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Plenoptic Manifolds

Exploiting structure and coherence in multiview images

he availability of multiple views of a scene makes possible new and exciting applica-

tions ranging from 3-D and free-viewpoint television to robust scene interpretation

and object tracking. The hardware for multicamera systems is developing fast and is

already being deployed for multimedia, security, and industrial applications. However,

there are still some challenging issues in terms of processing, primarily due to the
sheer amount of data involved when the number of cameras becomes very large. It is therefore a
primordial point to understand how the information is structured and how to take advantage of
the inherent redundancy that results when the cameras are looking at the same scene.

This article provides insights on the nature of the data in multiview imaging systems, partic-
ularly in terms of structure and coherence. Using this structure, we derive a multidimensional
variational framework for the extraction of coherent regions and occlusion boundaries, which is
an important issue in numerous multiview image processing applications such as view interpo-
lation, compression, and scene understanding.

SEEING IN SEVEN DIMENSIONS

Our visual perception sense (i.e., our eyes) enables us to view the world in three dimensions.
One might also say that time is a fourth dimension we are able to perceive. One way to under-
stand why this is the case is to say that an eye captures two spatial dimensions describing where
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it is looking and another dimension for time. Our second eye
provides the fourth dimension for the location of the viewing
point. In the case of a camera array however, the number of
“eyes” and their position is unlimited.

Studying the data in multiview camera systems from an
image processing point of view means adding more degrees of
freedom to the problem, and this leads to new difficulties, not
the least that the data have more dimensions than most of us
are able to visualize. In fact, the number of dimensions goes up
to seven when all the degrees of freedom are taken into account.
Indeed, the visual information captured depends on the viewing
position (Vy, Vy, 12), the viewing direction (0, ¢), the wave-
length A and the time / if dynamic scenes are considered. In [1],
Adelson and Bergen gather all these parameters into a single
function P= P7(0, ¢, A, t, Vi, V, V2) called the plenoptic func-
tion. Usually, it is represented with the cartesian coordinates
used in numerous computer vision and image processing algo-
rithms. It therefore becomes

P=Prx, g, 2, b Ve, Vy, V2), @

where x and y are analogous to the coordinates on the image plane.

It is far from trivial to deal with the seven dimensions of the
plenoptic function. However, there are some solutions to over-
come this obstacle. First, several assumptions can be made to
reduce the dimensionality. As we will see in the next section,
these assumptions include dropping the wavelength, considering
static scenes, or constraining the camera locations. Second, the
plenoptic function in all its parameterizations has a high degree
of regularity under the assumption of photoconsistency. Clearly,
the analysis of multiview images calls for multidimensional sig-
nal processing algorithms that take advantage of this inherent
regularity for compression, interpolation, and interpretation.

In order to understand the regularity involved in plenoptic
data, consider the more easily visualized case
of the video. Looking at the full space-time
volume such as the one illustrated in Figure
3(a) reveals that an object or a layer moving
around in the scene carves out a 3-D volume
or an object tunnel [2]. Since this volume is
constructed with images of the same object,
the information inside it is highly regular.
Similarly, consider a dense set of multibase-
line stereo images that are collated such that
they form a 3-D data set (also known as the
epipolar plane image (EPI) volume [3]). Again,
looking at the whole volume of data, such as
that represented in Figure 3(b), shows that
EPI-tubes [4] are carved out by objects at dif-
ferent depths in very much the same way as in
the video. The purpose of this article is to
emphasize that, just like the tunnels carved
out by objects in space-time or the tubes in
EPI volumes, hypervolumes are carved out in
the plenoptic function.

3-D (x.y1)

4-D (x,y,V,, V)

In an effort to generalize the notion and inspired by Adelson
and Bergen [1], we introduce, with a slight abuse of terminolo-
gy, the concept of plenoptic manifolds. (See the section
“Capturing the Plenoptic Function.”) With the term plenoptic
manifold, we mean the hypervolume carved out by an object in
the plenoptic domain. Since these manifolds capture the coher-
ence of the plenoptic function in all dimensions, their extraction
is a very useful step in numerous multiview imaging applica-
tions such as layer-based representations [5], [6], MPEG-4-like
object-based coding [7], disparity-compensated and shape-adap-
tive wavelet coding [8], and image-based rendering (IBR) [9],
[10], especially in the case of occlusions and large depth varia-
tions. Other applications include scene interpretation and
understanding [11]. All these applications make it very attractive
to develop methods that are able to extract such manifolds.

In this article, we go through some common parameteriza-
tions of the plenoptic function and recall the shape constraints
imposed on the plenoptic manifolds in some simple camera
setups. Then, we focus mainly on the light field parameteriza-
tion [12] and derive a global multidimensional variational
framework based on [13], [14] for the extraction of these plenop-
tic manifolds. Finally, we demonstrate some experimental
results and applications in IBR.

