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Guaranteed Performance in the FRI Setting
Xiaoyao Wei and Pier Luigi Dragotti

Abstract—Finite Rate of Innovation (FRI) sampling theory has
shown that it is possible to sample and perfectly reconstruct
classes of non-bandlimited signals such as streams of Diracs.
In the case of noisy measurements, FRI methods achieve the
optimal performance given by the Cramér-Rao bound up to a
certain PSNR and breaks down for smaller PSNRs.

To the best of our knowledge, the precise anticipation of the
breakdown event in FRI settings is still an open problem. In
this paper, we address this issue by investigating the subspace
swap event which has been broadly recognised as the reason
for performance breakdown in SVD-based parameter estimation
algorithms. We work out at which noise level the absence of
subspace swap is guaranteed and this gives us an accurate
prediction of the breakdown PSNR which we also relate to
the sampling rate and the distance between adjacent Diracs.
Simulation results validate the reliability of our analysis.

I. INTRODUCTION

Recently it has been shown that specific classes of non-

bandlimited signals which are completely described by a

finite number of parameters, called signals with finite rate of

innovation (FRI), can be sampled and perfectly reconstructed

using specific classes of sampling kernels. These include the

sinc or Gaussian function [1], [2] or exponential reproducing

kernels [3], [4], [5], [6]. Currently the most robust and widely

used FRI parameter estimation algorithms are SVD-based

methods, which are centered around splitting the measurement

space into an estimated signal-subspace and an orthogonal-

subspace. The knowledge of the orthogonal subspace allows

the unique reconstruction of the FRI signal. Examples of such

algorithms include Cadzow iterative algorithm [7] and matrix

pencil [8].

Previous works in FRI, e.g. in [4], [2], [9], have shown

that FRI algorithms achieve optimal results given by Cramér-

Rao bound up to certain signal-to-noise ratio (SNR). The

estimation departs from Cramér-Rao bound when SNR falls

below a certain threshold (see Fig. 1). It is well known that

this threshold effect appears in non-linear estimation problems,

e.g. direction of arrival, and has been studied in the past [10],

[11], [12]. Knowing the breakdown is crucial for ensuring

the estimation algorithm operates in the asymptotic region

predicted by the Cramér-Rao bound. To the best of our

knowledge, however, precise anticipation of the breakdown

in FRI framework is still an open question. In this paper,

we explain the breakdown event by subspace swap, which

has been broadly recognised as the reason of performance

breakdown in SVD-based parameter estimation algorithms.

For subspace swap we mean the situation when due to
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noise the orthogonal subspace mixes with the signal subspace

making the retrieval of the signal unreliable. Based on that we

predict the breakdown in the case where the sampled signal is

a stream of Diracs and the kernel is an exponential reproducing

kernel.

Deriving a tighter lower bound (e.g. Barankin bound [13],

[14], [15], [16]) for breakdown estimation may be an al-

ternative approach, but a specific estimator in general does

not achieve the bound. The breakdown point provided is

therefore usually over-optimistic. In comparison, our estimated

asymptotic region is directly linked to specific settings, for

example, sampling rate and distance between adjacent Diracs,

moreover, it is simpler to compute.
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Fig. 1. Standard deviation (averages over 1000 realizations) of the retrieved
locations of a FRI signal (a stream of two Diracs) compared to Cramér-Rao
lower bounds. The estimation algorithm breaks down when SNR falls below
a threshold.

Our contribution is two-fold. First, we explain the break-

down phenomenon in the FRI sampling method by subspace

swap. Second, we provide a reliable method to anticipate the

no-breakdown region in terms of PSNR, sampling rate and

minimum distance between adjacent Diracs.

The paper is organized as follows. We give an overview

of sampling streams of Diracs in Section 2. In Section 3

we explain the subspace swap event and provide a necessary

condition for the event to happen. This leads to our key result

which is the prediction of the breakdown event. We then show

the reliability of our breakdown prediction by numerical results

in Section 4. Finally we conclude in Section 5.

II. SAMPLING STREAMS OF DIRACS

x(t) h(t) = ϕ(−t/T )
T

yn

Fig. 2. Sampling set-up. Here x(t) is the input signal, h(t) is the impulse
response of the acquisition device and T is the sampling period. The samples
are given by yn = 〈x(t), ϕ(t/T − n)〉.

