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Abstract—This paper extends the class of continuous-time
signals that can be perfectly reconstructed by developing a theory
for the sampling and exact reconstruction of streams of short
pulses with unknown shapes. The single pulse is modelled as the
delayed version of a wavelet-sparse signal, which is normally not
band limited. As the delay can be an arbitrary real number, it is
hard to develop an exact sampling result for this type of signals.
We achieve the exact reconstruction of the pulses by using only
the knowledge of the Fourier transform of the signal at specific
frequencies. We further introduce a multi-channel acquisition
system which uses a new family of compact-support sampling
kernels for extracting the Fourier information from the samples.
The shape of the kernel is independent of the wavelet basis in
which the pulse is sparse and hence the same acquisition system
can be used with pulses which are sparse on different wavelet
bases. By exploiting the fact that pulses have short duration
and that the sampling kernels have compact support, we finally
propose a local and sequential algorithm to reconstruct streaming
pulses from the samples.

Index Terms—wavelets, sampling, sparsity

I. INTRODUCTION

Sampling theory has experienced a recent revival due in
part to the advent of two inter-related theories: Compressed
Sensing (CS) [2], [3], and Finite Rate of Innovation (FRI)
sampling [4]. Both theories have demonstrated that the prior
knowledge that signals can be sparsely described in a proper
domain can be used to sample and perfectly reconstruct such
signals at a significantly reduced sampling rate.

CS deals with discrete signals (although it is possible to
extend it to continuous functions, e.g., [5]–[9]), whereas FRI
applies directly to continuous-time functions and streaming
signals. Moreover, in FRI, the acquisition set-up is closer to
the way traditional A-to-D converters operate and for these
reasons, the set-up considered here is similar to the one used
in FRI.

FRI has been successfuly used in many signal and im-
age processing applications. In particular, in image super-
resolution [10], [11], in neuroscience and healthcare [12],
[13] and for channel estimation [14]. Classes of continuous-
time signals that can be perfectly reconstructed using the
FRI framework include: stream of pulses with known shape
and piecewise polynomial signals [4], [15], [16], piecewise
sinusoidal signals [17] and classes of 2-D functions [18]–[21].

In this paper we extend the classes of continuous-time
signals that can be perfectly reconstructed by developing a
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theory for the sparse sampling and exact reconstruction of
streams of short pulses with unknown shapes. The signals
considered can be modelled as follows

s(t) =
∑
l

xl(t− tl) (1)

where xl(t) is a short pulse with arbitrary shape and tl is
an arbitrary real number that models the delay of each pulse.
Each pulse xl(t) is different from the others, their shapes are
unknown and the only assumption is that they are sparse in
a known wavelet basis. An example of the targeted signal is
given in Fig. 1. Many signals in real-life applications can be
modeled as pulses that are approximately sparse in the wavelet
domain. Examples include ECG signals [22] and electro-
physiological data that record neuronal activities [23].

We note that, due to the arbitrary delays tl, these signals
do not belong to any union of finite number of shift-invariant
sub-spaces. Moreover, while xl(t) is sparse in a wavelet basis,
its delayed version is normally not sparse. This is due to the
fact that wavelet bases are shift-variant. These two facts have
made it hard in the past to develop an exact sampling result
for this type of signals.

We instead achieve an exact reconstruction of s(t) by first
showing that each pulse can be reconstructed exactly using
only the knowledge of the Fourier transform of xl(t) at specific
frequencies. We then introduce an acquisition system that can
extract this Fourier information from the samples. Acquisition
is performed using a multi-channel system as shown in Fig. 2.
A new family of sampling kernels called MEMS is introduced
to allow the estimation of the required Fourier information.
MEMS belong to the family of exponential reproducing ker-
nels introduced in [15] in the context of FRI sampling and
then extended in [24]–[26].

Multi-channel acquisition systems have been frequently
used in sampling, both in the context of sampling signals
lying in the union of shift-invariant sub-spaces, e.g., [27]–
[29] as well as in the context of sparse sampling, e.g., [16],
[30]–[33]. However, an important property of our framework
is that the shape of the filters in Fig. 2 is independent of the
wavelet basis in which the pulse is sparse. The filter design
is only affected by the sparsity parameter (i.e., by the number
K of non-zero wavelet coefficients in xl(t)). Consequently
the same acquisition system can be used with pulses which
are sparse on different wavelet bases as far as the basis is
known at the receiver. This universality is an important aspect
of the proposed method.

Finally, we propose a sequential reconstruction algorithm
to reconstruct streaming pulses where we exploit the fact that
pulses have short duration and that the MEMS have compact



2

0 200 400 600 800 1000 1200 1400 1600 1800
−0.5

0

0.5

Fig. 1. Example of stream of pulses considered in this paper. This is a section
of a long stream. The localized pulses can be different from each other, their
shapes are unknown and the pulses are sparse in the wavelet domain.

support.
The paper is organized as follows. In Section II, we first

introduce our model of a single pulse and then give an
overview of our acquisition and reconstruction processes.
Section III and Section IV explain the technical detail of these
two processes. In particular, Section III shows how pulses can
be reconstructed using only partial Fourier information, while
Section IV introduces our new family of acquisition devices.
To provide further intuitions, various examples are given in
both sections. Section V explains the problem of sampling
streams of pulses, where noiseless and noisy examples are
also given. Section VIII concludes the paper.

II. OVERVIEW

We begin by analysing the perfect reconstruction of a single
pulse, and then extend the approach to stream of pulses.

A. Pulse model and notations
Assume that x(t) ∈ L2(R) is a pulse that can be represented

using a small number of non-zero coefficients in an orthog-
onal/biorthogonal wavelet basis. Without loss of generality,
we assume that the finest scale containing non-zero wavelet
coefficients is one, so that the signal can be written as

x(t) =
∑
n

aJ,nφJ,n(t) +

J∑
m=1

∑
n

bm,nψm,n(t), (2)

where the number of decomposition levels J is known.
Functions φ(t) and ψ(t) are the scaling and wavelet func-
tion respectively, and we use the convention that φJ,n(t) =
2−J/2φ(2−J t − n) and ψm,n(t) = 2−m/2ψ(2−mt − n). We
assume that φ(t) and ψ(t) have compact support and that the
non-zero wavelet coefficients are all included in [0, 2S − 1].
Therefore, x(t) also has compact support. Moreover, the num-
ber of wavelet coefficients at scale m is 2S−m. Obviously, the
number of non-zero coefficients in each subband is bounded.
We assume the bound to be Km, namely,

||{aJ,n}||0≤KJ+1≤2S−J , ||{bm,n}||0≤Km≤2S−m, (3)

where the `0 “norm” is given by counting the number of the
non-zero coefficients. We are especially interested in the case
where Km < 2S−m−1 (m = 1, . . . , J) and KJ+1 < 2S−J−1.

Given the description above, we use M(K, 2S , φ(t)) to
denote our signal model, where K = [K1, . . . ,KJ+1]. We say
that x(t) belongs toM(K, 2S , φ(t)) if x(t) can be represented
by (2) and all the non-zero coefficients are supported within
the same 2S interval.

Let x̂(ω) be the Fourier transform of the signal x(t) at
frequency ω:

x̂(ω) =

∫ ∞
−∞

x(t)e−jωtdt. (4)

We use Ω to denote a set of frequencies, and x̂(Ω) to denote
the set of values of the Fourier transform of x(t) at Ω: x̂(Ω) =
{x̂(ω) : ω ∈ Ω}.

This paper is not only interested in the single pulse x(t) that
is sparse in the wavelet domain, but also in its delayed version,
x(t − t0) with 0 ≤ t0 < 2J . For simplicity, throughout the
paper, x(t) is always a wavelet-sparse signal, and its delayed
version is denoted as x′(t). The Fourier transform of x(t− t0)
is then denoted as x̂′(ω).