CAPTURING THE PLENOPTIC FUNCTION

The plenoptic function was introduced by Adelson and Bergen
[1] in order to describe the visual information available from
any point space. It is characterized by seven dimensions, name-
ly, the viewing position (Vy, V, 1%), the viewing direction
(x, y), the time ¢ and the wavelength A. Usually the wavelength
is omitted by considering separate channels for color images or
one channel for grayscale images. There are many different
ways to capture the plenoptic function and most of the popular
sensing devices, some of which are illustrated in Figure 1, do

(d)

[FIG1] Capturing the plenoptic function. From the still image camera to the video
camera or multiview imaging systems, all the sensing devices illustrated sample the
plenoptic function with a varying number of degrees of freedom.
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not necessarily sample all the dimensions. The still image cam-
era, for instance, fixes the viewing point and the time. Only the
(x, y) dimensions remain. The video camera is able to capture
images at different times and therefore captures the (x, y, #)
dimensions. Another case of a three-dimensional plenoptic func-
tion can be obtained by giving one degree of freedom to the cam-
era location such that (x, y, V) is sampled. Higher-dimensional
cases add more degrees of freedom to the viewing position such
that (x, y, Vy, V) or even (x, y, Vy, Vy, V2) can be captured.

PLENOPTIC TRAJECTORIES AND ASSOCIATED MANIFOLDS
Given a known camera setup, a point in space is projected onto
the images in a particular fashion dictated by the geometry of
the array of cameras and the movement of the objects. The cap-
tured plenoptic function therefore has a structure that depends
on the camera setup sampling it. In this section, we illustrate
more precisely the properties of the plenoptic function for some
simple camera setups starting from the most basic and going on
to the higher-dimensional cases (see also the section “Capturing
the Plenoptic Function”).

Before going through some common representations of the
plenoptic function and their associated plenoptic manifolds, we
lay out the assumptions made in this article. First, we assume
that the cameras follow the basic pinhole camera model as illus-
trated in Figure 2, and we will use the cartesian coordinate sys-
tem for the plenoptic function as in (1). Second, the wavelength
parameter A is dropped by considering grayscale images or
separate red, green, and blue channels for color data. Finally, we
assume that the scenes are made of opaque Lambertian surfaces.

SINGLE-VIEW CAMERAS

A single still image camera samples the plenoptic function
where the viewing position and the time are fixed (e.g., in
Vy=Vy =V, =1t=0). Only the x and y dimensions remain,
which are the image coordinates. The pinhole camera model
says that points in the world coordinates X= X,Y,Z) are
mapped onto the image plane (x, ) in the point where the line

(Xv.2)

connecting X and the camera center intersects with the image
plane [15]. The focal length / measures the distance separating
the camera center and the image plane. By using similar trian-
gles, it can be shown that the mapping is given by

X
x\ _(X/Z
v G)=62)

where we assume that the focal length £ is unity and that the
principal point is located at the origin. The extraction of coher-
ent regions in this case can based on color or texture (i.e., strict-
ly spatial coherence in the x and y dimensions), and, although
this problem is extremely interesting, it is not the point we wish
to put forward in this article. Rather, we wish to portray the
coherence involved when several images of the same objects at
different locations or different times are available.

A single viewpoint imaging system can sample a 3-D
plenoptic function if it is able to capture the scene at differ-
ent times. This is the case of the video or moving image. The
point in space X is free to move in time and its mapping onto
the video data becomes

X(t) X X()/Z(t)
YO | y=|YD/Z(@)
Z(1) t t

which is the parameterization of a trajectory in the 3D plenop-
tic domain. Note that the intensity along the trajectory remains
fairly constant if the radiance of the point does not change in
time. Furthermore, assuming the scene is made of moving
objects, neighboring points in space will generate similar
neighboring trajectories in the video data. Hence, apart from
the object boundaries, the information captured varies mainly
in a smooth fashion. This observation has motivated the seg-
mentation of videos into coherent regions such as the ones
undergoing similar motion. Recent methods for segmentation
and motion estimation have
shown that added robustness is
achieved by considering the
whole space-time volume as
opposed to one or a few consecu-
tive frames (see [11] for a recent
presentation of space-time video
analysis). The analysis of video as
a 3-D function enables to impose
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coherence throughout the stack
of images and gain insights on
> long term effects such as occlu-
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[FIG2] The pinhole camera model. Light rays from points in real-world coordinates X =
generate intensities on the image plane in the point (x, y) where the line connecting X and the
camera center (V,, V), V) intersects the image plane. The focal length f measures the distance

separating the camera center and the image plane.

sions. In [2], Ristivojevic and
(b) Konrad show that tunnels are
carved out by objects in the data
as illustrated in Figure 3(a).
Note that in the general case,
the volumes do not have much

X, Y, 2)
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structure. Indeed, there is no real prior constraining the shape
of the tunnel carved out unless some assumptions are made on
the movement and the rigidity of the objects. Nevertheless, in
natural videos, assuming a certain degree of smoothness and
temporal coherence is usually a valid assumption.

