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Abstract—This paper presents a novel technique for the auto-
matic detection of recaptured videos with applications to video
forensics. The proposed technique uses scene jitter as a cue for
classification: when recapturing planar surfaces approximately
parallel to the imaging plane, any added motion due to jitter will
result in approximately uniform high-frequency 2D motion fields.
The inter-frame motion trajectories are retrieved with feature
tracking techniques, while local and global feature motion are
decoupled through a 2-level wavelet decomposition. A normalised
cross-correlation matrix is then populated with the similarities
between the high-frequency components of the tracked features’
trajectories. The correlation distribution is then compared with
trained models for classification. Experiments with original and
recaptured standard datasets show the validity of the proposed
technique.

I. INTRODUCTION

With the increasing availability of small, inexpensive video
recording devices, casual movie making is now within every-
one’s reach. Smartphones with integrated video recording fa-
cilities are now commonplace, and with resolutions exceeding
the 10 megapixels barrier and fast direct internet connections,
videos can be uploaded to the internet seconds after they
are captured. As a result, over one hour of video material
is uploaded on websites such as YouTube every second, with
traffic from mobile devices being trebled in 2011 alone [1].

This represents a great leap forward for budding directors;
however it poses a significant threat in terms of copyrighted
video material that can be easily covertly recorded and dis-
tributed. The recent high-profile case of the file sharing website
MegaUpload being seized by the U.S. Justice Department is
a case in point for the magnitude of the illegal distribution of
copyrighted material.

Illegitimate video material circulating on the net may not
be limited to the case of recaptured copyrighted footage.
Under this particular scenario, proprietary videos aired, for
example, in a cinema, are covertly recaptured with a portable
camcorder and uploaded on pirate websites for download.
Another possibility is to recapture a fraudulent or otherwise
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doctored video in order to conceal traces of forgery, claiming
its authenticity.

Using recapture as an antiforensic technique covering the
weak footprints left by doctoring is an attack that has been re-
cently explored in the case of images in several works, both in
the case of recapture from printouts [2], [3] and directly from
LCD screens [4], [5]. Moreover, when recapturing videos the
effectiveness of the attack is amplified, as the more aggressive
compression strategies normally employed eliminate forgery
footprints to a much greater extent.

In this paper, we propose a simple yet effective method
to automatically detect recaptured videos. The proposed tech-
nique is based on the detection of high-frequency motion
uniformity present in the video sequence, introduced by cam-
era jitter during recapture. Since the method is based on
characteristics at a higher level of abstraction (i.e. trajectory of
image features), it is robust to antiforensic methods and poor
quality input signals. The proposed method is validated with
standard video sequences with different input resolutions.

The paper is organised as follows: in the next section,
an overview of related work in recaptured video detection
is given. Then, the proposed method is outlined with a
description of its constituent stages. Finally, the method is
tested on standard original and recaptured videos.

II. RELATED WORK

Due to a greater focus on image forensics, the literature
concerned with video forensics is comparatively small. More-
over, some of the methods proposed are a direct transposition
to video of techniques applied to image forensics; examples
include camera PRNU extraction from video frames for video
copy detection, both on high quality [6] and low resolution
compressed YouTube videos [7].

The approach in [8] is more exclusively specific to videos,
as it aims to detect video forgeries by examining the motion
regularity between interlaced fields of neighbouring frames.
In [9], forged areas are identified by modelling a per-pixel
noise function dependent on the image irradiance and detecting
outlying image portions.

The methods above, however, are not tailored to multiple
recapture scenarios, as the feature considered are either sup-



pressed during the recapture process or not sensitive to its
footprints. Other techniques have been devoted explicitly to the
detection of recaptured cinema videos: a geometric approach is
presented in [10], where reprojected videos are identified from
non-zero skew parameters being introduced within the camera
intrinsic matrix. However, the technique assumes a skew factor
strictly equal to zero in the original video. Moreover, its
robustness quickly decreases as the recapturing camera plane
approaches a configuration parallel to the cinema screen.
Validation on real sequences is also limited, and performed
on a single 42 frame segment.

In [11], recaptures are detected by the presence of combing
artifacts caused by interlaced scanning on TV screens and
interlaced recordings, therefore ineffective with more modern
progressive devices. The problem of automatically detecting
pirated movies captured in a cinema is also examined in [12],
however it requires robust watermarking of the projected video
[13].

