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ABSTRACT

The theory of Finite Rate of Innovation (FRI) can be applied to sam-
pling and reconstructing certain classes of parametric signals. The
objective of this paper is to have a sub-Nyquist sampling scheme
for continuous-time wavelet-sparse signals within the general frame-
work of FRI theory. Though the signal has a parametric represen-
tation in the wavelet basis, it is not possible to recover the signal
merely from its low-pass samples, which makes the problem differ-
ent from the conventional FRI settings. The need for the Fourier co-
efficients at frequencies widely spread over the spectrum puts chal-
lenges on the design of the sampling kernel. This paper presents
a new family of sampling kernels that are able to stably reproduce
exponentials over a wide range of frequencies and gives numerical
examples on applying the new kernel to sampling wavelet-sparse sig-
nals.

Index Terms— FRI, sub-Nyquist sampling, compressive sens-
ing (CS), sparse, `1 minimization

1. INTRODUCTION AND PROBLEM SETUP

Under the FRI framework, an analogue signal is sampled by the
ADC unit as shown in Fig. 1, where the discrete samples at the
output are

yk = 〈x(t), ϕ(t/T − k)〉. (1)

The sampling kernel ϕ(t) needs to be properly designed so that we
can reconstruct the input signal from the discrete samples.

x(t) y(t)
h(t) yk

T

Fig. 1. The structure of FRI sampling where h(t) = ϕ(−t/T ).

A few different types of kernels have been proposed by differ-
ent research groups [1, 2, 3, 4], among which we are particularly
interested in the family of exponential reproducing kernels. The el-
ementary member of this family is the E-spline. An E-spline βα(t)
is any function with Fourier transform

β̂α(w) =

P∏
n=0

1− eαn−jw

jw − αn
, (2)

and it can reproduce exponential eαnt, i.e. there exist weights cn,k
such that ∑

k∈Z
cn,kβα(t− k) = eαnt. (3)

Here α = [α0, α1, . . . , αP ]T is the column vector containing the
generating parameters. Moreover, note that αn could be a real or
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complex number. However, in this paper, we only consider the spe-
cial case where αn is purely imaginary, i.e. αn = jwn with wn
being real. Therefore, for the rest of the paper we use

α = j[w0, w1, . . . , wn]T = jω. (4)
By definition, the E-spline satisfies the generalized Strang-Fix con-
ditions [5], i.e.

β̂α(jwn) 6= 0 and β̂α(jwn + j2πl) = 0 (∀l 6= 0), (5)

where β̂α(·) represents the Fourier transform of βα(t)1. The Strang-
Fix conditions (5) are the sufficient and necessary conditions for
βα(t) to be able to reproduce exponentials and one can show that
[4]

cn,k = cn,0e
jwnk with |cn,0| =

1

|β̂α(jwn)|
. (6)

For the sake of the conciseness of notation, from now on we use
β̂ω(w) instead of β̂α(jw).

Using purely imaginary generating parameters allows us to esti-
mate the Fourier transform of x(t) at jwn/T . Indeed, once we have
sampled the input signal x(t) with the exponential reproducing ker-
nel h(t) = βα(−t/T ), we obtain the Fourier transform at jwn/T
as follows

sn =
∑
k∈Z

cn,kyk =
∑
k∈Z

cn,k〈x(t), βα(t/T − k)〉

= 〈x(t),
∑
k∈Z

cn,kβα(t/T − k)〉 = 〈x(t), ej
wn
T
t〉. (7)

Thus, sn is the Fourier transform of x(t) at frequency wn
2πT

. This
convenient relationship between the discrete spatial samples and the
Fourier samples is very useful in designing schemes for the sam-
pling and reconstruction of FRI signals. It has also been used to
locate short pulses in ultrasound imaging [3] and on neurophysiol-
ogy data [6]. These works make the assumption that the pulses all
have identical shapes and have significant low-pass components, so
that their problem becomes retrieving the location of Diracs from
low-pass Fourier coefficients [2].

