behavior follows from (17) and (18) and it is given by

D(R) =0 (R™).
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