LINEAR MULTIVIEW CAMERA ARRAYS

A linear camera array gives one degree of freedom to the posi-
tion of the camera (e.g., in V). That is, parallax information is
available. In this case, the plenoptic
function reduces to the Epipolar
plane image (EPI) volume first
introduced by Bolles et al. [3]. It can
be acquired either by translating a
camera along a rail or by a linear
camera array (such as the one illus-
trated in Figure 1). According to the
pinhole camera model and assuming V, = V; = = 0, points
in real-world coordinates are mapped onto the EPI volume as a
function of V; according to

X X X/Z -V )Z
Y=y |= Y/Z R
Z Ve Ve

where we notice that a point in space generates a line.
Furthermore, the slope of the line is inversely proportional
to the depth of the point Z. Therefore, the data in this para-
meterization, as opposed to the video, have a very particular
structure, which is noticeable in Figure 3(b). The occurrence
of occlusions, for example, is predictable since a line with a
larger slope will always occlude a line with a smaller slope.
This property follows naturally from the fact that points clos-

THIS ARTICLE PROVIDES INSIGHTS
ON THE NATURE OF THE DATA IN
MULTIVIEW IMAGING SYSTEMS,

PARTICULARLY IN TERMS OF
STRUCTURE AND COHERENCE.

er to the image plane will occlude points that are further
away. The example illustrated in Figure 4 portrays this prop-
erty with natural images.

In the original EPI analysis paper [3], this particular struc-
ture is used to infer depth information in a scene by finding the
slopes of the lines in the EPI volume. It is emphasized that by
looking at the problem in this manner, all the images are taken
into account simultaneously. However, the problem of dense
segmentation was not dealt with. This problem was studied
much later by Criminisi et al. [4]
where horizontal slices of the EPI
volume are analyzed in order to
gather lines with similar slopes. This
segmentation generates coherent
volumes that are called EPI-tubes
for their obvious tube-like appear-
ance (see Figure 3(b)). As opposed to
the method in [4], which analyses the data slice by slice, the
method presented in [13], [14], which we describe in more
detail below in “Extracting Plenoptic Manifolds in Multiview
Data,” exploits coherence in the three dimensions; that is, the
whole stack of images is analyzed in a global manner.

The concept of EPI analysis is not necessarily restricted to
the case of cameras placed along a line, and has been extended
by Feldmann et al. [16] with image cube trajectories (ICTs). The
authors show that other one-dimensional camera setups, such
as the circular case illustrated in Figure 3(c), generate particular
trajectories in the plenoptic domain and occlusion-compatible
orders can be defined. While the image cubes, EPI volumes, and
videos are all three-dimensional, more dimensions can be added.
For example, the case where the sensors are video cameras
along a line leads to a four-dimensional parameterization that
includes the time dimension.

[FIG3] lllustration of some 3-D plenoptic manifolds. (a) The volume carved out by a flat object in the space-time volume. (b) The
volumes carved out by two flat objects in a linear camera array, where V, denotes the position of the cameras along a line. (c) The
volumes generated by two objects in the case of a circular camera array, where 9 denotes the angle of the camera position around the
circle. Note that the shape of the volume in (a) depends on the movement of the objects which means it is not necessarily structured. In
both the other cases (linear and circular still image camera arrays), the shape of the manifold is constrained by the camera setup and

occlusion events can be predicted.
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[FIG4] The Epipolar Plane Image (EPI) volume. Cameras are constrained to a
line resulting in a 3-D plenoptic function where x and y are the image
coordinates and V, denotes the position of the camera. Points in space are
projected onto lines where the slope of the line is inversely proportional to
the depth of the point. The volume illustrated is sliced in order to show the

particular structure of the data.

PLANAR AND UNCONSTRAINED CAMERA ARRAYS

Planar camera arrays such as the one illustrated in Figure 1 give
two degrees of freedom to camera locations (e.g., in Vy and V).
The structure that governs the light rays in this case has been
very well explored in the popular light field [12] or lumigraph
[17] parameterizations introduced by Levoy and Hanrahan and
by Gortler et al., respectively. In the planar case and assuming
Vz = t =0, a point in space is mapped onto a four-dimensional
trajectory according to

¥ x X)Z - Vi/Z
v e |92 W2 @)
7 Ve Vx

Vy Vy

where Vy and V;, are variable. By extension of the EPI volume, 4-D
hypervolumes are carved out by objects at different depths in
the scene and, just as in the EPI, their shape is constrained. In a
similar spirit to the plenoptic manifolds, the pop-up light field
method [18] makes use of the segmentation of the data into
coherent regions (or layers) for view interpolation purposes. The
contours of layers are semimanually extracted on one image and
propagated to the other views (i.e., the two other dimensions Iy
and V) by applying a user-defined depth map. By performing
the segmentation in this manner, the coherence of the layers is
enforced in all the views.