In this paper, we are interested in sampling sequences of pulses
with unknown shape. While the shape is unknown, we assume to
know that it is sparse in the wavelet domain. This type of continuous-
time sparse signals cannot be recovered by conventional FRI meth-
ods, because the signal is a mixture of low-pass-like scaling func-
tions and band-pass-like wavelets. In compressive sensing (CS) a
finite-dimensional wavelet sparse signal can be recovered by `1 min-
imization from incomplete Fourier information spanning over its
whole spectrum [7] (see [8] for the infinite-dimensional extension).

The aim of this paper is to have a realistic and physically re-
alizable acquisition scheme as in Fig. 1 at the same time able to
yield Fourier samples at randomly picked frequencies so as to be

1This is the special case when α is purely imaginary; otherwise, we
should use the Laplace transform.
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Fig. 2. Illustration of the stability problem of the E-spline. The
conventional E-spline βω(t) reproduce exponential ejwt with w ∈
w = {±k
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∣∣k = 49 : 2 : 63}, and the frequency amplitudes
at these frequencies are shown by black circles. The red dashed
line is used to show the summation of two conventional E-splines
with β̂ω(w+) reproducing exponentials with positive parameters
from ω and β̂ω(w+) for the negative parameters. Red solid dots
mark

∣∣β̂ω+(w) + β̂ω−(w)
∣∣ at frequencies ω±. Blue triangles mark∣∣β̂ω+(w)+ β̂ω−(w)

∣∣ at frequenciesω±±2kπ for some k 6= 0. The
Strang-Fix conditions are no longer satisfied after summation. Both
kernels are scaled so that the maximum frequency amplitude is 1.

able to use `1 methods for the reconstruction. We note that con-
ventional CS acquisition techniques cannot achieve this task. The
sampling kernels used in FRI cannot be used either, since they can-
not stably reproduce exponentials over a wide range of frequencies.
To overcome these issues we introduce a new family of exponential
reproducing kernels called modulated E-splines that can reproduce
exponentials over a wide range of frequencies. We then also intro-
duce a multichannel set-up. Each channel randomly picks a few cen-
tral frequencies around which a few consequential Fourier samples
of the original signals will be obtained, so as to mimic the random
distribution.

The paper is organized as follows. Section 2 explains how to
design the modulated E-splines. Section 3 presents the multichannel
setting. Section 4 shows the numerical examples.

2. MODULATED REAL E-SPLINE WITH MULTIPLE
SUBBANDS

Because of the Strang-Fix conditions in (5), the essential bandwidth
of the sampling device is fixed to be 2π. To obtain the Fourier sam-
ples from different bands, a possible solution is to divide the avail-
able bandwidth into parts. We start with the simplest case when the
E-spline is like a band-pass filter.

2.1. A band-pass E-spline

Take the E-spline shown in Fig. 2 as an example. This E-spline
is unstable because the ratio minwn |β̂ω(wn)|

maxwn |β̂ω(wn)|
(about 10−4) is very

small. This is when the noise in the samples creates huge error in
generating the Fourier transforms (7).
We use ω+to denote the positive elements of ω and ω− for the neg-
ative elements. According to the definition of the E-spline, we have

β̂ω(w) = β̂ω+(w)β̂ω−(w). (8)

Both β̂ω+(w) and β̂ω−(w) are radial functions with fast decaying
tails, and their centres are far away from each other. The multipli-
cation of such two functions causes the instability issue. For this

reason, we consider the summation instead, i.e.

ψ̂ω(w) = β̂ω+(w) + β̂ω−(w). (9)

We want that ψ̂ω(w) be stable and able to reproduce all the exponen-
tials that its addends reproduce. However, we have two problems.

1. ψ̂ω(wn) is not necessarily stable even if all of its addends are
stable;

2. the Strang-Fix conditions are not necessarily satisfied in this
case, as shown in Fig. 2.