B. Overview of the acquisition and reconstruction process

1) Single pulse case: For a pulse x(t) ∈ M(K, 2S , φ(t))
that has J + 1 subbands, the proposed acquisition and recon-
struction process is described in Fig. 2.

The acquisition process is carried out by a filter-bank with
J+2 channels. We show in Section IV how these J+2 filters
hm(t) can be designed so that the resulting samples can be
exactly mapped into the Fourier transform of x′(t) at selected
frequencies Ω̄ (Theorem 3). Specifically, channel m maps the
samples cm[n] to the Fourier transform of x′(t) at frequencies
denoted by Ωm and we denote the combination of all these
frequency sets with Ω̄ = ∪J+1

m=0Ωm. Note that the proposed
filters are real-valued and of compact support.

Given a proper set of frequencies Ω̄ (e.g. (5)-(9)), we show
in Section III (Theorem 1 and Theorem 2) that the wavelet
coefficients of x(t) and the delay t0 can be recovered from
x̂′(Ω̄). The pulse x(t) is reconstructed by synthesis filtering
the wavelet coefficients and then by delaying the signal by t0
to obtain x′(t). We note that since t0 ∈ R, x′(t) is normally
not-sparse even if x(t) is. Therefore, the estimation of t0 from
the samples is of central importance.

Note that pulses that are sparse on different wavelet bases
can be recovered using the same set of frequencies Ω̄. Given
that the shape of the filters hm(t) (m = 0, . . . , J + 1) is also
unrelated to the wavelet basis, we conclude that the proposed
acquisition process is not sensitive to the choice of wavelet
basis. While the wavelet basis is not an issue, the sparsity
parameter K and the support of the non-zero coefficients
2S dictate the choice of frequencies Ω̄. This implies that
our acquisition solution is universal for wavelet-sparse pulses
whose structure can be described by the parameters K and
2S . We also note that we use J + 2 channels for simplicity
and improved stability, however, the acquisition of the Fourier
information of the signal can also be achieved using less
channels. See Appendix B for more details.

It will also be clear in Section III that Ω̄ only contains
a small number of frequencies. Since the acquisition process
only needs to provide the required Fourier information at Ω̄,
which is not much, it is possible to achieve a low sampling
rate even though the pulse itself is not band limited.

2) Sequential reconstruction of streams of pulses: Because
our filters have compact supports as well as the pulses of (2), it
is possible to sample streams of pulses using the same system
shown in Fig. 2. This point will be explored in Section V.

Intuitively, if the pulses are located sufficiently far apart,
their samples will be separated from each other’s. This is
because the sampling filters have compact support and hence a
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Fig. 2. The proposed acquisition and reconstruction system for single pulse x(t− t0).

local pulse will only affects samples within a certain interval.
If the block of samples corresponding to one specific pulse
can be isolated from the rest of the samples, we can use these
samples to reproduce the Fourier information of that particular
pulse, from which we can then reconstruct the pulse itself.

III. THE RECONSTRUCTION PROCESS OF SINGLE PULSES

Reconstructing x(t−t0) from its partial Fourier information
is the key to our sampling solution. This section will answer
the following questions:
• how to reconstruct non-delayed wavelet-sparse x(t) from

its partial Fourier information on selected frequencies
(denoted as Ω); and what these frequencies are.

• how to reconstruct x(t−t0) which requires Fourier infor-
mation on extra frequencies beyond Ω. The frequencies
needed to reconstruct x(t− t0) are denoted as Ω̄.

We first explicitly give out the Ω and Ω̄ that we use in our
system in Fig. 2.

Define

αi =
2π

2S
(−1)i

(
d i

2
e − 1

2

)
, (5)

then {
Ω

(N)
J+1={αi : i = 1 : 2N},

Ω
(N)
m ={p(αi,m) : i = 1:2N},m = 1, . . . , J,

(6)

where

p(ω,m) = ω − sign(ω)2π/2m. (7)

Let
Kmax = max{K1, . . . ,KJ+1}. (8)

Note that Km is the sparse parameter. Then we have the Ω
and Ω̄ defined as follows:

Ω0 = {ω̄ = p(ω, 0),∀ω ∈ Ω1},
Ω = ∪Jm=1Ω

(Km)
m ∪ Ω

(Kmax)
J+1 ,

Ω̄ = Ω ∪ Ω0.

(9)

Here, the superscript (N) is related to the number of elements
in each individual set. In the rest of the paper, we will
ignore the superscript when there is no confusion caused. For
example, we would just say Ω = ∪J+1

m=1Ωm from now on.
Fig. 3 illustrates two examples of Ω̄ for the case J = 2 and

for two different K. Each Ω̄ is comprised of Ω and Ω0. The
Fourier information on Ω, x̂(Ω), is what we need to reconstruct
x(t).

The construction of Ω is related to the sparsity parameter
K = [K1, . . . ,KJ+1]. It is clear that there are J + 1 elements
in the sparsity parameter K and the frequency set Ω is the
combination of J + 1 subsets. Each of these subsets covers
a different range of frequencies. The intuitive motivation for
such construction is that the scaling function and wavelets
normally have low-pass and band-pass behaviours respectively,
and we want to sample the region that correlates most with the
specific wavelet/scaling function. In our example, Ω2 covers
the region where energy of the wavelet ψ2,0(t) concentrates
most while Ω3 covers the low-pass region as the energy of the
scaling function concentrates there.

One might have also noticed that ΩJ+1, which covers
the low frequencies, has the biggest cardinality among all
the subsets. This presents some similarities to the variable
density/multiscale sampling [34]–[36], and conforms to the
empirical study that the low frequencies should be heavily
sampled. However, the construction of Ω goes way beyond
intuition and empirical study. Our selection is of a deter-
ministic nature. There is no randomness in the choice of
location and the cardinality of each subset is directly linked to
Km. This construction guarantees perfect reconstruction in a
deterministic manner. We will be able to explain it at the end
of Section III.A, after some key information is introduced.

A. Reconstructing x(t) from partial Fourier information
This section is mostly based on our previous work [37]. For

the sake of clarity, we highlight the most important aspects of
the derivation that are useful for the rest of the paper.
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Fig. 3. Illustration of Ω and Ω0 with J = 2 for different K = [K1,K2,K3]. The set Ω = ∪J+1
m=1Ωm is only the combination of 3 = J + 1 subsets, and

each of these subsets covers a different range of frequencies. This is partly because the scaling function and wavelets normally have low-pass and band-pass
behaviours respectively, as illustrated by blue lines in (a). It is then natural to consider the filter-bank structure of J + 1 + 1 channels (the extra channel is
for collecting information in Ω0), of which each channel has a band-pass like filter for obtaining the Fourier information at each of these subsets. Also note
that the cardinality of each subset directly links to the sparse parameter Km. The cardinalities of the subsets are illustrated with shaded areas.

Theorem 1 ([37]). Consider a signal x(t) ∈M(K, 2S , φ(t)),
and assume1

φ̂(ω) 6= 0, ∀ω ∈ (−π, π). (10)

Then x(t) is uniquely characterized by the knowledge of its
Fourier transform at Ω.

The most important aspect of this theorem is that, for any
signal x(t) ∈M(K, 2S , φ(t)), as long as the scaling function
φ(t) satisfies the mild requirement (10), x(t) can be exactly
recovered from x̂(Ω). The cardinality of Ω is as small as
2Kmax +2

∑J
m=1Km, which is a small number of samples of

the signal’s Fourier transform. Also note that, the frequencies
in Ωm are determined by Km and the support of the non-zero
coefficients 2S , but are not related to the wavelet basis.