In this section we give a brief overview of the theory of

sampling signals with FRI and we refer to [1], [2], [3] for



2

more details. Here emphasis is given only to key aspects of

the method which will be used in Section 3 to predict when

noisy FRI recovery fails.

We consider the acquisition set-up of Fig. 2, where the

signal x(t) is acquired using the sampling kernel ϕ(t) and is

then uniformly sampled with sampling period T . Under this

model the observed samples are given by

yn = 〈x(t), ϕ(t/T − n)〉, n = 0, 1, . . . , N − 1. (1)

We assume x(t) is a stream of K Diracs:

x(t) =
K−1∑

k=0

akδ(t− tk), (2)

with tk ∈ [0, 1), k = 0, 1, . . . ,K−1 and the goal is to estimate

the locations {tk}K−1
k=0 and the amplitudes {ak}K−1

k=0 from the

N samples yn (sampling rate T = 1/N ). Exact retrieval of

these parameters is possible when the sampling kernel ϕ(t) is

properly chosen and an important family of kernels that allows

perfect reconstruction and has compact support is given by the

family of exponential reproducing functions. A function ϕ(t)
is able to reproduce exponentials eαmt,m = 0, 1, . . . , P when

a linear combination of ϕ(t) with its integer shifts satisfies:

∑

n∈Z

cm,nϕ(t− n) = eαmt m = 0, 1, . . . , P (3)

for a proper choice of coefficients cm,n, m = 0, 1, . . . , P .

Assume we now have a P -th order exponential reproducing

kernel ϕ(t) that can reproduce P + 1 = 2M + 1 exponentials

eαmt = em
′βt with m′ = m − M and m = 0, . . . , 2M . We

use this kernel to take the N samples yn of x(t). By linearly

combining the samples yn with the coefficients cm,n in (3)

we obtain the following 2M + 1 new measurements, called

exponential moments:

τm =
∑

n

cm,nyn = 〈x(t),
∑

n

cm,nϕ(t/T − n)〉

=

∫
∞

−∞

x(t) eαmt/Tdt =

K−1∑

k=0

ak e
(βtk/T )m′

=

K−1∑

k=0

ak e
−(βtk/T )M

︸ ︷︷ ︸

âk

e(βtk/T )m
︸ ︷︷ ︸

um
k

=

K−1∑

k=0

âku
m
k , m = 0, 1, . . . , 2M.

(4)

Retrieving âk and uk from τm is now a classical problem in

spectral estimation and can be solved using the annihilating

filter method (a.k.a. Prony’s method). We consider a filter

{hm}m=0...K which has the property that the roots of its z-

transform ĥ(z) correspond to the locations uk = eβtk/T . It

can be shown that this specific filter can annihilate τm, i.e.

hm ∗ τm = 0, and this can be written in matrix form as

Ah = 0, where A is a (K+1)×(K+1) Toeplitz matrix built

from 2K+1 consecutive τm. In noiseless situation, A is rank

deficient (rank K). Therefore, the null space has dimension

one and we can solve for h. Then from the roots of ĥ(z) we

retrieve the locations exactly. Given {uk}K−1
k=0 , the amplitudes

are found by solving (4).

Note that the subspace spanned by the K singular vectors

related to the non-zero singular values of A is called the signal

subspace. Also note that an extended Toeplitz matrix T, which

is built from τm,m = 0, 1, . . . , 2M and is of size (2M +1−
L) × (L + 1) with L ≥ K , is also of rank K and there are

L−K + 1 independent vectors {hl}Ll=0 which can annihilate

τm. This is shown in matrix form as follows:

ThL+1 = 0. (5)

Now we assume the measurements yn are corrupted with

additive noise, and we have access to

ỹn = yn + ǫn, n = 0, 1, . . . , N − 1, (6)

where ǫn are i.i.d Gaussian random variables with zero mean

and standard deviation σy . The moments τm become noisy as

shown below:

τ̃m =
∑

n

cm,nỹn = τm +
∑

n

cm,nǫn

︸ ︷︷ ︸

bm

, m = 0, 1, . . . , 2M.