Other planar camera setups include the dynamic light fields
that are 5-D since the time dimension is captured as well. The
concentric mosaic [19] introduced by Shum and He also gives
two degrees of freedom to the camera locations. In that paper, a
1-D camera (i.e., capturing slit images) is free to move along a
circle with variable radius. The data are therefore parameterized

with three dimensions, namely the rotation angle, the
radius, and the y axis of the image.

The case when the camera locations are uncon-
strained (i.e., free to move in V%, V;, and ;) gives rise
to the 5-D plenoptic modeling function [20] first
introduced by McMillan and Bishop. An even more
general case including the wavelength and the time
dimension has been called the surface plenoptic func-
tion [10] by Zhang and Chen. It contains six dimen-
sions since it is assumed that radiance along a light
ray does not change unless it is occluded. While it is
more difficult to visualize, a point in space generates a
particular trajectory in these parameterizations and
objects generate multidimensional hypervolumes.

PLENOPTIC MANIFOLDS

As we saw in the previous sections, points in space
are mapped onto trajectories in the plenoptic func-
tion. Objects that are made of neighboring points in
space are therefore mapped onto volumes (or more
generally hypervolumes) that are made of neighbor-
ing trajectories. This collection of trajectories gener-
ates a multidimensional manifold M which we will
call plenoptic manifold. Note that the concept of plenoptic
manifold shares many ideas with the coherent layers in [18]
and the IBR objects in [7].

There are two important elements to retain from the para-
meterizations described above. First, the multidimensional
trajectories are constrained by the camera setup. This is illus-
trated by the way points in space are mapped onto the plenop-
tic domain. In the following, we will refer to this prior as the
geometry constraint. Second, there is a well-defined occlu-
sion ordering. Points at different depths generate different
trajectories and will intersect in the event of an occlusion.
The study of these trajectories determines which point will
occlude the other. We will refer to this prior as the occlusion
constraint. There are several benefits in considering the
extraction of the whole manifold carved out by objects. The
procedure enables a global vision of the problem and operates
on the entire available data. That is, all the images are taken
into account simultaneously and the segmentation is consis-
tent throughout all the views, which increases robustness. As
pointed out in [18], this consistency is also beneficial for
applications such as view interpolation.

EXTRACTING PLENOPTIC MANIFOLDS

IN MULTIVIEW DATA

The extraction of coherent regions in plenoptic data is essen-
tially a segmentation problem and closely related to that of
extracting layers. Semiautomatic schemes such as those pro-
posed in [18], [7] can be very accurate but necessitate the
user's input. Other methods are unsupervised, in which case
the end result is usually obtained by initializing a set of
regions and using an iterative method that converges toward
the desired segmentation.
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Some layer extraction methods include A-means clustering [5]
and linear subspace approaches [21]. Other common methodolo-
gies use the Expectation-Maximization (EM) algorithm or energy
minimization with graph-based methods such as Graph Cuts [22].
These methods can be very efficient but are sometimes difficult to
formulate. Alternative approaches such as active contours [23] are
based on the computation of the gradient of an energy functional
and use a steepest-descent methodology to converge toward a
minimum. As we will see in the next section, we set the problem
of extracting plenoptic manifolds in the variational framework,
since it scales naturally to multidimensional signals and is flexible
in terms of functionals to minimize.

A VARIATIONAL APPROACH

Since their introduction in the late 1980s, active contours (a.k.a.
snakes) [23], along with active surfaces and variational frame-
works in general, have enjoyed a huge popularity in numerous
computer vision and image processing algorithms. Part of their
success is due to the introduction of the level set method [24]
(see also box “The Level Set Method Basics”), which solved some
of the issues such as numerical stability and topology depend-
ence. Another key advantage lies in the formulation of the ener-
gy minimization, which can be extended to any number of
dimensions [25], [26]. Applications of the 3D case include volu-
metric data segmentation [22] and space-time video segmenta-

THE LEVEL SET METHOD BASICS
Consider the problem of evolving a boundary
7(s,7) =(x(s, 7), y(s, 7)) C R? with a speed F in its outward
normal direction n. This evolution can be described with the
following partial differential equation

Y (s, 7)

PP F (s, 0)AGs, 1),
T

where the initial condition is the curve in y(s, 0). A natural
way to implement the evolution is to discretize the curve
with a set of connected points and compute the displace-
ment for each point according to the speed F. While this
approach seems natural, it has some drawbacks. First, the
points may move in such a way that they are closer and clos-
er together or farther and farther away, which can lead to
numerical instabilities in the computation of derivatives.
Second, a curve may be separated into two regions by the
speed function or, inversely, two curves could merge (i.e.,
topological changes). These cases are difficult to deal with,
since they require reparameterizing the curve. This proce-
dure becomes even more problematic as the number of
dimensions increases. The level set method [24] addresses
these issues by embedding the curve y as the zero level of a
higher-dimensional surface z = ¢(x, y, r) C R and evolving
the surface as opposed to the curve itself. In order to derive
an evolution equation for the surface that will solve the
original problem, ¢(y(s, 7), ) = 0 needs to hold for all s
and at all iterations 7. In other terms, the partial derivatives
of ¢(¥(s, t), r) with respect to s and ¢ must be zero since

tion [11]. In [25], dynamic 3D modeling is performed by using a
4D framework in order to impose coherence in the time dimen-
sion as well. The trend is definitely going toward higher dimen-
sional analysis, and these methods are capable of dealing with it
in an elegant fashion. Since the plenoptic function has seven
dimensions, there is a role to play for variational methods in the
analysis of multiview data.