Conversely, we propose an approach explicitly devoted to
the detection of recaptured videos, without assumptions on
the device employed or on the video visualised. While the
proposed technique is unable to provide any information on
whether a video has been subjected to tampering, recapture is
often a telltale sign of antiforensic activity.

III. SYSTEM WORKFLOW

The intuition behind the proposed method is shown in
Fig. 1. In the most common scenario of copyrighted video
recapture, the pirate obtains a bootleg recording through the
covert use of a portable camcorder to capture the aired video.
The video contains natural scenes with both static and inde-
pendently moving elements, each with its own local trajectory.
However, during recapture a global jitter noise is introduced.

Fig. 1: Problem overview. A stable video containing both static
and independently moving regions is filmed with a handheld
camcorder. The jitter introduced results in uniform additive
jitter noise affecting the trajectory of image features.

Fig. 2: System workflow. Visual features are tracked over time
in the input video. The resulting trajectories are then filtered to
isolate their high frequency components. Correlation between
all pairs of filtered trajectories is computed to quantify jitter
uniformity. Histograms of correlation and motion distributions
are tested against trained distributions for classification.

In the most basic scenario, this is due to the physiological
tremor of the person holding the camera. Less noticeable
causes of jitter include environmental factors such as venti-
lation outlets on the cinema screen, projector flickering and,
if a stabilisation platform such as a tripod is used by the pirate,
vibrations due to the activity of the other people in the room.
In such cases, the high image resolution of modern acquisition
devices provides an advantage to the forensic analyst, as
smaller movements will result in displacement magnitudes
beyond the subpixel range.

Referring to the diagram in Fig. 1, the recapture process
adds jitter to the motion trajectories of image features over
time. In the diagram, d0 and d1 are the distances between the
camera optical centre and the opposite corners of the screen
being recaptured. For minimal distortion, the screen is kept
approximately parallel to the camera image plane, i.e. d0 ≈ d1.
In this case, the homogeneous 2D coordinates of the projection
of any given 3D point X in the field of view at a distance d
from the optical centre are:

P · X =
(x
d

y

d
1
)T

(1)

Whenever d0 ≈ d1 and the distance between the camera
and the screen is much larger than the size of the screen, any
jitter motion vectors added for each frame are approximately
uniform throughout the frame due to uniform foreshortening.
This is in contrast with noisy, jittery recordings of natural
scenes, where the parallax effect will cause the motion of
farther away portions of the scene to be perturbed to a lesser
degree. Hence, while the jitter in itself indicates that the scene
was captured by a handheld camera, it is the uniformity of the
jitter throughout the frame that characterises the filming of a
planar surface approximately parallel to the camera plane.

The problem of uniform jitter detection can then be de-
composed according to the workflow shown in Fig. 2. First,
given an input video, its visual features are tracked over
time in order to create one 2D trajectory signal for each
feature tracked. Since the added jitter is assumed to be a
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Fig. 3: (a) Horizontal velocity signal from a tracked feature in the Akiyo sequence. (b) Its low-pass and (c) high-pass
components.

relatively high frequency signal, each trajectory undergoes
a 2-level wavelet decomposition after which only the high
frequency components are retained. Finally, a normalised
cross-correlation (NCC) matrix is populated by calculating the
correlation between the high frequency components of all the
trajectories. The motion and correlation histograms are then
tested against known distributions trained from original and
recaptured datasets by means of the Kullback-Leibler (KL)
divergence.

In the next subsections, each operation along the chain is
examined in greater detail.

A. Trajectory tracking

The first phase of the algorithm aims to create 2D motion
trajectories of the feature flow throughout the input sequence.
To this end, features are first detected with the FAST feature
detector [14] with subpixel refinement in the opening frame
of the sequence. Typically, the number of features detected
for tracking ranges between 500 and 2000 depending on the
input image quality and resolution. The detection thresholds
are manually adjusted so that features will be identified in
approximately all areas of the frame, so that jitter uniformity
can be tested for across the whole frame.

Detected features are then matched to their updated lo-
cations in the following video frame via a Pyramid Lucas-
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Fig. 4: (a) Quadratic spline scaling function and (b) its
corresponding biorthogonal wavelet.