(7)

The noisy T, denoted by T̃, is now full rank and (5)

is not satisfied any more. We can look for its total least

square (TLS) solution that can be found by performing

singular value decomposition (SVD) on T̃ with L = K .

The eigenvector corresponding to the smallest eigenvalue is

the desired estimation of h. This approach can be further

improved by an initial denoising (model matching) step, called

Cadzow iterative algorithm [7], [2]. The main idea of Cadzow

algorithm is to recover the structured low-rank matrix from the

full-rank matrix T̃. First, we consider the Toeplitz matrix T̃

with L = M for effective denoising and perform a SVD on T̃:

T̃ = USV∗. Then we truncate it to rank-K approximation T′

by forcing to zero the M+1−K smallest singular values. Now

T′ is no longer Toeplitz but its best Toeplitz approximation

can be obtained by averaging the diagonals of T′. A few these

iterations lead to a denoised set of moments.

Cadzow denoising works under the assumption that T is

well approximated by the K signal-subspace singular vectors

of T̃ and that discarding information in the orthogonal-

subspace of T̃ removes certain amount of noise. However,

when the noise on τm is very high we may experience a

subspace swap. Specifically, in the high level of noise T̃

is better approximated by some orthogonal-subspace singular

vectors rather than by the weakest signal-subspace singular

vector. In this case, the truncation of the M +1−K smallest

singular values of T̃ in the first iteration of Cadzow will lead

to an unrecoverable removal of information which belongs to

the signal-subspace. Consequently we are not able to retrieve

the locations by TLS and it is widely recognised that this

is when performance breakdown is observed. Moreover, we

conjecture that as long as the subspace swap does not happen

in the first iteration, the following iterations would separate

the subspaces correctly. Hence the analysis on the SVD of the

original noisy T̃ is sufficient for predicting when subspace

swap event happens and is given in Section 3.
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III. NECESSARY CONDITION FOR SUBSPACE SWAP EVENT

In this section we are going to work out at which noise

level the orthogonal-subspace singular vectors substitute the

position of the weakest signal-space singular vector in SVD

of the noisy data matrix T̃ with L = M .

We first look at the noiseless T ∈ C(M+1)×(M+1) and we

rewrite it as follows:

T = (M + 1)G






a1
. . .

aK




G∗, (8)

where

G =
1√

M + 1

[
g(t0) . . . g(tK−1)

]
(9)

and

g(t) =
[
eβt/T e2βt/T . . . e(M+1)βt/T

]
⊤

. (10)

G is Vandermonde and has full rank K since the locations

tk are distinct, hence in the noiselesss case T has rank

K . SVD of T can be written as T = UΣsV
∗, where

Σs = diag(s1, s2, . . . , sK , 0, . . . , 0
︸ ︷︷ ︸

M+1−K

), s1 ≥ s2 ≥ . . . ≥

sK > 0. The unitary matrix U has size (M + 1) × (M + 1)
and can be partitioned into Us = (u1,u2, . . . ,uK) and

U0 = (uK+1,uK+2, . . . ,uM+1). The matrix Us generates

the signal-subspace and the orthogonal-subspace covered by

U0 completes the space. The subspace U0 is used to identify

the locations of Diracs as discussed in the previous section.

When there is noise, the new moments τ̃m are noisy as

described in (7), which can also be written in matrix form as

follows:
τ̃ =Cy +Cǫ

=τ + b,
(11)

where C is composed of entries cm,n = cm,0 e
(m−M)βn at

position (m,n). Note that the statistics of the noise b depends

directly on the distribution of the sample noise ǫ and on

the coefficients C. A stable matrix C is therefore desired.

It is known that the most stable C has condition number

one and this can be achieved by choosing β = j 2π
N and

|cm,0| = 1/
√
N for m = 0, 1, . . . , 2M [4]. In our context

we use the exponential reproducing kernel which leads to this

specific C. More details on how to design this kernel are in [4].

Since by construction C∗C = I we have that the covariance

matrix of the moment noise equals that of the sample noise:

Rb = Rǫ = σ2
yI. Note that for β other than j 2π

N , Rb is not

exactly diagonal, but we have experimental evidence that the

derivation in the following part still approximately applies.