The problem is formulated as follows: Start with a surface
I['G)=x@G),y@),...) CRY for points & e RV-1 and
make it evolve until it converges to the boundaries of the
sought-after region. In order to do this, the surface must be
made dependent on an evolution parameter t such that l:((?, 7)
and assigned a speed function F(f‘((?, 7)) in order to evolve
according to the following partial differential equation [29], [28]

arE, 1)

5 = F(L@, 0)ir, 1), 3)
T

where 9T'/d7 = or is the velocity, 7ir is the outward normal
vector and the initial condition f‘((?, 0) is the starting point
defined by the initialization of the algorithm. The velocity func-
tion F will be chosen such that the surface converges toward the
desired segmentation when t — oo. In practice, F' can be arbi-
trarily designed or it can be derived from an energy functional
to minimize. In the latter case, the optimal speed in a steepest
descent sense can be determined.

the function is constant. The application of the chain rule
for both cases leads to

2+ V961,71 E =0
Y6 _ _j

Vol —
where V is the gradient operator. Putting the two together
along with the definition of the speed of the original contour
dy/dt = F n enables us to write the level set equation

8¢(X»yv T)

5 = F.y)IVo(x,y. 1)l
T

The level set surface ¢ is free to expand, shrink, rise, and
fall in order to generate the deformations of the original
curve, and topological changes are naturally handled.
Moreover, since this evolution equation is defined over the
whole domain, there is no need to parameterize the curve
with individual points. The numerical computations are
performed by using finite differences on a fixed cartesian
grid (thus solving the stability issue). Furthermore, the
methodology extends naturally to evolving surfaces and
generally hypersurfaces in any number of dimensions.
These advantages, however, clearly come at the cost of
computational complexity, since the gradients and the
speed functions need to be computed for all the levels of
¢. Some solutions to reduce the number of computations
have been developed, such as the fast marching and nar-
rowband methods [24].
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The energy functional to minimize is usually written as a
function of the surface

Etot(ﬁ) = Edata(f) + Esmooth(l:); 4)

where the first term Fg,;, measures the consistency of the seg-
mentation with the data and the second term Egy g1, ensures
smooth surfaces in order to compute
derivatives and reject outliers. These
terms are also referred to as the exter-
nal and internal energies [23], since
the former is measured by the data
and the latter is derived from the prop-
erties of the curve itself. Assuming
that the surface T' =9M is the
boundary of a region M, the data con-
tribution can be written as a region
competition term [29]

Ega = / din (O + /_ dout (DA %,
M(1) M(7)

where ¥ € RV, M is the outside of M and din (%) and dyyt (%)
are descriptors measuring the consistency with their respec-
tive regions. The smoothness constraint is written as a
boundary-based term

Esmooth = / /Ld(?,
IM(T)

where p is a constant weighting factor determining the influ-
ence of Egypooth. Minimizing the total energy thus involves com-
puting the derivative of the total functional with respect to
and evolving the boundary in a steepest descent fashion such
that the energy converges to a minimum. It is possible to show
that the gradient of the energy Ei is given by [29], [26]

dE (1) - - e = o

— = / [din(X) — dout (X) + puc ()] @r - 7ir)d 5,
dt AIM(1)

where « is the mean curvature of T" and - denotes the scalar

product. From this equation, we deduce that the steepest descent

of the energy yields the following partial differential equation:

or = [dout(X) — din(X) — ke ()], ®)

where, by comparing (5) with (3), we now have an explicit
form for the speed F of the evolving interface. Note that the so-
called competition formulation is now clear. A point the
belongs to the inside of the sought-after region has a small djp
and a large dyyt, thus resulting in a positive speed. The point
will therefore be incorporated. Inversely, a point belonging to
the outside has a small dyyt and a large diy, resulting in a neg-
ative speed thus causing the point to be rejected. The curva-
ture term helps to smooth the contour by straightening the

THERE ARE STILL SOME
CHALLENGING ISSUES IN
TERMS OF PROCESSING,
PRIMARILY DUE TO THE
SHEER AMOUNT OF DATA and “Planar and Unconstrained
INVOLVED WHEN THE
NUMBER OF CAMERAS
BECOMES VERY LARGE.

curve in places where the curvature is large. On the basis of
photoconsistency, some common descriptors used to extract
coherent regions are related to the intensity differences
between two frames or views and in a more global way, the
variance along a plenoptic trajectory [29], [2].

