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Abstract—This paper presents a novel cue for automatic
recapture detection of videos. The problem of recapture detection
is important to the field of digital forensics as recapture is
often an indicator of prior tampering activity. In this paper, we
tackle the problem by considering the deformation underwent
by geometric primitives, such as straight lines, when processed
along recapture chains. We mathematically derive a general curve
model for straight lines deformed after single capture under
a radial distortion model. The model is then extended to the
case of recapture, demonstrating how to automatically classify
videos on a per-frame basis from its compliance with a low-
order radial distortion model. Finally, we test our model with
a practical detector to automatically extract deformed straight
lines for classification, which is applied to synthetic sequences.

I. INTRODUCTION

The recent surge in popularity of digital forensics can be
attributed primarily to the widespread perception of a funda-
mental technological gap: while graphics software has been
relentlessly evolving enabling users to convincingly tamper
or even synthetically render images [1], algorithmic solutions
able to automatically identify the tampering have essentially
been outpaced.

With the current ease of duplicating, tampering and mas-
sively distributing images and videos through social networks,
deception is within anyone’s reach, eroding the public trust
on digital content. Modern forgery detection methods have
focused on a variety of ‘footprints’: traces left by different
operators during acquisition, compression and editing of the
material. A comprehensive review of digital forensics methods
can be found in [2] and [3] for approaches related to videos
and images respectively.

However, one of the easiest methods to elude forensics
analysis consists in recapturing forged images either from a
printout or directly from the LCD screen. In these cases, the
sensitive numerical information relative to the most common
footprints used for tampering detection such JPEG compres-
sion coefficients, Photo Response Non-Uniformity (PRNU)
and Colour Filter Array (CFA) artifacts [3] are destroyed dur-
ing the recapture process, thus fooling automatic algorithms.
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Moreover, whenever due care is taken during the recapture [4],
it has been shown that human observers are in general poor
at differentiating between originals and recaptured images [5].
Recapture detection is therefore essential as an indicator of
prior tampering activity, coming in aid to the forensic analyst
whenever both footprint detectors and human observers might
be ineffective.

Existing approaches for recapture detection have been
proposed for both video and images. On video sequences,
recaptured videos are identified from estimation of non-zero
skew parameters in the camera intrinsic matrix [6], we note
that the proposed method requires for accuracy a geometric
configuration where the camera is off-axis relative to the
target display. In [7], combing artifacts introduced by inter-
laced scanning are exploited as recapture footprints, but can
be avoided altogether by recapture with modern progressive
devices. In [8] ghosting artifacts due to the phase difference
between original video and camera recapture are used as a cue
for classification of recaptured videos from LCD screens. More
recently, the work in [9] proposes a method to detect video
recapture by identifying the high-frequency jitter introduced
by physiological tremor and other environmental factors.

Regarding image recapture, several works have focused on
forensic analysis of scanned prints, exploiting colour, sensor
noise features and specularities [10], [11], [12]. Other methods
have turned their attention to detecting recapture directly from
LCD screens: in [5], a combination of colour features, wavelet
statistics and local binary patterns is fed into a SVM classifier
for recapture detection. The method in [13] is able to recover
the acquisition history from the edges of an image after
recapture, but it requires a database of acquisition devices.

In this work we examine a novel cue for automatic video
recapture detection based on the radial lens distortion of
primitive image features. In particular, our contribution is
twofold: first, we provide a mathematical expression for the
shape of straight lines in space after 2 consecutive chains
of spatial transformation, perspective projection and radial
distortion, outlining a procedure to extend it to N consecutive
chains. Based on our theoretical modelling, we also develop a
practical detector and classifier able to discriminate between
original and recaptured images without any prior information
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Fig. 1: Effects of first-order radial distortion. (a) Original grid. (b) Barrel (k0 > 0) and (c) pin-cushion distortions (k0 < 0).

about the devices. The strength of the proposed approach lies
in its generality as it does not assume particular recapture
conditions (e.g. handheld or off-axis cameras) or display
devices (interlaced screens or LCD). The method is applied on
a per-frame basis, and can be therefore applied to individual
images as well, provided enough features are present.

Our paper is organised as follows: in Section II, we derive
the expression for distorted edges after consecutive recaptures.
In Section III, the pipeline of our edge classifier is described,
while in Section IV, results are presented. We then conclude
and outline avenues for further research in Section V.

