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ABSTRACT

Difficult situations such as high noise or low resolution can seriously
degrade the performance of object recognition algorithms that oper-
ate on isolated images. We show that recognition performance may
be improved substantially in such cases by fusing the information
available from a sequence of multi-view images. In this paper we
present two algorithms for object recognition based on SIFT feature
points. The first operates on single images and uses chirality con-
straints to reduce the recognition errors that arise when only a small
number of feature points are matched. The procedure is extended
in the second algorithm which operates on a multi-view image se-
quence and, by tracking feature points in the plenoptic domain, is
able to fuse feature point matches from all the available images re-
sulting in more robust recognition.

Index Terms— Object recognition, multi-view images, local in-
terest features, plenoptic function, SIFT.

1. INTRODUCTION

In this paper we propose an object recognition algorithm based on
multi-view images and compare it with recognition from single im-
age. The proposed algorithm exploits the structure of the multi-view
data in order to propagate feature point matches from all available
images onto a single reference image. We demonstrate that this
approach leads to a more robust object recognition algorithm in an
open-set recognition experiment.

The majority of object recognition algorithms operate on sin-
gle images and are based on the matching of local interest fea-
tures [1] [2]. A local interest feature extraction procedure comprises
two steps: an interest point detector aimed at selecting distinctive
and repeatable locations in the image, and a feature descriptor, usu-
ally a vector, that characterizes the neighborhood of the interest
point. In this work we have chosen to use the scale-invariant feature
transform (SIFT) described by Lowe in [3], which has consistently
been shown to perform well [1].

Multi-view camera systems have attracted increasing interest in
recent years [4] and many new applications that involve such sys-
tems are emerging. The data acquired by multiple cameras from any
viewpoint can be parameterized by a single seven-dimensional func-
tion called the plenoptic function [5]. If we assume that cameras lie
on a line and fix time and wavelength, we obtain a 3D projection
of the plenoptic function known as the Epipolar-Plane Image (EPI)
volume [6]. The data acquired by a multi-camera system is very
structured [7]; in the case of the EPI volume, a point in the scene
corresponds to a line in the plenoptic domain whose position and
orientation depend on the location of the point in the scene. It is
possible to exploit such structure to perform signal processing tasks
in the plenoptic domain.

The paper is organized as follows: in Section 2 we introduce the
feature point extraction, matching and recognition techniques that
we will use, and present a single-view object recognition (SOR) al-
gorithm. Section 3 describes our novel multi-view object recognition
(MOR) algorithm. Experimental results are shown in Section 4, and
we conclude in Section 5.

2. SINGLE-VIEW OBJECT RECOGNITION

Our single-view object recognition (SOR) procedure is based closely
on that given by Lowe in [3], but we have modified it slightly to im-
prove its performance. The six steps in the procedure are described
briefly below; further details of the first four steps may be found
in [3].

Feature Extraction: SIFT feature points are identified as the
extreme values of the Difference of Gaussian (DoG) in scale and
space, and are filtered to remove those with low contrast or poorly
defined locations. Then an orientation is assigned to each detected
point and finally, a descriptor containing 128 elements is formed for
each feature point as described in [3].

Feature Matching: Feature vectors extracted from a test image
are compared with those from the target dictionary using a Euclid-
ean distance measure. A match is retained if the ratio between the
distance of the best match over the second best match is sufficiently
small; this is termed nearest neighbor and second nearest neighbor
(NN/SNN) matching. We reject all the matches with a NN/SNN ra-
tio greater than 0.8 as suggested in [3].

Hough Histogram Clustering: The location, scale and orienta-
tion associated with each feature point define a 2D similarity trans-
form relating to each matched pair of features. We use a Hough
histogram clustering approach to reject those matches whose simi-
larity transform estimates are inconsistent. The estimated similarity
transform parameters cast votes into a 4D histogram, consisting of
translation, log scale and rotation of the similarity transform. The
histogram bins are discretised to 30◦ for rotation, a factor of 2 for
scale and 1/8 of the image size for translation. The clustering is
achieved by finding the peak of this 4D histogram which will in-
clude all matches that agree on the same pose for the object. The
likelihood of this pose interpretation being correct is therefore much
higher.

Random Sample Consensus (RANSAC) Estimation [8] is ap-
plied to the matches filtered by NN/SNN and Hough histogram clus-
tering to estimate a refined homography between a dictionary entry
and the object in the test image. Since the Hough histogram clus-
tering has already removed most of the outliers, RANSAC achieves
good results.

Homography Validity Checking: A valid homography should
map any convex region onto a non-reflected convex region of the test



image. When incorrect matches are obtained, it is common for the
estimated homograhy to infringe this condition. This is illustrated
in Figure 1(c, e, g), which shows the inverse mapping from the test
image for three invalid homographies. We therefore reject any ho-
mographies that do not satisfy this chirality condition.