Our solution to the above two problems is illustrated by the sim-
plified example in Fig. 3. In this example, there are two addends.
The generating parameters of addend 1 is the conjugate of addend
2, so the summation is a real filter. We want that the two addends
act independently on the generating frequencies so that the stability
and the Strang-Fix conditions are both maintained. Therefore, we
require that addend 1 hits zeros on the frequencies where addend 2
reproduces exponentials (shown by solid dots) and the frequencies
where addend 2 requires to be zero; and vice versa. To achieve this,
both addends need to be zeros at frequencies whose distance from
its generating parameters is a multiple of π. A conventional E-spline
does not satisfy this condition (it is zero at distance multiple of 2π),
so we introduce the dilated E-spline

β̂ω,2M (w) =

P∏
n=0

1− e2Mj(wn−w)

2Mj(w − wn)
, (10)

which satisfies

β̂ω,2M (wn) 6= 0, β̂ω,2M (wn + l
π

M
) = 0, ∀l ∈ Z \ 0. (11)

In our example, addend 1 is β̂ω,2(w) and addend 2 is β̂−ω,2(w).
We further set the parameters as ω = [7/6, 9/6, 11/6]Tπ, so that
−wn + 2lπ = w2−n − 3π + 2lπ. Using this condition, one can
easily verify that the Strang-Fix conditions for ±ω are satisfied.

The idea is summarized by the following theorem.

Theorem 2.1. Let

ψ̂ω,2M (w) =
(
β̂ω,2M (w) + β̂−ω,2M (w)

)
, (12)

where M is a positive integer. Assume

w0 ≤ w1 ≤ · · · ≤ wP , wP − w0 <
π

M
,

wn + wP−n = k
π

M
, k ∈ N \ {2Ml

∣∣l ∈ N.}
(13)

Then ψ̂ω,2M (w) is able to reproduce exponential e±jwnt, and is a
real function:

ψω,2M (t) = 2βω− kπ
2M

,2M (t) cos

(
kπ

2M
t

)
. (14)

The proof of the theorem is omitted due to the lack of space. For
convenience, we define

ω0 = ω − 2k̃ +K0

2M
π, (15)

in which k̃ = b k
2
c, K0 = rem(k, 2), so that the elements of ω are

symmetrically distributed about the origin. Therefore, (14) can be
written as

ψω,2M (t) = 2βω0,2M (t) cos

(
2k̃ +K0

2M
πt

)
, (16)

which is a function of parameter M , ω0 and k.
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Fig. 3. Illustration for the construction of a band-pass E-spline. ad-
dend 1 is the dilated E-spline β̂ω,2(w) and addend 2 is β̂−ω,2, where
ω = [7/6, 9/6, 11/6]Tπ. β̂ω,2(ω) and β̂−ω,2(−ω) are marked by
the solid dots. The two addends act independently on the gener-
ating frequencies ±ω because addend 1 hits zeros on −ω + 2kπ
(∀k ∈ Z), the frequencies that addend 2 reproduces exponentials
at (k = 0, shown by solid dots) and the frequencies that addend 2
requires to be zero (k 6= 0) by the Strang-Fix condition; and vice
versa. We set P = 2 here for sake of clarity.

2.2. Multiple-subband E-spline

The multiple-subband E-spline is a natural extension of the band-
bass E-spline. As illustrated in Fig. 4, we have two band-pass E-
spline added together. Accordingly, we define, for some real bi,

φM,Nω0,K0
(t) = βω0,2M (t)

(
N∑
i=1

2bi cos

(
2ki +K0

2M
πt

))
, (17)

which is the summation ofN band-pass E-splines (14). Because (17)
is the result of modulating a real E-spline into multiple subbands, we
call it modulated E-spline with Multiple subbands (MEMS).

Note that, as the bandwidth of the sampling device is fixed to be
2π, each addends needs to occupy no more that 2π/N bandwidth.
Each dilated E-spline occupy π/M and every band-pass E-spline is
comprised of two dilated E-splines, so that we require N ≤ M .
For the most efficient usage of the bandwidth, we set N = M . We
use φ̂Mω0,K0

to denote φ̂M,Mω0,K0
. It is also worth pointing out that the

distance between any two addends have to be the multiple of π
M

,
namely the bandwidth of each dilated E-spline, in order to satisfy
the Strang-Fix condition.

Theorem 2.2. Let ri = rem(ki, 2M). K0 ∈ {0, 1}. MEMS
φMω,K0

(t) can reproduce exponential e±jwn,it if

ri + rl 6= 2M −K0 and min
i 6=l
|ri − rl| 6= 0. (18)

Here wn,i = wn + 2ki+K0
2M

π.