While the equation in (5) driving the evolution of the hyper-
surfaces is valid in the general case, it does not take into
account the geometry and occlusion
constraints that are inherent to the
plenoptic function. In the following
sections, we study the cases of the EPI
and the light field parameterizations
(see “Linear Multiview Camera Arrays”

Multiview Camera Arrays,” above).
These representations are popular,
easier to visualize, and enable a clear
imposition of the constraints. Some
extensions to other camera setups are
possible. Recall that, under these parameterizations, points in
space are mapped onto lines in the plenoptic domain and the
slopes of the lines are inversely proportional to the depth of the
points. The next sections show how the evolution of the sur-
faces or hypersurfaces can be modified in order to take into
account these constraints.

IMPOSING THE GEOMETRY CONSTRAINT

Consider a scene with a single object or layer that carves out a
plenoptic manifold M in a light field. The problem of extracting
the plenoptic manifold consists in finding the hypersurface
' ¢ R4 that delimits the contour of the object on all the views.
Let y(s, 7) = (x0(s, 7), Yo(s, 7)) be the 2D contour defined by
the intersection of the hypersurface and the image plane in
Vy = V, = 0. That is, it represents the contour of the object on a
single image. For simplicity, we assume that the depth map of
the object is strictly frontoparallel, hence the depth Z = Z; is
constant. According to (2), the boundary plenoptic manifold
under these assumptions can be parameterized as

xo(s, t) — Ve/Zp
Yyo(s, ) — Vy/ 2o
Ve
Vy

T, Ve, Vyo 1) =

and is completely determined by the curve y (s, ) if we assume
that Z; is known. It is therefore possible to propagate the posi-
tion and the shape of ¥ on all the other images. That is, the
shape variations in the hypersurface [ are completely deter-
mined by the shape variations of the curve y in the two-dimen-
sional subspace. An explicit derivation of the normal and
velocity vectors shows that the projection of or - nir onto the
subspace is equal to 7y - 72, and therefore does not depend on
the location of the camera (Vy, V). The intuition behind this
property is easily grasped. Given the fact that the depth map is
constant, the layer's contour will simply be a translated version
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of itself on all the other images. Hence the gradient of the data
term can be rewritten in the form

M = / [Din(s) —Dout(s)](’jy 'ﬁy)d&
dt v

where Djn (s) and Dyt (s) are the original descriptors integrated
over the plenoptic trajectories. Therefore the optimal velocity vector
driving the evolution of the contour y in the subspace becomes

I_}y = [Dout(s) — Din(s) — pk (s)]ﬁya (6)

where a smoothness term is added to insure that the 2D
contour stays regular. In the case of regions that are not
frontoparallel, the same intuition holds; however, a weight-
ing factor must be introduced in order to compensate for
the shape changes between the
views. In a more general sense, the
relation between the normal veloci-
ty of original boundary ' and the
normal velocity of the contour y
becomes or -nir = a(c)(@y, - 1y),
where a(o) is the weighting func-
tion depending on the depth map
and the camera setup.

There are several advantages to
using evolution equation (6) as opposed to (5). First, it con-
strains the shape of the manifold according to the camera
setup. Second, it is implemented as an active contour instead
of an active hypersurface, which reduces the computational
complexity. However, it comes at the cost of having to
compute the geometry of the object (i.e., the slope of
the lines or in general the parameters of the plenoptic
trajectories).

Inspired by stereo computer vision methods [30], we
model the depth map as a linear combination of bicubic
splines and use classical nonlinear optimization methods
to find such parameters. The advantage of this model lies
in the great variety of smooth depth maps that can be
estimated. In addition, the bicubic splines can be forced
to model simplified geometry if an accurate depth recon-
struction is not necessary. For instance, frontoparallel
regions can be extracted by imposing that all the weights
of the linear combination are the same. The weights are
estimated by minimizing the same functional (4) where
the shape of the curves are kept constant. The overall
optimization is done by an iterative approach in which
the contours are estimated while filxing the depth maps
and the depths are estimated while fixing the contours
until there is no significant decrease in energy.

IMPOSING THE OCCLUSION CONSTRAINT

In the previous section, we have seen how to constrain
the shape of the plenoptic manifolds according to the
geometry of the camera setup. The second main factor

THE PLENOPTIC FUNCTION
WAS INTRODUCED BY ADELSON
AND BERGEN TO DESCRIBE
THE VISUAL INFORMATION
AVAILABLE FROM ANY
POINT SPACE.

to consider is occlusions and occlusion ordering. That is,
sometimes the full manifold is not available, since it is occlud-
ed in some of the views. To account for this case, we denote as
M,, the full manifold (as if it were not occluded) and M,% as
the available manifold (i.e., excluding the occluded regions).
Assuming the camera centers lie on a line or a plane (as in the
EPI or light field parameterizations), this occlusion ordering
stays constant throughout the views. Therefore, if the Mj’s
are ordered from front (n = 1) to back (n = N), the occlusion
constraint [13], [14] can be written as

n—-1__
My =Mpn Y M, ™
i=1

where the superscript perp denotes that the plenoptic manifold
has been geometrically orthogonalized such that the occluding
manifolds carve through the back-
ground ones (see Figure 5). A common-
ly used approach to deal with
occlusions in EPI analysis is to start by
extracting the frontmost regions (or
lines) and removing them from further
consideration [16], [4]. That is, when
each M,, is extracted, the ?;11 M;
is known. While this approach is
straightforward, it has some drawbacks.
First, the extraction of occluded objects will depend on how well
the occluding objects were extracted. Second, it does not enable
a proper competition formulation since the background regions
are not known at the time of the extraction of the front ones.