Theorem 1 is proved in [37] by giving a reconstruction al-
gorithm (described by Algorithm 1) that perfectly reconstructs
x(t) from x̂(Ω). The key insight of the derivation is that the
wavelet representation of (2) can be written recursively as

x̂m−1(ω)=x̂m(ω) + b̂m(ω)ψ̂m,0(ω) (11)

=âm(ω)φ̂m,0(ω) + b̂m(ω)ψ̂m,0(ω) (12)

where x0(t) is x(t). Here âm(ω) and b̂m(ω) denote the DTFT
of bm[l] and am[l] which are defined as follows:

am[l] =

{
am,n, if l = 2mn,

0, otherwise;

bm[l] =

{
bm,n, if l = 2mn,

0, otherwise.

(13)

Note that âm(ω) and b̂m(ω) are both periodic with period
2π/2m. Let

ωm = p(ω0,m);

1The scaling functions of many orthogonal/biorthogonal bases satisfy (10).
See, for example, [38], [39] .

because of the periodicity 2π/2m, we have that

âm(ω0) = âm(ωm) and b̂m(ω0) = b̂m(ωm). (14)

Writing (12) for frequencies ω = ω0 and ω = ωm, and
expressing it in matrix-vector form yields[

φ̂m,0(ω0) ψ̂m,0(ω0)

φ̂m,0(ωm) ψ̂m,0(ωm)

]
︸ ︷︷ ︸

Φ(ω0,ωm)

[
âm(ω0)

b̂m(ω0)

]
=

[
x̂m−1(ω0)
x̂m−1(ωm)

]
;

(15)

where Φ(w0, wm) is invertible if φ(t) satisfies (10) [37,
Lemma 1]. Therefore b̂m(ω0) can be found from (15). From
the knowledge of b̂m(ω) at 2Km evenly spaced frequencies, it
is then possible to reconstruct the entire sequence bm[l] using
Prony’s method.

The reconstruction process (Algorithm 1) is from the finest
scale (m = 1) to the coarse scale (m = J). After recov-
ering bm[l] from x̂m−1(Ω

(Km)
J+1 ) and x̂m−1(Ωm), its Fourier

contribution is removed from x̂m−1(Ω), so as to prepare for
the recovery of bm+1[l]. At the end, x̂J(ω) = âJ(ω)φ̂J,0(ω)

(ω ∈ Ω
(K1)
J+1 ), from which we recover aJ [l] and so x(t)2.

Now with all this information in hand, we are able to explain
a bit more on the reconstruction of Ω. The sparsity parameter
K = [K1, . . . ,KJ+1] decides the structure of Ω. There are
J + 1 elements in the sparsity parameter K and the frequency
set Ω is the combination of J + 1 subsets, where each subset
contains at least 2Km frequencies. The frequencies in these

2Note that Algorithm 1 is constructive proof of Theorem 1. We use Prony’s
method in order to get the tight bound on the cardinality of Ω, namely
2Kmax + 2

∑J
n=1Kn. In practice, one can use `1 minimization to replace

the whole Algorithm 1 or the stable variants of Prony’s method, like matrix
pencil algorithm [26], [40], to reconstruct bm[l] and aJ [l] in step 10 and 14.
We note that the `1 minimization normally requires slightly more frequencies
to reconstruct x(t) and it is not deterministically guaranteed to find the correct
solution.
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Algorithm 1 Recursive algorithm for perfectly reconstructing
wavelet-sparse signals

1: Input the number of non-zeros K1, . . . ,KJ+1.
2: Input x̂(ω) with ω ∈ Ω = ∪J+1

m=1Ωm.
3: Set Nm = ]Ωm, the cardinality of Ωm.
4: for m = 1 to J do
5: N = min(Nm, NJ+1)/2;
6: for every ω0 in Ω

(N)
J+1 do

7: ωm = p(ω0,m) = ω0 + sign(ω0)2π/2m;
8: solve the linear equation (15).
9: end for

10: recover bm[l] from b̂m(Ω
(N)
J+1) with the Prony’s method.

11: remove b̂m(ω)ψ̂m(ω) from x̂m−1(Ω) to obtain x̂m(Ω)
(11).

12: end for
13: for every ω in ΩJ+1 do
14: âJ(ω) = x̂J(ω)/φ̂J(ω).
15: end for
16: recover aJ [l] from âJ(ΩJ+1)
17: reconstruct x(t) by (2).

subsets have to satisfy

{ω0 = p−1(ωm,m),∀ωm ∈ Ωm,m = 1, . . . , J} ⊆ ΩJ+1,
(16)

only then the linear equation (15) can be obtained, and it is
the key for Algorithm 1 to work. The frequencies in each Ωm
needs to be equally spaced because we use Prony’s method
and at least 2K frequencies are needed to reconstruct a K-
sparse signal3. This is why we construct ΩJ+1 with equally
spaced frequencies αi (5).

B. Reconstructing x(t− t0)

Assume now we only have the Fourier transform of x(t−t0)
(0 < t0 < 2J ), namely x̂′(ω). Since the wavelet transform
is not shift invariant, x(t − t0) is usually not sparse in the
wavelet domain. Therefore, we need to estimate t0 and correct
the shift from the observation x̂′(ω) to get x̂(ω) and then
reconstruct the wavelet-sparse x(t) using Algorithm 1. The
Fourier information x̂′(ω) on Ω is not sufficient for this task.
The estimation of t0 is only possible when extra information
at higher frequencies is available, and this extra information
is contained in x̂(Ω0).

Theorem 2. Assume the scaling function satisfies (10). If there
is at least one frequency ω0 ∈ Ω1 such that x̂′(ω̄0) 6= 0 where
ω̄0 = p(ω0, 0), then the non-integer part of the delay can be
determined by

rt0 = rem(t0, 1) = log

(
x̂′(ω0)/φ̂0,0(ω0)

x̂′(ω̄0)/φ̂0,0(ω̄0)

)
/(2πj), (17)

Proof: First we can write

x(t) =
∑
n

a0,nφ0,n(t),

3For an overview of Prony’s method, we refer to [41].

since x(t) lies in the subspace spanned by {φ0,n(t)}n∈Z. In
Fourier domain, this becomes

x̂(ω) = â0(ω)φ̂0,0(ω). (18)

Since Ω0 = p(Ω1, 0), we can always find the corresponding
ω0 ∈ Ω1 for any ω̄0 ∈ Ω0 such that ω̄0 = p(ω0, 0). Without
loss of generality, we assume ω0 ≤ 0, and therefore ω̄0 = ω0+
2π. Because the period of â(ω) is 2π, this leads to â0(ω0) =
â0(ω̄0). Moreover, from (18) and assuming x̂(ω̄0) 6= 0, we
have that

â0(ω0) = â0(ω̄0) 6= 0 and φ̂0,0(ω̄0) 6= 0.

Also since[
x̂′(ω0)
x̂′(ω̄0)

]
=

[
e−jω0t0 x̂(ω0)
e−jω̄0t0 x̂(ω̄0)

]
=

[
e−jω0t0 φ̂0,0(ω0)â0(ω0)

e−jω̄0t0 φ̂0,0(ω̄0)â0(ω̄0)

]
,

we have that

1 =
â0(ω0)

â0(ω̄0)
=
ejω0t0 x̂′(ω0)/φ̂0,0(ω0)

ejω̄0t0 x̂′(ω̄0)/φ̂0,0(ω̄0)
,

which leads to

ej2πt0 =
x̂′(ω0)/φ̂0,0(ω0)

x̂′(ω̄0)/φ̂0,0(ω̄0)
.