The matrix T becomes T̃ = T + N, where N ∈
C(M+1)×(M+1) is a Toeplitz matrix built with {bm}2Mm=0 in

(7). T̃ has full rank and will not lie entirely within the signal-

subspace. When noise is strong, T̃ will lie far from the signal-

subspace and at certain point the subspace swap happens.

Now we describe a worst subspace swap scenario and show

that this gives us the necessary condition for a swap event

to happen. When this condition is not satisfied, absence of

subspace-swap is guaranteed and the standard deviation of the

retrieved locations can be predicted by Cramér-Rao bound.

We denote the singular values of N with λ1 ≥ λ2 ≥
. . . ≥ λM+1. The worst situation is when the strongest

noise component with strength λ1 is aligned with one of the

elements in U0, and the second strongest noise component

with strength λ2 is aligned with the weakest signal component

with strength sK and sums destructively with it making it

become even weaker (sK−λ2). Hence subspace swap happens

when

λ1 > sK − λ2. (12)

This is a necessary condition since any other swap event

requires stronger conditions on the amplitude of noise singular

values.

It is known that the maximum singular value of a n × n
random symmetric Toeplitz matrix whose entries come from

a sequence of i.i.d random Gaussian variables with variance

σ2 is smaller than
√
2σ2n lnn [17]. Given this, we can relate

the maximum singular value of N to the order 2M of the

sampling kernel and the noise level as follows:

λ1 <
√

2σ2
y(M + 1) ln(M + 1). (13)

Now the least favourable scenario is when both λ1 and λ2

equals the maximum: λ2 = λ1 =
√

2σ2
y(M + 1) ln(M + 1)

which yields the following necessary condition for a subspace

swap:

λ1 > sK − λ2 ⇐⇒ λ1 > sK/2

⇐⇒
√

2σ2
y(M + 1) ln(M + 1) > sK/2.

(14)

This can be further derived to:

σ2
y >

s2K
8(M + 1) ln(M + 1)

. (15)

K = 1 : When we have 1 Dirac with amplitude a, then sK =
s1 = |a|(M + 1). We define PSNR= 10 log10

a2

σ2
y

. Hence we

can relate breakdown PSNR to the order P = 2M of the

kernel as follows:

PSNR < 10 log10
8 ln(M + 1)

(M + 1)
. (16)

The condition in (16) is shown in Fig. 3 by solid curve.

Note that (16) is a necessary condition for breakdown, hence

breakdown may happen for settings in the area below the

blue curve and it is guaranteed no-breakdown will happen

for the area above the curve.

K = 2 : When there are 2 Diracs and we assume both

Diracs are with same amplitude a, (8) now can be written

as T = a(M +1)GG∗. Its singular values s1 and s2, i.e. the

non-zero eigenvalues of T, can be derived easily by computing

the eigenvalues of the two-by-two matrix a(M +1)G∗G. The

expressions are as follows:

s1 = |a| (M + 1 + |〈g(t0),g(t1)〉|)
and s2 = |a| (M + 1− |〈g(t0),g(t1)〉|) .

(17)

Further manipulations gives

s2 = |a| (M + 1− |〈g(t0),g(t1)〉|)

= |a|
(

M + 1−
∣
∣
∣
∣
∣

sin(β2 (M + 1)∆t/T )

sin(β2∆t/T )

∣
∣
∣
∣
∣

)

,
(18)
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where ∆t = t1 − t0. By substituting (18) to (15) and defining

PSNR with 10 log10
a2

σ2
y

, we can relate the breakdown PSNR

to the sampling period T , the distance ∆t between the two

Diracs, the frequency interval β and the order of the kernel

P = 2M :

PSNR < 10 log10
8(M + 1) ln(M + 1)

(

M + 1−
∣
∣
∣
sin( β

2
(M+1)∆t/T )

sin( β
2
∆t/T )

∣
∣
∣

)2 . (19)

The threshold PSNR in (19) for different number of samples

N is illustrated by blue curves in Fig. 4, where we use the

fact that we set T = 1/N .