Interpolation and Normalized Cross-Correlation (NCC) [9]:
The final step consists in interpolating the region that the homogra-
phy maps from the dictionary image to the test image. Linear in-
terpolation is applied to obtain an interpolated image with the same
resolution as the dictionary entry image. We use NCC to measure
the similarity between the interpolated image and the dictionary en-
try image, which is given by
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where A and B represent two images with the same size and Ā and B̄
are the mean of images. For all the dictionary entries, the recognition
will be made by finding the entry having the highest NCC with the
interpolated image. A summary of the complete procedure for SOR
is given as Algorithm 1.

Algorithm 1 Single-view Object Recognition (SOR)
1. Build a dictionary of SIFT features from the database of target
objects
2. Extract SIFT features from the test image
3. Match all the features in the test image with those in the dictio-
nary using the NN/SNN criterion
4. Use Hough histogram clustering to filter the previous NN/SNN
matches
5. Apply RANSAC to find the refined homography from a dictio-
nary entry to the object in the test image
6. Check the validity of the obtained homography
7. Interpolate the region that the homography maps from the dic-
tionary entry image to the test image, and calculate the NCC for
each entry in the dictionary
8. Choose, after a threshold checking, the entry in the dictionary
with the highest NCC as the final recognition result.

Figure 1 shows the experimental results for SOR. SIFT features
extracted from ten different book images are stored and indexed as
the dictionary database. Figure 1(a) shows a test image which con-
tains a copy of the dictionary entry. The matches identified in step 5
are shown as lines joining the test and dictionary images. Figure 1(b)
shows the interpolated image from step 7 which resulted in a NCC
of 0.69. Figure 1(c) shows the same image but this time being com-
pared with an incorrect dictionary entry. Although some matches
have been found, the interpolated image shown in Figure 1(d) re-
sults in a low NCC of 0.04 as well as an invalid homography which
step 6 will reject. The SOR algorithm performs well in most of the
recognition tests. However, as we can see in Figure 1(e-h), SOR
can fail with noisy observations or low resolution images. In these
cases SIFT does not extract a sufficient number of feature points,
and NN/SNN matching together with Hough histogram clustering
cannot provide enough matches. This causes the failure of SOR.

3. MULTI-VIEW OBJECT RECOGNITION

As demonstrated above, object recognition techniques based on a
single-view images may fail with noisy observations or low reso-
lution images. However, given a set of multi-view images of the
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Fig. 1. Single-view object recognition. Correct dictionary entry
achieves good homography and high NCC as in (a) and (b), while
wrong dictionary entry obtains very low NCC in (c) and (d). Two
failures are illustrated in (e) and (f) due to the low resolution test
images, in (g) and (h) due to the noise, with PSNR = 40.

same scene, more information is available and can be used to im-
prove recognition performance. In this section we propose a novel
multi-view object recognition (MOR) algorithm. Algorithm 2 gives
the overview of our MOR, in which some novel techniques are ex-
ploited such as disparity-estimation and two-stage Hough histogram
clustering, combined with other SOR techniques.

Algorithm 2 Multi-view Object Recognition (MOR)
1. Build the dictionary and Extract SIFT features from each multi-
view test image,
2. Run Disparity-Estimation to find the disparities between the
selected reference image and all other multi-view images,

(a) Obtain the NN/SNN matches for each image.
(b) Combine all the NN/SNN matches from all multi-view im-

ages and filter them by relaxed Hough histogram clustering.
(c) Dynamic Programming tracking.
(d) Find the disparities using the best tracks.

3. Perform two-stage Hough histogram clustering,
(a) Apply 1st-stage Hough histogram clustering to filter the

matches of NN/SNN for each image.
(b) Propagate all the 1st-stage Hough matching features from all

multi-view images onto the reference image using the disparities
obtained from Step 2, and filter them by a 2nd-stage Hough his-
togram clustering.
4. Apply from Algorithm 1 steps 5 to 8 to the reference image.

3.1. Disparity-Estimation

The purpose of Disparity-Estimation is to find the disparities be-
tween a reference image and all the other multi-view images. Note
that the disparities we are interested in are those of the target object,
not those of other objects or background in the test images. A relaxed
Hough histogram clustering method and a DP tracking technique are
exploited to find the disparities as described below.