Note here that φ̂0,0(ω0) 6= 0 because ω0 ∈ Ω1 ⊂ (−π, π) and
the scaling function satisfies (10).
Because ej2πt is periodic with period 1, we obtain (17).

Now let d = t0 − rem(t0, 1), then d is an integer and

d ∈ Z ∩ [0, 2J − 1] = [0, 1, . . . , 2J − 1].

The delay d can be retrieved by a line search on Z∩[0, 2J−1].
For k = [0, 1, . . . , 2J − 1], we apply Algorithm 1 on
e−jω(k+r)x̂′(ω)

∣∣
ω∈Ω

. The output of the recursive algorithm is
denoted as x(k)(t). If ejω(k+r)x̂(k)(ω) = x̂′(ω) for all ω ∈ Ω,
k is the estimate of d.

We summarize the reconstruction of x(t− t0) in Algorithm
2.

Algorithm 2 Reconstructing wavelet-sparse signals with un-
known delay

1: Input the number of non-zeros K1, . . . ,KJ+1.
2: Input x̂′(ω) with ω ∈ Ω̄ = ∪J+1

m=1Ωm ∪ Ω0.
3: Set Nm = ]Ωm, the cardinality of Ωm.
4: Pick one ω̄ ∈ Ω0 such that x̂′(ω̄) 6= 0;
5: Find the corresponding ω such that ω̄ = p(ω, 0).
6: Compute rem(t0, 1) by (17).
7: Set x̂′(ω) = ejωrem(t0,1)x̂′(ω), ∀ ω ∈ Ω.
8: Set d = −1;
9: repeat

10: d = d+ 1;
11: x̂′(ω) = ejωdx̂′(ω), ∀ ω ∈ Ω;
12: Apply Algorithm 1 to x̂′(Ω) to obtain an estimate x(t);
13: until

∑
ω∈Ω |x̂(ω) − x̂′(ω)|2 ≤ ∆ {∆ is a small non-

negative number}
14: delay x(t) by d+ rem(t0, 1) as an estimate of x′(t).
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Fig. 4. The wavelet-sparse signal x(t) and its shifted version x(t−52.412).
Note that only the non-zero coefficients need to be supported in [0, 2S − 1].
It is not necessarily for the wavelets corresponding to non-zero coefficients
to be also supported on [0, 2S − 1].

C. Examples and discussion

We now give a few reconstruction examples to demonstrate
that x′(t) can be perfectly recovered from x̂′(Ω̄). We highlight
here again the fact that the perfect reconstruction is possible
because x(t) is sparse in a wavelet basis and that the result is
independent of the chosen wavelet.
Our example uses the signals in Fig. 4. The signal x(t) is
sparse in the cubic-spline wavelet, with the sparse parameter
Km ≤ 2 and 1 ≤ m ≤ 7. The support of the non-zero
coefficients is 512.
As shown in Fig. 5, without the shift, both Algorithm 1 and
the `1 minimization can perfectly reconstruct the wavelet-
sparse x(t) from its partial Fourier information, even though
`1 requires more frequencies. However, neither Algorithm 1
nor the `1 minimization can reconstruct the delayed signal
x′(t), because x′(t) is not sparse (Fig. 6).
Fig. 7 shows that the delayed signal x′(t) can be perfectly
reconstructed by Algorithm 2 with the help of the extra Fourier
information at Ω0. The key to the success of the algorithm is
that the shift is estimated and removed in the reconstruction
process.

IV. THE ACQUISITION PROCESS

When an analog signal is sampled by the ADC unit (Fig.
8), the discrete samples at the output are given by

c[n] = 〈x(t), h(−t+ nT )〉 = 〈x(t), ϕ(t/T − n)〉. (19)

Note that the sampling kernel ϕ(t) = h(−tT ) is the scaled
and time reversed version of the unit impulse response of the
acquisition device.

The acquisition process of Fig. 2 is a multichannel version
of the basic ADC structure of Fig. 8. We want the sampling
kernel ϕj(t) = hj(−Tjt) (j = 1, . . . , J + 2 of Fig. 2 to
be able to reproduce exponentials so that we can retrieve the
Fourier transform of x′(t) at frequencies Ω̄ from the samples
{cm[n]}J+2

m=1 in order to use Algorithm 1 and Algorithm 2 to
reconstruct x′(t). We also want them to be of compact support
so that we can apply our reconstruction algorithm sequentially.
This point will be more evident in Sec. V. Finally, we want
the kernels to be real-valued since normal acquisition devices
behave like real-valued filters.

This section will introduce the sampling kernels that satisfy
the above requirements. The resulting kernels are called mod-
ulated E-Splines with Multiple subbands (MEMS) and belong
to the family of exponential reproducing kernels. These are
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(a) Reconstruction by Algorithm 1
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(b) Reconstruction by `1
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1
 reconstruction from 112 frequencies

(c) Reconstruction by `1
Fig. 5. Exact wavelet-sparse signals can be perfectly reconstructed from
x̂(Ω). In this example, J = 6, Km ≤ 2 for 1 ≤ m ≤ 7. (a) Algorithm 1
reconstructs x(t) exactly from 28 frequencies (]Ωm = 4 for all m). (b) The
reconstruction by `1 minimization from the same set of frequencies is not
successful. (c) `1 minimization reconstruct x(t) exactly when the number
of frequencies in Ω is increased to 112 (]Ωm = 16 for all m). While
our algorithm uses only 28 frequencies, the `1 minimization requires more
frequencies.
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(a) Algorithm 1
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(b) `1 minimization

Fig. 6. Both Algorithm 1 and `1 minimization fail to reconstruct the delayed
wavelet-sparse signal x′(t). The signal x(t) in Fig.5 is delayed by 52.412
to obtain x′(t). There are 112 frequencies in Ω and 16 frequencies in Ω0.
Ω̄ = Ω0 ∪ Ω.
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Fig. 7. The delayed wavelet-sparse signal x′(t) can be perfectly reconstructed
from x̂′(Ω̄) using Algorithm 2. The signal x(t) in Fig.5 is delayed by 52.412
to obtain x′(t). The frequencies set Ω̄ only contains 32 samples, where
]Ωm = 4 (m = 0, . . . , 7).
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x(t) y(t)
h(t) c[n]

T

Fig. 8. The structure of ADC sampling where h(t) = ϕ(−t/T ). The function
h(t) is the unit impulse response of the acquisition device, and ϕ(t) is the
sampling kernel.

developed using the E-Spline, which is the elementary member
of the family of exponential reproducing functions [42].

A. Overview of E-Splines

This section provides a brief overview of E-Splines. For
more information on the topic, we refer to [15], [26], [42]
and references therein.

An E-Spline βa(t) is a function with Fourier transform

β̂a(ω) =

P∏
m=0

1− eam−jω

jω − am
, (20)

and has compact support P +1. Here a = [a0, a1, . . . , aP ]T is
the vector containing the generating parameters and am can be
a real or complex number. Moreover, when the parameter αm
are in complex conjugate pairs, the E-Spline is real valued.
In this paper, we only consider the special case where am
is purely imaginary, i.e. am = jωm with ωm being real.
Therefore, for the rest of the paper we use

a = j[ω0, ω1, . . . , ωn]T = jω. (21)

E-Spline βjω(t) can reproduce exponential ejωmt. This is
to say that there exist weights γm,n such that∑

k∈Z
γm,nβjω(t− n) = ejωmt. (22)

The weights γm,n are given by [15], [26]:

γm,n = γm,0e
jωmn with γm,0 =

1

β̂jω(ωm)
. (23)

Using purely imaginary generating parameters allows us to
estimate the Fourier transform of x(t). Indeed, once we have
sampled the input signal x(t) with the exponential reproducing
kernel h(t) = βjω(−t/T ), we obtain x̂(−ωm/T ) from

sm=
∑
k∈Z
γm,nc[n] =

∑
k∈Z

γm,n〈x(t), βjω(t/T−k)〉

=〈x(t),
∑
k∈Z
γm,nβjω(t/T−k)〉

= 〈x(t), ej
ωm
T t〉 = x̂(−ωm

T
). (24)

This convenient relationship between the discrete spatial sam-
ples and the Fourier transform is at the heart of our sampling
method.