Kanade (LK) tracker [15]. The process is then iteratively
repeated using the previously matched features as starting
detected features to be matched in the following frame. Stored
trajectories consist of a 2D motion vector per consecutive
frame pair.

The choice of an LK tracker is due to its simplicity: a
fast, effective tracker with no motion prediction phase makes
sure that features are matched only when they are visible
and their appearance remains unchanged. This guarantees a
high matching confidence, and avoids the introduction of noise
in our measurements from motion prediction or regularisers.
Such high confidence comes at the price of matching rate,
however for our application a few hundred successfully tracked
features are normally sufficient. Trajectories with unsuccessful
matches are removed from the final set.

B. Wavelet decomposition

In order to separate the relatively high-frequency jitter com-
ponents from the smooth local feature motion, each trajectory
is input to a wavelet decomposition stage. First, the trajectories
are converted from absolute coordinates to x-y velocities
through a finite differences scheme. Then, a 2-level wavelet
undecimated decomposition is performed using a quadratic
spline and its corresponding biorthogonal wavelet as filters,
shown in Fig. 4.

After the decomposition, the twice high-pass filtered trajec-
tories’ components are input to the next stage of the algorithm
to quantify their uniformity. In Fig. 3 an example of a single
feature velocity signal from the Akiyo video sequence is
shown together with its low-pass and high-pass components.

C. Correlation matrix population

In this stage, the correlation between the high-pass com-
ponents of the horizontal and vertical velocities is computed
to test for their uniformity. Given N tracked features and
their corresponding velocities v, an N ×N normalised cross
correlation matrix is populated where each element at location
(i, j) is the result of:



NCC(i, j) =
∑
i,j∈N

|vi(t)− v̄i| |vj(t)− v̄j |
‖vi‖‖vj‖

(2)

The NCC measure is a good indicator of feature motion
uniformity, and is therefore suitable for the proposed workflow.
Given a natural scene captured by a static camera, feature
velocity will be only locally correlated as isolated scene
segments will be moving with common motion characteristics.
Similarly, in most natural scenes only a fraction of the features
is dynamic, with the remaining static zero-norm trajectories
yielding very low correlation values. On the other hand, the
jitter present in recaptured videos is by construction highly
correlated as shown in Section III.

An example of this behaviour is shown in Fig. 5, where
isolated patches of high correlation are found in the NCC ma-
trix from the original video among a generally low correlation
average. The NCC matrix from the recaptured video exhibits
a uniformly high correlation values of its high-frequency
velocity components.

D. Hypothesis testing

Qualitatively, using our previous considerations on jitter
uniformity and local motion correlation it would be possible
for a human observer to use the NCC matrices as telltale
signs of recapture. However, in order to develop an automatic
classifier the correlation distribution for both original and
recaptured videos was considered.

For each of the 10 standard testing videos shown in Fig.
7 and their recaptured versions, a correlation distribution was
created for their horizontal and vertical velocity components.
The resulting 20 distributions per capture condition were
then averaged together yielding two empirical distributions,
representing the velocity correlation distribution of original
and recaptured videos respectively.

From the graphical representation of the distributions in Fig.
6, the qualitative comments made earlier can be numerically
observed directly. The correlation distribution for the recap-
tured case is mostly concentrated around the high-correlation
end of the axis. For the non-recaptured case, there is a slight
peak at the high-correlation end representing both local motion
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Fig. 5: Heat maps of NCC correlation matrices populated
from the trajectories of (a) original ‘Akiyo’ and (b) recap-
tured sequences. Higher colour temperatures indicate a higher
correlation value.

Fig. 6: Average distribution of NCC values from original (blue)
and recaptured (red) videos. The distribution for recaptured
videos is highly concentrated around the maximum value of 1,
while original videos exhibit a much more uniform correlation,
with maxima at either end due to local jitter and static features.

and noise from the tracker, while a more significant portion
of the distribution is concentrated towards the low-correlation
end of the graph.