We can observe that when the relative distance ∆t/T
increases, the level of noise we can handle increases too. Once

the PSNR has reached a minimum, it then oscillates near the

minimum PSNR. Interestingly, when we use our favourable

setting P +1 = N , then the first local minimum is exactly at

∆t = 2/(N + 1). This implies that if we guarantee N + 1 to

be larger than 2/∆t we can achieve in general the most robust

estimation result in the sense of low breakdown PSNR.

When there are more than K = 2 Diracs, the breakdown

point given by subspace swap condition for the case of K =
2 still approximately applies when picking the two closest

Diracs.

IV. SIMULATIONS

In this section, we verify our proposed no-breakdown con-

dition by comparing it to the empirical breakdown points

obtained by the method as in Fig. 1. We show that the

estimation algorithm1 breaks down at a PSNR just below our

predicted no-breakdown PSNR, confirming the reliability of

our derivation. For simplicity, we only show the verification

result when we use the most robust sampling kernel as men-

tioned in Section III, i.e. a kernel of order P which reproduce

P + 1 = N exponentials {em′βt/T }Mm′=−M with β = j 2π
N

and its exponential reproducing coefficient |cm,0| = 1/
√
N ,

m = 0, 1, . . . , 2M . We emphasize that for other settings our

calculated necessary condition for subspace swap (16) and (19)

still accurately anticipate the breakdown event.

A. K = 1

The guaranteed no-breakdown PSNR (16) for different

kernel order P = 2M is shown by the blue curve in Fig. 3.

The measured breakpoints shown by red markers in general

agree with our proposed condition.

20 30 40
0

1

2

3

4

no. of moments (P+1)

P
S

N
R

 (
dB

)

 

 
swap condition
measured breakpoint

Fig. 3. Subspace swap condition compared to the empirical breakdown points
for K = 1 with the settings N = P + 1, T = 1/N and β = j2π/N .

1Note that Cadzow iterative algorithm and matrix pencil lead to very similar
performances.

B. K = 2

The guaranteed no-breakdown PSNR (19) for different

number of samples N and Diracs interval ∆t is shown by the

blue curves in Fig. 4. We can see that the observed breakdown

points, which are shown by red markers, are well predicted by

our proposed condition.

0 0.05 0.1 0.15 0.2
0
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N
R

 (
dB

)

 

 swap condition for N=21
N=31
N=41
measured breakdown for N=21
N=31
N=41

Fig. 4. Subspace swap condition compared to the empirical breakdown points
for K = 2 with the settings N = P + 1, T = 1/N and β = j2π/N .

C. K > 2

In this simulation, we show that when there are more

than K = 2 Diracs, the breakpoint given by subspace swap

condition for K = 2 still approximately applies. For example,

from Fig. 4 we see that the smallest possible breakdown PSNR

for K = 2 and N = 41 is roughly 0dB and is achieved when

∆t ≥ 2/(N + 1). We now demonstrate that the guideline is

reliable even for K > 2. We show in Fig. 5 that we accurately

reconstruct 17 Diracs from N = 41 samples in noise of PSNR

= 0dB, where the distance between every two Diracs is greater

than 2/(N + 1).

−0.5 0 0.5
−1

0
1
2
3

Input Signal x(t): no. of Diracs K = 17

−0.5 0 0.5
−5

0
5

10
15 41 noisy samples (red), PSNR = 0dB

−0.5 0 0.5
−1

0
1
2
3

17 Diracs are reconstructed 
from 41 e−moments (blue)

Fig. 5. Reconstruction of 17 Diracs with minimum Dirac separation ∆t ≥
2/(N + 1) from 41 samples with PSNR = 0dB.

V. CONCLUSION

In this paper, we have studied when noisy FRI estimation

algorithms break down using the subspace swap criterion. We

have then derived the breakdown region and related it to the

sampling rate, the minimum distance between two Diracs and

PSNR. The reliability of our predicted breakdown region has

then been confirmed by simulation results.
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Applications, Ph.D. thesis, École Polytechnique Fédérale de Lausanne,
2013.

[17] M. W. Meckes, “On the Spectral Norm of a Random Toeplitz Matrix,”
Electronic Communications in Probability, vol. 12, pp. 315–325, 2007.