We note that E-Splines are sometimes not stable [24],
[25], especially when the generating parameters are located
in band-pass regions. Take the E-spline shown in Fig. 9
as an example. This E-spline is unstable because the ratio
minwn |β̂ω(wn)|
maxwn |β̂ω(wn)|

(about 10−2) is small. Therefore we need
to introduce a new construction of exponential reproducing
kernels to overcome this limitation. MEMS is stable because
the ratio minwn |β̂ω(wn)|

maxwn |β̂ω(wn)|
≈ 1 by design.

A
m

pl
itu

de
(l
o
g
1
0

)

−2.5

−2

−1

0

−3π −1π 1π 3π

E-Spline MEMS

Fig. 9. Illustration of the instability problem of the E-spline. The conventional
E-spline βw(t) reproduces exponential ejwt with w ∈ w = {±k

16

∣∣k = 17 :
2 : 31} and the frequency amplitudes at these frequencies are shown by black
circles. Meanwhile, the MEMS reproducing the same frequencies is shown
in thin red lines and the amplitudes at the reproduced frequency are marked
by red solid dots. The kernels are scaled so that the maximum frequency
amplitude is 1.

B. Modulated real E-Spline with multiple subbands (MEMS)

We define a MEMS as follows:

ϕM,N
jω (t)=βjω,2M (t)

(
N∑
i=1

2bi cos

(
2ki+1

2M
πt

))
, (25)

where

β̂jω,2M (w) =

P∏
m=0

1− e2Mj(ωm−ω)

2Mj(ω − ωm)
, (26)

bi is real and non-zero and N ≤ M . Note that, as the
bandwidth of the sampling device is fixed to be 2π and each
term in (26) occupies 2π/M , we can have at most M and we
set N = M for the most efficient use of the bandwidth. For
the the rest of the paper, we use ϕ̂Mjω(t) to denote ϕ̂M,M

jω (t).
An important property of MEMS is that it has compact sup-

port 2M(P+1). This is because βjω,2M (t) has by construction
compact support 2M(P + 1).

Theorem 3. Let ri = rem(ki, 2M). Assume{
ω0 ≤ ω1 ≤ · · · ≤ ωP , |ωm| <

π

2M
,

ωm = −ωP−m,
(27)

then MEMS ϕMjω(t) can reproduce exponential e±jωm,it if

ri + rl 6= 2M − 1 and min
i 6=l
|ri − rl| 6= 0. (28)

Here ωm,i = ωm + 2ki+1
2M π.

The proof of Theorem 3 is given in Appendix A and it is
based upon the properties of E-Splines.

Once we set the parameters M,ω and {ki}, we can design
the MEMS and calculate the weights γm,i,n for generating
ejωm,it by replacing β̂jω(ωm) with ϕ̂Mjω(ωm,i) in (23), namely,

γm,i,n = cm,i,0e
jωm,in with γm,i,0 =

1

ϕ̂Mjω(ωm,i)
. (29)
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C. Setting the acquisition filters of Fig. 2

For a pulse x(t) from M(K, 2S , φ(t)), we need x̂′(Ω̄)
in order to perfectly reconstruct x′(t). This section focuses
on the problem of designing the appropriate MEMS as the
sampling kernel, so that the samples cm[n] can be used
to reproduce the appropriate Fourier information at Ω̄. For
example, if the sampling kernel in Channel 1 of Fig. 2 is
h1(t) = ϕMjω(−t/T1), where ϕMjω(t) is MEMS, then the
Fourier information that c1[n] can reproduce is x̂(±ωn,i/T1),
and we need

Ω1 ⊆ {±ωn,i/T}n=0,...,P, i=1,...,M , (30)

which is equivalent to

Ω1T ⊆ {±ωn,i}n=0,...,P, i=1,...,M . (31)

To achieve this, we need to set the parameters
{ω, T,M, k1, . . . , kM} correctly.

In Theorem 3, there are a number of constraints that need
to be met to design the right MEMS. While this could be
achieved in several ways, here we only consider the following
two more intuitive cases,

1) M = 1 and P + 1 = 2dlog2(]Ωm)e−1;
2) P = 1 and 2M = 2dlog2(]Ωm)e−1.

Here ]Ωm denotes the cardinality of Ωm. In both cases, the
other parameters are given by

ω = {±2n− 1

P + 1

π

2M
,n = 1, . . . , P}

K =

{
2S+1−max(m,1)

2M(P+1) − (m ≥ 1), if m≤J+1

0, if m=J+1

ki = KM + i− 1, i = 1, . . . ,M ;

Tm =
2S

2M(P + 1)
.

(32)

These calculated parameters satisfy Theorem 3, so the gener-
ated MEMS can reproduce exponentials e±jωm,it with ωm,i =
ωm+ 2ki+1

2M π. The resulting filter behaves like low-pass/band-
pass filters. An example of band-pass MEMS is illustrated in
Fig. 10 and further intuition on this construction is provided
in Appendix B. Usually, the setting P = 1 and 2M =
2dlog2(]Ωm)e−1 results in filters that are stabler and hence are
preferred. Using these settings, the overall sampling rate of
the system is

J+1∑
m=0

1

Tm
=

1

2S

J+1∑
m=0

2dlog2(]Ωm)e.

Because ]Ωm is related to the sparse parameter K,
2dlog2(]Ωm)e/2S can be very small if Km/2

S is small, i.e.
the signal is sparse. It means the overall sampling rate can
be significantly smaller than 1. An example will be given in
Section IV.D to explain this further.

Note that (32) corresponds to one of the simplest stable
MEMS, but there are alternative MEMS that can be used in our
formulation. In fact, MEMS and the multichannel system can
even be used to obtain Fourier information at pseudo random
frequencies. (See Appendix B.)
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(a) M = 1, P = 3
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(b) P = 1,M = 2

Fig. 10. Example of band-pass MEMS. Here the red ∗ corresponds to
|ϕ̂Mjω(ωn,i)|. Both band-pass MEMS are constructed using the two simplified
cases, 1) M = 1, P = 3, 2) M = 2, P = 1. Both functions can reproduce
the same exponentials, but the function in (b) is more stable in reproducing

exponentials. A filter is more stable when
minωn ϕ̂

M
jω(ω)

maxωn ϕ̂
M
jω(ω)

is close to 1. One

unit on the x-axis corresponds to π.
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Fig. 11. Examples of acquisition filters h0(t), h1(t) and h2(t).

D. Examples

We now give an example of constructing the right MEMS
to sample pulse x′(t). Here x′(t) is the delayed version of
x(t) ∈ M([4, 2], 32, φ(t)). We consider 2S = 32, ]Ω1 = 4
and ]Ω2 = 8. By fixing P = 1, one can easily calculate the
parameters for the MEMS at each channel using (32), and then
calculate the reproduced frequencies of these MEMS using
Theorem 3. All these parameters are shown in Table I.