Together with their differences in shape, the classifying
power of the two distribution is also indicated by their non-
overlapping area, which amount to 69.39% of their union.
In the proposed workflow, these two distributions are previ-
ously created with labelled training video sequences. Incom-
ing videos are classified by finding which one between the
distribution for original videos Porg and recaptured videos
Prec minimises the KL divergence with the calculated input
correlation distribution P :

min (DKL(P, Prec), DKL(P, Porg)) (3)

where:

DKL(P,Q) =
∑

k∈[0,1]

P (k) log
P (k)

Q(k)
(4)

In Eq. 4, P (k) is the distribution of the correlation of the
sequence to be classified, while Q(k) is one of the two trained
distributions. The output of the classifier is the category of the
trained distribution that minimises the KL divergence with the
input.

IV. NUMERICAL RESULTS

The proposed algorithm has been tested with 10 freely
available test sequences1, shown in Fig. 7. Each sequence was
then recaptured with a compact Kodak V550 digital camera
at a resolution of 640x480. The camera was held by hand
as stably as possible to recapture the scenes directly from an
LCD screen from a distance of approximately 1m, so that the
picture would completely fill the field of view. Screen edges
or other extraneous features were manually cropped in order
to not provide static features that might aid the classification.

1All sequences available at: http://media.xiph.org/video/derf/



Fig. 7: Datasets used for evaluation. From left to right, top to bottom: ‘Waterfall’, ‘Paris’, ‘Hall monitor’, ‘Container’, ‘City’,
‘Bridge’, ‘Akiyo’, ‘Salesman’, ‘Station’, ‘Old town crossing’.

From each sequence, a number of frames ranging from
100 to 500 was selected. The variable number of frames
depends on the length of a sequence with stable features,
i.e. without occlusions or features moving outside the field
of view. For each of the 20 sequences, visual features were
tracked with common set of tracker settings, yielding a number
of trajectories ranging from 500 to 2000 depending on the
image characteristics and video resolution.

The velocities obtained from the trajectories were then
used to generate correlation distributions. The accuracy of the
proposed method was then tested with a leave-one-out cross-
validation. The results are reported in Table I.

Classified as recaptured Classified as original

Recaptured videos 90% 10%
Original videos 30% 70%

TABLE I: Classification accuracy results for original and
recaptured sequences.

As the results suggest, the proposed method is effective
for correctly identifying recaptured sequences. However, some
errors are present in the classification of original sequences.
Considering our dataset, such classification errors originate
from the ‘City’, ‘Station’ and ‘Waterfall’ sequences. The
first presents some significant challenges as it consists of
an aerial view of a city recorded while looking down from
a helicopter. The distance of the city from the helicopter
is therefore approximately uniform for most features, while
significant jitter is introduced during the original recording.
The remaining two sequences both consist of a generally static
scene being gradually zoomed out by a handheld camera. The
apparent feature motion introduced during the zooming out
process is highly correlated, and jitter is introduced by the
operator.

V. FUTURE DIRECTIONS

The testing conditions have also not been chosen in favour
of the proposed technique: low original and recaptured video

resolution results in coarser trajectory estimation from the
tracker, unable to pick the finer differences in motion due to
parallax. Moreover, feature-length videos do not consist of a
single scene: multiple different sequences from longer videos
can be sampled to check for consensus in the classification
outcome.

Consequently, the first improvement to the proposed tech-
nique will be the automatic segmentation of the input video
into multiple scenes. The scenes can then be analysed individ-
ually to look for jitter consistency (in terms of motion magni-
tude) across the different scenes, thus providing a recaptured
video indicator that would not depend on prior training and
possibly lowering the false positives rate.

Another extension to the method would consist of the use
of a multi-scale tracker able to capture subtler motions. This,
together with an adaptive decomposition of the trajectory
signals based on their high-frequency content, might help
the analyst in identifying sequences recaptured under stabler
conditions, such as with cameras on tripods.

Finally, the improved method will be tested on more ex-
tensive amateurial datasets, such as YouTube videos, with
particular attention to the false positive rate.

VI. CONCLUSIONS

In this paper a feature-based technique has been proposed
for the task of automatic classification of recaptured videos.
The method is based on high-level visual features and therefore
robust to compression and common image processing opera-
tors.

The proposed technique has been tested with 10 freely avail-
able videos and their recaptured versions, with a classification
accuracy of recaptured videos of 90%. Classification perfor-
mance of original sequences can be improved by repeated
subsequence sampling over the full video length.
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