Relaxed Hough histogram clustering:

The purpose of Relaxed Hough histogram clustering is to combine
the NN/SNN matches from all the multi-view images to obtain more
correct matches and perform reliable and robust recognition. Recall
that each match defines a similarity transform which can be used
for match-filtering by Hough histogram clustering. Provided that the
baseline is small compared with the distances between cameras and
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Fig. 2. 4 out of 10 natural multi-view images are illustrated as a
3D plenoptic volume to demonstrate how the disparity-estimation
approach works. SIFT feature points are marked in each image with
colored cross and green lines show the tracks.

the scene, it can be assumed that the similarity transforms defined by
correct matches will be similar for all multi-view images. Therefore
a Hough histogram clustering with relaxed bin size can be applied
to filter these combined NN/SNN matches. In practice, the Hough
histogram bin sizes are broadened to 45◦ for rotation and 1/2 of the
image size for translation. Hence it is possible to cluster all the cor-
rect matches from all multi-view test images.

Disparity Estimation:

In order to track the same object feature point in multi-view im-
ages, we use a cost function comprising two components: a match-
ing error and a geometrical error. The Euclidean distance of the
feature vectors is used as the matching error. If the camera mo-
tion is known, the possible trajectories within the EPI volume [6]
lie on a 1-dimensional family of curves [10]. The geometrical error
component of the cost function is taken as the image-plane devia-
tion from the best-fit curve taken from this family. Feature points
can be efficiently tracked between images by using n-best Dynamic
Programming (DP) [11] to minimize the cost function.

Experimental Result:

Figure 2 demonstrates the Disparity-Estimation approach in terms
of multi-view images volume. The original SIFT feature points are

shown in Figure 2(a) with approximately 800 features detected for
each image. Figure 2(b) gives the NN/SNN matched features for the
correct dictionary entry. The NN/SNN measure discards unmatched
SIFT points and the number of features drops from 800 to approxi-
mately 60 for each test image. Figure 2(c) and (d) depict the matched
features filtered by the relaxed Hough histogram clustering and only
the correct matches on the object of interest are retained. Figure 2(c)
also illustrates the DP tracking results. The final disparity-estimation
result is given in (d) by averaging the 3 best tracks found in (c) by
the DP tracking.

3.2. Two-stage Hough histogram clustering

Since reliable SIFT features often appear on some images and dis-
appear on other images due to the noise and low resolution, the idea
of MOR is to propagate the SIFT features of interest from all multi-
view images onto a reference image. This is accomplished using the
disparity obtained by DP tracking. Firstly, as in SOR, the 1st-stage
Hough histogram clustering is applied to filter the NN/SNN matches
in each test image. Then these filtered features from all multi-view
images can be propagated onto the reference image using the dis-
parities (i.e., the best track of the object of interest) estimated by
DP. Some incorrect matches may be propagated as well, therefore
a 2nd-stage Hough histogram clustering is needed to remove these
incorrect propagated matches. Finally, steps 5, 6, 7 and 8 of the SOR
algorithm are applied on the reference image to perform the recog-
nition.

4. RESULTS

In this section, we present results for multi-view object recognition
and compare them with the single-view method. In order to demon-
strate MOR’s advantage, the test data sets are chosen to be extremely
hard for SOR algorithm. As in the previous SOR experiments, ten
books are chosen as dictionary database and ten multi-view test im-
ages are capturing a book in a cluttered scene about 10 metres from
the camera. The ten images cover a total camera displacement of
about 1 metre. Figure 3 illustrates how the SOR method performs
poorly with low resolution images, while the proposed MOR algo-
rithm achieves the correct homography and a high NCC. The upper
images are two examples of single-view image recognition; Image-4
was the only one resulting in a valid homography and, even so, the
NCC was only 0.10. In contrast, the lower set of images are the
MOR results. It can be seen that in MOR an increased number of
matches are obtained by propagating the NN/SNN matches from all
multi-view images using the disparities. This results in a more accu-
rate homography and good interpolation images with a high NCC of
0.46, which gives a correct recognition result.

5. CONCLUSION AND FUTURE WORK

In the first part of this paper, we describe a single-view object
recognition algorithm which extends a technique from [3]. While
this algorithm works well in most cases, its performance degrades
when the objects of interest are far away or when the measurements
are noisy. To overcome these limitations a novel multi-view ob-
ject recognition scheme is proposed. The algorithm is capable of
fusing feature point matches from all the multi-view images into a
single reference image. This is achieved by devising a DP method
that is able to combine geometrical information such as the camera
locations with the information related to each feature point in the
images. Simulation results show the robustness of this algorithm to
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Fig. 3. Object recognition results (comparison of MOR and SOR) for low resolution images. Note that the size of interested object in the
zoom-in area is 28 × 18 pixels, while the whole test image is 800 × 600 pixels, and 480 × 252 is the dictionary image’s size. The distance
between the camera and object is about 10 metres, while the total camera motion is about 1 metre.

noise and low resolution images. Images with occlusions will be
taken into account in the future for comparison of MOR and SOR.
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