[FIG5] The occlusion constraint with two 3-D plenoptic manifolds

under the EPI parameterization. When put together, plenoptic manifolds
M and M, become Mf and /\/lzL The occlusion constraint

says that M = M, and My = My N M-
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An alternative approach consists in
setting up a competition formulation
between the front and background
regions and using an iterative approach.

IMAGE-BASED RENDERING
IS ESSENTIALLY THE STUDY
OF THE SAMPLING,

fold evolving does not affect the shape of
the foreground ones (i.e., MIJ- where 7
goes from 1 to n — 1) and therefore they
will not contribute to dEy,,/dt and

The energy in this case becomes INTERPOLATION, AND hence do not compete. An overview of
EXTRAPOLATION OF THE the algorithm that shows how the two
PLENOPTIC FUNCTION constraints are combined is presented in

N
By = / Ay d
ata ’; M n

which can be minimized by iteratively evolving one M,J; while
fixing the others. This leads to the evolution equation in (6)
where all the other manifolds are gathered in M. The idea is
that each iteration will contribute to minimize the total energy.
Note that, as a result of the occlusion constraint in (7), evolving
Mﬁ; will modify not only it but also all the manifolds it occludes
(i.e., /\/lf- where 7 goes from n + 1 to V). Therefore these mani-
folds will contribute to the dEy,,/dt and influence the compe-
tition. That is, a manifold competes with all the regions it will
occlude throughout all the views. However, a background mani-

[TABLE 1] OVERVIEW OF THE PLENOPTIC MANIFOLD
EXTRACTION ALGORITHM.

STEP 1: INITIALIZE A SET OF PLENOPTIC MANIFOLDS
STEP 2: ESTIMATE DEPTH PARAMETERS
STEP 3: UPDATE OCCLUSION ORDERING AND UPDATE MANIFOLDS
STEP 4: FOR EACH MANIFOLD
FIX THE OTHER MANIFOLDS
COMPUTE SPEED FUNCTION WITH COMPETITION TERMS
EVOLVE BOUNDARY
STEP 5: GO TO STEP 2 OR STOP WHEN THERE IS NO SIGNIFICANT

DECREASE IN ENERGY

[FIG6] Automatically extracted 3-D plenoptic manifolds from
the EPI volume in Figure 4. (a) The first row illustrates the
individual volumes carved out by the different layers in the
scene, and (b) the second row shows how the coherent
regions fit together in the original data. Note how the
foreground objects carve through the background ones.

Table 1. In the next section, we show
some experimental results with partial
and total occlusions in order to demonstrate the benefits of
applying this interplay between occluding and occluded regions.

APPLICATIONS IN IMAGE-BASED RENDERING

Image-based rendering is essentially the study of the sampling,
interpolation, and extrapolation of the plenoptic function. It has
attracted a lot of attention recently thanks to its ability to
recreate visually pleasing and realistic virtual viewpoints from a
set of multiview images. This ability is without a doubt one of
the most important issues when it comes to free-viewpoint visu-
al media systems. In this section, we analyze some natural mul-
tiview data sets with the variational framework presented above
and discuss some of the applications related to IBR that benefit
from the extraction of plenoptic manifolds.

As with all partial differential equation based—methods, ini-
tialization is an important issue. For the results shown, the
initialization of the regions is performed in an unsupervised
fashion by computing local directions in the EPI images and
merging regions with similar slopes (i.e., similar depths). In
more complicated camera setups, however, a more sophisticat-
ed method such as a stereo disparity estimation algorithm
could be used. As in [2], [4], the descriptors used minimize the
variance along plenoptic trajectories. The depth model adopted
is piecewise constant. Using the competition formulation and
imposing the geometry and occlusion constraints, the algo-
rithm applied to the sequence in Figure 4 automatically
extracts the plenoptic manifolds depicted in Figure 6. The data
consist of 32 images containing a background and three
objects, two of which are partially or totally occluded in numer-
ous views. Note that occlusions and disocclusions are correctly
captured. This is most obvious in the “cat” and “owl” layers.

The global nature of the segmentation scheme also suppress-
es some of the discontinuities visible when individual slices of
the EPI volume are analyzed, as in [4]. We refer to [13], [14] for
more experimental results. The running time is approximately
1000 seconds when the classical implementation of the level set
method is used, although improvements of several orders of
magnitude can be expected with faster implementations [24].