With the three sets of parameters, we can construct the
corresponding MEMS using (25), and the resulting kernels are
denoted as ϕMjω0

(t), ϕMjω1
(t) and ϕMjω2

(t). We set the filters at
Channel 0, 1 and 2 as

hm(t) = ϕMjωm(−t/Tm), m = 0, 1, 2

and these filters are shown in Fig. 11 (a)-(c).
Fig. 12 shows an example where the samples taken with

these filters lead to an exact reproduction of the signal’s
Fourier information at Ω0, Ω1 and Ω2. The wavelet-sparse
pulse x(t) ∈ M([4, 2], 32, φ(t)), where φ(t) is a cubic-
spline, is shown in Fig. 12 (a) together with x′(t) . The
samples, c0[n], c1[n] and c2[n], are shown in (b)-(d). The exact
reproduction of the Fourier transform of x(t) and x′(t) at Ω0,
Ω1 and Ω2 is shown in Fig. 12 (e) together with the complete
Fourier transform. From this reproduced Fourier information,
we can exactly reconstruct x(t) or x′(t) using Algorithm 1
and Algorithm 2.

Now we show that our method has an overall sampling rate
smaller than 1. For the single pulse x(t) without any delay,
we only need Channel 1-2 and the overall sampling rate is
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TABLE I
PARAMETERS OF MEMS FOR SAMPLING WAVELET-SPARSE SIGNALS WITH PARAMETERS K = [4, 2] AND 2S = 32

Channel Ωn(n = 0, 1 2) Parameters for MEMS (fixing P = 1) Reproduced frequencies

0 Ω0 = {± 16.5
16

π,± 17.5
16

π} M = 1, ω = [− 1
2
, 1
2

]π
2
, K = 8, k1 = 8, T0 = 8

±(ω+
2k1+1
2M

)

T0
= ± 16.5

2T1
π,± 17.5

2T0
π

1 Ω1 = {± 15.5
16

π,± 14.5
16

π} M = 1, ω = [− 1
2
, 1
2

]π
2
, K = 7, k1 = 7, T1 = 8

±(ω+
2k1+1
2M

)

T1
= ± 14.5

2T1
π,± 15.5

2T1
π

2 Ω2 = {± 0.5
16
π,± 1.5

16
π,± 2.5

16
π,± 3.5

16
π} M = 2, ω = [− 1

2
, 1
2

]π
4
, K = 0, k1 = 0, k2 = 1,

T2 = 4

±(ω+
2k1+1
2M

)

T2
= ± 0.5

4T2
π,± 1.5

4T2
π

±(ω+
2k2+1
2M

)

T2
= ± 2.5

4T2
π,± 3.5

4T2
π

obtained by adding together the sampling rate of each channel:
2∑

m=1

1

Tm
=

12

32
, (33)

where T1 = 8 and T2 = 4 as calculated before in Table I. For
sampling x′(t), our system needs information on Ω0 in order
to recover the delay. The overall sampling rate is

12/32 + 1/T0 = 16/32.

Here T0 = 8 as in Table I.
When the signal is sparser, the system can reach an even

lower sampling rate. For example, to sample a signal in
M([4, 2], 512, φ(t)), the overall sampling rate could be as
low as 16/512. Note that the conventional wavelet-filterbank
always has an overall sampling rate of 1; moreover it can not
reconstruct x′(t) exactly, because x′(t) is not in the subspace
spanned by the scaling function at scale zero.

V. ACQUISITION AND RECONSTRUCTION OF STREAMS OF
PULSES

Using the findings of the previous sections, we are now
able to sample and reconstruct streams of pulses using the
acquisition system of Fig. 2. Our approach takes advantage
of the fact that the filters in Fig. 2 are MEMS which are by
construction of compact support. Moreover, we assume that
the pulses have compact support 2S .

Specifically, we assume that the signal is made of unknown
pulses xl(t−tl) with xl(t) ∈M(K, 2S , φ(t)). We also assume
that the distance between any two neighbouring pulses satisfies

min
l

(|tl − tl+1| − 2S) > Lmax + Tmax, (34)

where
Tmax = max

m
Tm and Lmax = max

m
Lm. (35)

Here Lm is the support of the filter hm(t). The former
requirement means that the pulses have the same sparsity
pattern. The minimum-distance requirement (34) ensures that
the filtered pulses will not overlap with each other in any
channel, and that the blocks of non-zero samples from any
two neighbouring pulses are separated by at least one zero
sample. This is illustrated in Fig. 13. By locating these zeros,
we can separate the two blocks. The requirement (34) is the
necessary condition for a successful separation. However, we
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(a) Applying the filters in Fig. 11 on a single pulse
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(e) The reproduced Fourier information at Ω̄0 (red dots), Ω1 (blue dots) and
Ω2 (blue dots) is exact. The plots on the right is for signal x(t), while the
left is for x′(t).

Fig. 12. Applying the proposed sampling setting in sampling single pulses,
x(t) and its delayed version x′(t). Here x(t) is sparse on the cubic-spline
wavelet basis. Sampling x(t) only requires Channel 1 and 2, while sampling
x′(t) requires the extra Channel 0. The reproduced Fourier information is
exact, and hence the reconstruction of the pulses is exact.
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Fig. 13. Illustration of the sampling of streaming pulses. If the localized pulses
are sufficiently far apart and are sampled with a compact-support filter, their
samples will be separated. If the samples corresponding to one specific pulse
can be isolated from the rest of the samples, they can be used to reproduce the
Fourier information of that pulse, which will be later utilized to reconstruct
the pulse.

usually need the distance between neighbouring pulses to be
bigger than the necessary condition, so as to make it easier to
detect the blocks of non-zero samples.

Under these two assumptions, we use the following steps to
reconstruct the pulses from our samples. The whole process
is carried out locally and sequentially:

a) separate the blocks of samples from different pulses.
b) reproduce the Fourier information of the pulse under

consideration at Ω̄
c) reconstruct xl(t−tl) from the Fourier information using

Algorithm 2.
As long as the filter-bank system is properly designed, the
Fourier information reproduced in Step b) is exact, and hence
the reconstruction in Step c) is exact.

We now apply our method to acquire and reconstruct the
stream of pulses shown at the beginning of this paper (Fig.
1). Every single pulse is sparse on the cubic-spline wavelet
basis, with J = 5 and the number of non-zero coefficient
at each subband is no bigger than 4. The pulse and all its
non-zero coefficients are included in an interval of 512s. With
this information, we know from Section III that any single
pulse from this model can be recovered exactly from Ω̄ that is
constructed according to (9) with ]Ωm = 8. From Ω̄ and (32),
we can work out the parameters of MEMS for the J + 2 = 7
channels in the multi-channel system in Fig. 2, and generate
the MEMS ϕmjωm(t) and set the filters as

hm(t) = ϕmjωm(−t/Tm),

just like in the example of Section IV.
The multi-channel system has J + 2 channels, and the

samples from each channels are shown in Fig. 14. The recon-
struction is carried out locally and sequentially. The blocks of
non-zero samples are first identified and then used to recover
single pulses. The reconstruction of the pulse streams is exact.

VI. NOISE RESILIENCE AND MODEL MISMATCH

Our algorithm can perfectly reconstruct single pulses and
streams of pulses in noiseless settings. It is then natural to
wonder how it would perform when noise is present or when
there is model mismatch. For both cases, we need more Fourier
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Fig. 14. Example of sampling streaming pulses. The reconstruction is carried
out locally and sequentially. If the pulses are far enough from each other, the
block of non-zero samples from one pulse can be separated, and this block of
non-zero samples can be used to reconstruct the corresponding pulse. Once
the pulse has been reconstructed, the algorithm moves from there, and look
for the next block of non-zero samples.

samples. This is to say ]Ωm should be bigger than 2Km, where
Km is the sparse parameter in Theorem 1.