Remark 1. The definition of MEMS can be readily generalized to
be

φMω0,Ko(t) =β̃ω0,2M (t)

N∑
i=1

[
ai exp

(
2ki +K0

2M
πt

)
+bi exp

(
−2ki +K0

2M
πt

)]
. (19)

As long as β̃ω0,2M (t) satisfies (11) and ki satisfies (18), one can
easily prove that φMω0,Ko(t) can reproduce exponentials e±jwn,it.
The generalized MEMS allows us to employ other functions from
the E-spline family, for example, we can pre-condition the dilated
E-spline as in [4]. Alternatively, we can use a wide range of nar-
row band-width functions to replace β̃ω0,2M (t), which results in an
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Fig. 4. The frequency amplitude of MEMS, where M = 2, P =
7, ω0 = { k
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∣∣k = −7 : 2 : 7}, K0 = 1, k1 = 1, k2 = 3.∣∣φ̂Mω0,K0
(wn + 2ki+K0
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∣∣ is marked by the solid dot.

h0(t) y
(0)
k

T

h1(t) y
(1)
k

T

hL−1(t) y
(L−1)
k

T

x(t)

Fig. 5. The multichannel sampling scheme.

approximate Strang-Fix kernel. The quality of such construction de-
pends on how well the Strang-Fix conditions are approximated. See
[9] for more details.

3. SAMPLING THE WAVELET-SPARSE SIGNAL

We will consider the sampling problem of the wavelet-sparse signal
x(t) ∈ L2(R). We use a vector η to denote the wavelet coefficients
of x(t). The relationship between the Fourier transform of x(t) at
frequency w and η can be written as:

x̂(w) = γT (w)η. (20)

where γT (w) is a column matrix (refer to [8] for the specific form
of γT (w) ). We use Ω to denote the set of the frequency locations
on which x̂(w) are obtained.

Recovering a sparse η from its incomplete frequency informa-
tion is a typical problem in CS. In a nutshell, the CS theory [8, 7, 10]
tells us that 1) the member of Ω needs to be uniformly picked from
−N0/2τ toN0/2τ , whereN0 is a constant dependent on the signal,
2) the signal can be recovered by the `1 minimization. We will use
MEMS to design a sampling scheme that provides the Fourier co-
efficients x̂(Ω) that are almost uniformly distributed along the fre-
quency domain (−N0

2τ
, N0

2τ
), so that we can apply the CS method to

reconstruct the signal.
Consider a multichannel scheme with L channels as depicted in

Figure 5, and each channel is dedicated to one specific frequency
band as shown in Table 1. In each channel, we filter the signal with
real hl(t) and sample the filtered signal at interval T . The reason
for using a multichannel design is to introduce extra flexibility in
sampling similar signals without changing the structure, and also to
counteract the constrain (18) to better approximate randomness. The
sampling rate can be different across the channels.



Table 1. The sampling scheme for wavelet-sparse signals

description covered frequency band

h0(t) low-pass NT
N0

(0, 1)

h1(t) band-pass NT
N0

(1, 2)

hl(t) band-pass NT
N0

(2l−1, 2l)

Number of channels L 2L−1 < N0
NT
≤ 2L

Note: by default, every channel also covers the negative fre-
quency band symmetric to the positive frequency band de-
scribed by the table.

Low-pass setting. The objective of the low-pass channel is to
produce the low-pass Fourier coefficients at frequencies

Ω0 = {± 2π

N0
f
∣∣f = 0.5 . . . ,

NT
2
− 0.5}, (21)

and this can be achieved by using, for example, the e-MOMs [4]
generated by parameters

α = {j 2S

NT
2πf, f = ±0.5, . . . ,±(

NT
2
− 0.5)}. (22)

Band-pass setting. The objective is that each band-pass channel
can reproduce the Fourier coefficients x̂(Ωl) where members of Ωl
are randomly picked. For each channel, h(−t) = φMω0,K0

(t/T ), and
φMω0,K0

(t) is generated by the following parameters.