Several applications are possible once the multiview data
has been segmented into individual plenoptic manifolds. For
instance, one of the typical issues is view interpolation. This
problem was studied by Chai et al. [9], using a classical signal
processing framework, and was further generalized by Zhang
and Chen in [10]. Both showed that, thanks to the particular
structure of the data, the band of the plenoptic function is
approximately bound by the minimum and maximum depths

IEEE SIGNAL PROCESSING MAGAZINE [42] NOVEMBER 2007



in the scene. This fact makes it pos-
sible to give an answer to the mini-
mum sampling rate needed (i.e., the
number of cameras) in order to have
an aliasing-free rendering. However,
when the scene has somewhat large
depth variations, this rate becomes
very large and the number of cam-
eras required may be cumbersome.

In [18], the scene is segmented into coherent regions that
can be individually rendered, free of aliasing. The method uses
a coherence matting approach to blend the layers and alleviate
some of the errors caused by oversegmentation or underseg-
mentation. In a similar spirit, we use the plenoptic manifold
segmentation scheme to interpolate new viewpoints. Figure
7(a) illustrates a linearly interpolated viewpoint, using a con-
stant depth plane at the optimal depth [9]. The same rendered
view in which three extracted plenoptic manifolds are individ-
ually interpolated by using their estimated
depths is depicted in Figure 7(b) for compari-
son. The blurring is greatly reduced while the
natural aspect of the images is maintained. As
pointed out in [9], the aliasing is reduced
because the individual depth variations in each
plenoptic manifold are much smaller than in
the whole scene, hence fewer cameras are need-
ed for an aliasing free rendering.

The extraction of the plenoptic manifolds
may also provide a first step in scene under-
standing. The fact that occlusions and object
boundaries are known, for instance, may be uti-
lized in object recognition algorithms. This
understanding also allows to manipulate the
multiview data in a coherent fashion. New
scenes can be created by combining the plenop-
tic manifolds in different ways. For
example, occluded regions may be
extrapolated by using the available
plenoptic trajectories and their intensi-
ties. New images are generated where
background objects are disoccluded.
Other plenoptic functions may be con-
structed by inserting the plenoptic
manifolds of external objects (captured
by a camera array or synthetically cre-
ated) into the scene. Figure 8 illus-
trates some of these manipulations.
Despite the simplified depth model
used, the objects still show their origi-
nal shapes in the rendered images (see
the duck’s beak, for instance). This is
because the whole plenoptic manifolds
are recombined instead of using a layer
representation (i.e., alpha map, texture,
and plane or motion parameters).

THE ANALYSIS OF MULTIVIEW
IMAGES CALLS FOR
MULTIDIMENSIONAL SIGNAL
PROCESSING ALGORITHMS THAT
TAKE ADVANTAGE OF THE
INHERENT REGULARITY.

CONCLUSIONS

In this article, we looked into the
coherence of multiview images from
the plenoptic function point of view,
emphasizing that looking at the prob-
lem from this angle provides a nice
framework for studying the data in a
global manner and imposing a coher-
ent segmentation. Using this repre-
sentation, we looked into the nature of the function, such as
the structure, and suggested that in extension to the object
tunnels in videos and EPI-tubes in multibaseline stereo data,
objects carve multidimensional hypervolumes in the plenoptic
function that we called plenoptic manifolds. Just as in the
three-dimensional cases, the manifolds contain highly regular
information, since they are constructed with images of the
same objects. There is therefore clearly potential for robust
analysis and efficient representation.

[FIG7] Image-based rendering by plenoptic manifold interpolation. (a) The linearly
interpolated viewpoint using a single plane at the optimal constant depth. Note
that the image is blurred since there are not enough viewpoints for an aliasing
free rendering. (b) The rendered image obtained by interpolating the data in the
extracted plenoptic manifolds on the basis of their individual estimated depths.

(b)

[FIG8] “To duck or not to duck, or maybe to teapot?”: (a) illustrates some of the
original image taken from a multiview image sequence, (b) shows the same images
with the manifold carved out by the duck removed and the background manifolds
extrapolated. Note that there are some incomplete regions, since they are never
visible in the entire stack of images, and (c) illustrates the insertion of a synthetic
manifold generated by a teapot.
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We then looked into extracting these manifolds in simple
camera setups, using a variational framework that is flexible
in terms of the number of dimensions (depending on the
camera setup), the depth estimation, and the descriptors used.
This flexibility is important for several reasons. First, the
same framework can be used for different camera setups.
Second, some applications in image-based rendering do not
always necessitate an accurate depth reconstruction. Third,
possible extensions to take into account large textureless
regions and specular effects, for instance, may be incorporat-
ed into the descriptors. Future work may explore more com-
plicated and unstructured camera setups as well as dynamic
scenes and nonrigid objects. This would eventually lead to the
extraction of seven dimensional manifolds.
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