A. Noise in the Fourier information

1) Shift estimation: Retrieving the non-integer part of the
shift using (17) with only one pair of frequencies leads to
estimates with high variance. To bring down the variance, we
can simply average various estimates, i.e.

r̄t0 =
1

N

N∑
n=1

r
(n)
t0

where r(n)
t0 is obtained by applying (17) to different pairs of

frequencies. Fig. 15 (a) shows that using more frequencies
effectively brings down the variance for a given shift rt0 .
Fig. 15 (b) shows that the variance is mostly affected by
noise but not the value of the shift. As a result, the estimates
are more reliable when more frequencies are used, and this
independently of the value of the shift.

2) Reconstruction of the pulse: Using more frequencies
also helps the reconstruction of pulses. It is well known that
the original Prony’s method is not numerically stable and
hence it should be replaced by numerically stabler algorithms.
Here we consider two alternatives. One is to replace the
Prony’s method with a stable variant known as the matrix
pencil algorithm [26], [40]. The other is to replace the whole
Algorithm 1 with `1 minimization. We compare these two
different alternatives in Fig. 16 on different noise level. The
performance is measured by the mean relative reconstruction
error (rerr), where

rerr =
||x̃(t)− x(t)||
||x(t)||

and x̃(t) is the estimated signal. We see that the reconstruction
errors of both methods are comparable. Therefore to better
compare the two approaches, we also analyse their success
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(b) Errobar of 100 random rt0

Fig. 15. The standard deviation of the estimates of non-integer shift in noisy
situations, using the signal shown in Fig. 4. The shift is estimated by averaging
the results obtained by applying (17) to 1 pairs (green), 2 pairs (blue) and
(16) pairs (black) of frequencies. We then obtained (a) the standard deviation
std(r̄t0 ) from 100 independent random realizations of noise added to the
Fourier samples, and finally (b) the errorbar by averaging std(r̄t0 ) from 100
non-integer shifts rt0 randomly picked from [0, 1).
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Fig. 16. Comparison of applying Algorithm 2 with Algorithm 1 and `1
minimization serving in Step 12. In the experiments, Prony’s method in
Algorithm 1 is replaced by its stabler variant, the matrix pencil. The number
of frequencies used are, from top to bottom, 192+32, 320+64. The extra
frequencies are used for recovering the shift. The left column shows the
mean relative reconstruction error (rerr, shown in log scale) is obtained by
50 random realization of noise added to the Fourier samples of the shifted
signal of Fig. 4. In the right column, we count the recovery as a successful
reconstruction if rerr is smaller than 0.07. The success rate on different noise
level with the same number of frequencies are shown in the right column.
The red dashed line mark the threshold of 0.07 in rerr.

rate. We deem a reconstruction is successful when the relative
reconstruction error (rerr) is smaller than 0.07. The comparison
is shown by a bar plot in the right column of Fig. 16, from
which we can observe that using more frequencies can improve
the success rate of both algorithms. At low SNR situation
(20dB), our algorithm outperforms the `1 minimization in
terms of success rate.
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(a) Wavelet coefficients
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(b) Reconstruction from 336 frequencies using Algorithm 1

Fig. 17. Reconstruction of the wavelet-sparse signal in a slightly different
wavelet basis. The signal is exactly sparse in cubic-spline wavelet basis
(φ1(t)), but it is only approximately sparse in the quadratic spline wavelet
basis (φ2(t)). The sparse parameter needs to be re-calibrated on the new
basis, which is achieved by looking at the rank of the matrices built when
using Prony’s method. By doing so we reach a faith reconstruction despite
the model mismatch.

B. Model mismatch

We now consider the model-mismatch problem, namely, the
case where we assume the signal to be sparse in a wavelet
basis and instead the signal is either sparse in a different
basis (example in Fig. 17) or is not sparse at all (example
in Fig. 18 and 19). In the first case, the signal is exactly
sparse in the biorthogonal cubic-spline wavelet with the sparse
parameter K = [2, . . . , 2], but its wavelet representation in the
biorthogonal quadratic spline wavelet basis is not. In fact, there
are 340 non-zero coefficients in scale 1-7 in this case (Fig. 17
(a)). In much the same way as for the noisy scenario, we see
that if we allow redundancy we can achieve a very faithful
reconstruction (i.e., Fig. 17(b)) even in the case of model
mismatch. In this experiment, Km is estimated by looking
at the rank of the matrices built when using Prony’s method.

However, a lot of signals can be compressible in a couple
of different wavelet bases, and the reconstruction of the signal
on different bases for small number of Fourier coefficients are
similarly good. We use the Heavisine signal as the example.
The signal length is 4096. The signal is zero outside the sup-
port range. We show its wavelet coefficients on Daubechies’
wavelets (db2 and db3) in Fig. 18 and 19. The Heavisine signal
is not exactly sparse in any of the two wavelet bases, but it is
compressible on both bases. The sub-captions in Fig. 18 and 19
are the estimation of the upper bound of the sparse parameters
Km, which is obtained by counting the number of coefficients
with amplitude greater than 2% of the maximum amplitude in
the scale. We truncate the representation at scale 1 to ignore all
the non-zero coefficients at scale finer than scale 1. Therefore,
K̃0 = 0. We oversample the Fourier domain approximately by
2.5, and that corresponds to about 2.5×(2

∑
K̃m) frequencies.

We then apply Algorithm 2 to reconstruct the signal directly
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Fig. 18. The wavelet coefficients of the Heavisine signals on Daubechies’
4-tag wavelet (db2) and the reconstruction from its partial Fourier transform
of 242+24 frequencies.The length of the signal is 4096. Heavisine signal is
only approximately sparse on db2. The upper bound estimation K̃m can only
approximately model the signal. The sub-caption of figure (a) - (g)are the
estimated upper bounds of Km.

from the partial Fourier information. As shown in the figures,
the reconstructions are very faithful to the original signals
despite the fact that we only use less that 8% of the Fourier
information for both bases.

C. Noise in the discrete samples

We now consider a more difficult situations, sampling
the stream of pulses in noisy conditions where the input
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Fig. 19. The wavelet coefficients of the Heavisine signals on Daubechies’
6-tag wavelet (db3) and the reconstruction from its partial Fourier transform
of 278+36 frequencies. The length of the signal is 4096. Heavisine signal is
only approximately sparse on db3. The upper bound estimation K̃m can only
approximately model the signal.
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continuous-time signal s(t) is noiseless and the noise is
introduced by the acquisition device after sampling. Thus, the
samples are

c̄[n] = c[n] + en

where en is the additive Gaussian white noise. We use the
same stream of pulses of Fig. 14 as the example, which is also
shown at the beginning of this paper (Fig. 1) . As said before,
we need Fourier information at more frequencies to work
robustly with noise. Therefore, Ω̄ is constructed according to
(9) with ]Ωm = 32, which means we used 192+32 frequencies
in total.

We also do oversampling (oversampling rate is 2) in the
time domain to improve the SNR of Fourier information [15].
The samples and the reconstruction are shown in Fig. 20. The
reconstruction is done by our algorithm using matrix pencil. In
this example, the reconstruction is very accurate with an SNR
of 24.87 dB. We can even reduce the SNR to 10 dB at the
cost of using more Fourier samples and time-domain discrete
samples. The reconstruction is with an SNR of 15.02dB (see
Fig. 21).

VII. DISCUSSION

The critical role of the sparsity parameter K is in the design
of the sampling pattern in the frequency domain, namely Ω.
We prove the one-to-one mapping relationship between the
Fourier information in Ω and the wavelet-sparse signal with
sparse parameter K.