P = NT /(2M)− 1

ω0 = {2n− P
2P + 2

π

M
,n = 0, . . . , P}

K0 = 1; ki = 2Mdi + ri

(23)

di is a random integer in set D2
l , where

Dl = {n : n ∈ Z ∩ b2l−2c ≤ n < b2l−1c}. (24)

When l = 1, ri is a random non-repeated number between
[M, 2M − 1], otherwise ri satisfies (18).

The frequencies picked by the band-pass setting is

Ωl = {(± 2n+ 1

2P + 2
+ ki)P

π

N0

∣∣n = 0, . . . , P, i = 1, . . . ,Ml}.
(25)

Please note that because ri needs to obey (18) and ω0 is set to pick
consecutively P + 1 frequencies, the members of Ωl are not truly
uniformly chosen from the whole spectrum. However, the distribu-
tion of the members of Ωl is very close to the uniform distribution
by choosing a small P and using many channels.

4. NUMERICAL EXAMPLE

We will demonstrate the proposed sampling design with a numeri-
cal example. The signal, x(t), has 13 non-zero coefficients on the
db4 wavelet basis with J = 7. The support of x(t) is set to be
τ = 1024 and the finest level is 1, so that we only need to sample up
to N0 = 1024 (the signal can be represented by 1024 discrete sam-
ples). The number of nonzeros for each subband is generated ran-
domly but preferring the coarser subband (to mimic the real world
signal). For each subbands, the position of the nonzeros are ran-
domly picked and the amplitudes are random numbers. White noise
is then added before the signal is sampled by the multichannel sys-
tem as described in the previous section. We use (7) to obtain the

Table 2. The recovery error of different designs in the presence of
noise. The average performance of 100 realizations.

50dB 40dB 30dB 20dB 10dB
Proposed 0.0025 0.0078 0.0222 0.0591 0.1082

Benchmark 0.0025 0.0080 0.0245 0.0679 0.1277

With noiseTrue pulse

Proposed Benchmark

Fig. 6. The comparison between the true pulse and the recovered
pulses under the noisy condition (10dB). For each sampling scheme,
one recovery result is shown. The recovery is quite faithful to the
true pulse shape, though some high-frequency features are missing
due to the strong noise.

Fourier coefficients x̂(Ωl) from the samples. Finally, we recover the
pulse from the Fourier coefficient at Ω = ∪Ll=0Ωl by solving

min|η|1
s.t. ‖x̂(Ω)− γ(Ω)η‖2 ≤ σ,

(26)

where σ is parameters related to the noise variance. We denote the
estimate as x̃(t). The relative recovery error is calculated by

RE(x, x̃) =
‖x(t)− x̃(t)‖2
‖x(t)‖2

. (27)

For each noise level, we randomly generate 100 different x(t) with
random white noise. For each x(t), di and ri are picked according to
the instruction given in Section 3 (23)-(24). The proposed methods
uses a 6-channel (L = 6) setting and NT = 32 and ](Ωl) = 32.
There are total 192 Fourier values.
We use the performance of the ideal random CS setting as the
benchmark, where the frequencies in Ωl(l > 0) are uniformly and
randomly picked. In the benchmark, we keep the low frequencies in
Ω0 fully sampled because that the signal has a significant contribu-
tion from the low pass frequencies and this preference for the low
frequencies generates much better performance.
In Tab. 2 we show the average performance of the proposed sam-
pling design along with the benchmark, when different levels of
noise are added to x(t) before sampling. For the majority of cases
with mild noise, our design and the benchmark perform almost
equally well. In our experiment, our design performs better than the
benchmark in the high-noise cases.

5. DISCUSSION AND CONCLUSION

This paper presents a new sampling kernel, MEMS. MEMS is able to
reproduce exponentials at frequencies over a wide range, so that the
discrete spatial samples from a conventional sampling device with
MEMS as sampling kernels can be used to reproduce the Fourier
coefficients at either high frequencies or low frequencies. This con-
venient relationship provides us a way to easily obtain the Fourier
coefficients of any signal without the help of specialized equipments.
In our numerical example, we have shown that by using properly de-
signed kernels, we can obtain the Fourier information for faithfully
reconstructing the wavelet-sparse signal with `1 minimization.
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