In the reconstruction process, our algorithm needs to make
use of the sparse parameter K, while `1 minimization does not.
In this repect, the `1 minimization is more universal. However,
at the same time, the knowledge of K in our method allows to
reduce substantially the number of the samples needed. This
paper uses Prony’s method in the noiseless setting to get a tight
bound on the cardinality of Ω. Prony’s method only requires
2k frequencies to recover a k-sparse signal, which is far less
than what `1 requires. As shown in Fig. 5, our algorithm
can perfectly reconstruct the signal from merely 28 Fourier
samples, while `1 minimizations requires 112.

When K is unknown, one needs to use the upper bound of
K which results in redundancy in the sampling pattern. Both
our algorithm and `1 minimization perform very well if there
is enough redundancy in the sampling pattern Ω.

In the reconstruction of streams of pulses, we requires the
distribution of the pulses to satisfy the minimum separation
condition (34). This is because we assumes the shapes of the
pulses to be unknown and they can be different from each
other. This is very different from the separation conditions
discussed in [43] and a few more recent papers in the field
of super-resolution [44]–[46] where they need separation even
though they assume that the shape of the pulses is identical
and known.

VIII. CONCLUSION

We have proved that the wavelet-sparse signal with sparse
parameter K can be exactly reconstructed from the partial
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Fig. 20. Example of sampling streaming pulses in noisy condition (SNR =
20dB). White noise is added to the samples. In order to counteract the noise,
we acquire Fourier information on more frequencies and do oversampling in
the time domain as well. The oversampling rate is 2 and Ω̄ is constructed
with ]Ωm = 32. The reconstruction from the samples is very accurate with
SNR = 24.87dB.
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Fig. 21. Example of sampling streaming pulses in noisy condition (SNR =
10dB). The relative reconstruction error from the samples is SNR =
15.02dB

Fourier information in Ω, where the cardinality of Ω can be
as small as

2 max{K1, . . . ,KJ+1}+ 2

J∑
m=1

Km,

which is, as far as we know, the tightest bound for an exact
result. We have also presented a new scheme to collect discrete
samples that leads to exact Fourier informations, and apply the
new scheme to sample and perfectly reconstruct 1-D stream
of pulses with unknown shapes at a significantly reduced rate.
Our sampling scheme has the following important features:

1) the acquisition set-up is close to the conventional A-to-D
converters;

2) the shape of the filters are not related to the wavelet
bases that the pulses are sparse in;

3) the filters are of compact support and can stably repro-
duce exponentials;

4) the reconstruction of streaming pulses is carried out
locally and sequentially.

Our sampling scheme may have an impact in practical engi-
neering applications in the future because of these features.
One possible application of our theory is to record electro-
physiological data for spike sorting [47], where different
neuron tends to fire spikes of different shapes.

The streams of pulses concerned in this paper are mono-
dimension signals, and our scheme can now only apply to
mono-dimensional signals.

APPENDIX A
PROOF OF THEOREM 3

To prove Theorem 3, we need the following two lemmas.

Lemma A1 (the generalized Strang-Fix conditions [48]). The
sufficient and necessary conditions for a function f(t) to be
able to reproduce exponentials ejω0t are that4

f̂(ω0) 6= 0 and f̂(ω0 + 2πl) = 0 (∀l 6= 0). (36)

Lemma A2. Assume ω satisfies (27). Besides the Strang-
Fix conditions (36), function βjω,2M (t) (26) also satisfies the
following strengthen Strang-Fix conditions:

β̂jω,2M (t)(ωn) 6= 0 and β̂jω,2M (t)(ωn +
kπ

M
) 6= 0. (37)

The proof of Lemma A2 follows directly from the expres-
sion in (26). Now we prove Theorem 3 by verifying that the

4This is the special case when the exponent is purely imaginary; otherwise,
the Laplace transform of f(t) should replace the Fourier transform of f(t)
in (36).

proposed MEMS satisfies the Strang-Fix conditions. Without
loss of generality, we assume bi = 2 and have

2βjω,2M (t) cos

(
kπ

2M
t

)
=βjω,2M (t)

(
exp(j

kπ

2M
t) + exp(−j kπ

2M
t)

)
=βjω+j kπ2M ,2M (t) + βjω−j kπ2M ,2M (t)

=βjω+j kπ2M ,2M (t) + β−jω−j kπ2M ,2M (t). (38)

We denote ωi = ω + 2ki+1
2M and this leads to

ϕ̂Mjω(ω) =

M∑
i=1

(
β̂jωi,2M (ω) + β̂−jωi,2M (ω)

)
. (39)

Because of (27) and (28), we have, for l 6= i,

ωm,i = −ωP−m,i + (ki + 1)
π

M

ωm,i + 2kπ = ωm,l + (2kM + ki − kl)
π

M
= C1

π

M

ωm,i + 2kπ = −ωP−m,l + (2kM + ki + kl + 1)
π

M

= C2
π

M
.

(40)

Since rem(ki−kl, 2M) 6= 0 and rem(rn+rm+K0, 2M) 6= 0,
neither C1 nor C2 can be zero.

According to Lemma A2, we have that, ∀k ∈ Z,

β̂−jωi,2M (ωm,i + 2kπ) = 0

β̂jωl,2M (ωm,i + 2kπ)) = 0, l 6= i

β̂−jωl,2M (ωm,i + 2kπ) = 0, l 6= i.

Since

ϕ̂Mjω(ωm,i + 2kπ) = β̂jωi,2M (ωn,i + 2kπ), (41)

using again Lemma A2, we have that

ϕ̂Mjω(ωm,i) 6= 0 and ϕ̂Mjω(ωm,i + 2kπ) = 0,∀k ∈ Z \ 0.

Therefore, ϕMjω(t) can reproduce the exponential ejωm,it. Sim-
ilarly, we can shown that ϕMjω(t) can reproduce the exponential
e−jωm,it

APPENDIX B
MORE ABOUT MEMS AND THE MULTICHANNEL SYSTEM

Our multichannel system uses J+2 channels. The intuition
behind this setting is illustrated in Fig. 3. The set Ω̄ is the
combination of J+2 subsets in different ranges of frequencies.
It is then natural to consider the structure of J + 2 channels.
This setting also leads to easier design of the right MEMS,
as explained in Section IV-C. If the number of channels L is
smaller than J + 2, we will need to find the combination of
ki,m, Mm and Tm such that

∪L−1
m=0Ω̃mTm ⊇ Ω̄ (42)

where P = 1, Ω̃m = π
4Mm

+
2ki,m+1

2Mm
π and ki,m must satisfy

Theorem 3. The combinatorial search when using a smaller L
is not as straightforward as (32).
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The estimate of the Fourier information of x(t) is also more
reliable if the energy of the signal at the selected frequencies is
similar in a given channel. Since the signal energy often varies
a lot over a wide range of frequencies, we don’t want the se-
lected frequencies in one channel to distribute too widely and
hence adopt a J + 2 low-pass/band-pass setting. For example,
the signal x′(t) in Fig. 12 has its energy mostly concentrated at
low-frequencies. If we construct a stable filter that reproduces
Fourier information at hight frequencies {± 16.5

16 π,±
17.5
16 π} as

well as at low frequencies {± 2.5
16 π,±

3.5
16 π} to sample x′(t),

the reproduced Fourier information at high frequencies is more
prone to noise interference. In simulations when using this
filter with 20dB additive white noise, we note that the SNR
of the estimates are about 25dB at low frequencies and about
1dB at the high frequencies.

We note here that the multichannel system can also be
used to stably obtain Fourier information at pseudo random
frequencies. This is very useful in other contexts, especially
when CS analysis is applied [2]. It is achieved by generating a
group of random ki that satisfy Theorem 3 and using them for
constructing MEMS. Every channel can choose the parameters
of their MEMS independently. Therefore, the multichannel
system with more channels has more freedom in selecting
frequencies at which the whole system can reproduce Fourier
information.
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