II. MATHEMATICAL MODELLING OF RECAPTURE CHAINS

The effect of lens distortion on images has been thoroughly
analysed in many computer vision and image processing
articles [14], [15]. Furthermore, several works have used lens-
based footprints, but contemplating exclusively the scenarios
of camera identification [16], [17], [18] and video splicing
detection [19]. However, the composite effect of multiple lens
distortions on geometric primitives to detect multiple recapture
is yet to be characterised.

Generally, lens distortion is a nonlinear operation shifting
all projected elements with cooordinates (x, y) by (δ(x), δ(y)),
where:
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In Eq. (1) above, r =
√
x2 + y2 is the pixel distance from

the center of the image plane, ki are the coefficients of radial
distortion, while pi, qi are the coefficients affecting the amount
of decentering distortion [20]. Generally, different reports
in the literature [14][21] agree on assuming the distortion
function to be dominated by the low-order radial distortion
coefficients, i.e. (pi, qi) = 0,∀i ∈ N, ki = 0,∀i ≥ 1, i ∈ N.
In Fig. 1, we show the effect of a first-order radial distortion
model (i.e. ki = 0,∀i ≥ 1, i ∈ N) on a calibration grid image.

In order to develop a footprint detector for image recapture,
we will now derive the effect of radial distortion in recapture
chains on geometric primitives such as straight lines. Without
any loss of generality, starting from a horizontal 3D line with
coordinates (X,Y, Z) = (s, 0, 0),−∞ < s < ∞, rotated
and translated in space by a 3 × 3 matrix R and a 3 × 1
vector t respectively, the line’s coordinates (X ′, Y ′, Z ′) after
the spatial transform can be expressed as:X ′Y ′

Z ′

 = R

s0
0

+ t =

αxs+ βx
αys+ βy
αzs+ βz

 , (2)

where (αx, αy, αz) and (βx, βy, βz) are parameters given by
the rotation and translation respectively. A pin-hole perspective
projection is then applied to the rotated line, projecting its
points to the ideal camera coordinates (x′, y′):(

x′

y′

)
= f
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Z′
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Z′
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= f
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where f is the camera focal length. The distorted coordinates
(x̂, ŷ) are then obtained by adding the distortion δ(x′) and
δ(y′) from Eq. (1) to the projected coordinates (x′, y′):(

x̂
ŷ

)
=

(
x′ (1 + δ(x′))
y′ (1 + δ(y′))

)
. (4)

Finally, the observed pixel coordinates (u, v) are obtained
through an affine transformation of the distorted image co-
ordinates (x̂, ŷ) which are modified according to the camera’s
intrinsic parameters:{

u = fx̂+ λ0ŷ + u0,

v = λ1fŷ + v0,
(5)

where λ0 and λ1 are the pixel skew parameter and aspect ratio
respectively, while (u0, v0) are the pixel coordinates of the
optical center. In all our following expressions, we assume that
λ1 = 1 for convenience, as it does not substantially change our
conclusions. Under the reasonable assumption that on standard
cameras the pixel skew can be neglected (i.e. λ0 = 0), we can
substitute in the expression for (x′, y′) in Eq. (5):




u− u0 = fx′ (1 + δ (x′)) = f

αxs+ βx
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(1 + δ (x′)) ,

v − v0 = fy′ (1 + δ (y′)) = f
αys+ βy
αzs+ βz

(1 + δ (y′)) .

(6)
The significance of the expressions in Eq. (6) consists in the
fact that the observed coordinates (u, v) along a distorted line
can be described by a rational polynomial in s of degree 3
assuming a first-order radial distortion model. However, by
considering the recapture of a 2D distorted line defined as
per Eq. (5), and displayed on a plane related to the recapture
device by a rotation and translation R and t respectively, we
obtain again the 3D coordinates (X ′, Y ′, Z ′) of the line after
spatial transform:

X ′Y ′
Z ′

 = R

f (1 + δ (x′)) αxs+βx

αzs+βz
+ u0

f (1 + δ (y′))
αys+βy

αzs+βz
+ v0

0

+ t. (7)

By repeating the same procedure followed earlier, we can
derive the counterpart of Eq. (6) for the recapture case. In the
expression below, we define δ̂i to be the distortion element in
the ith recapture scaled by the focal length and the perspective
foreshortening term, which in the case of the first capture is
equivalent to δ̂1 (·) = f 1+δ(·)

αzs+βz
:

u− u0 = f2δ̂2 (x
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(
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)
,

v − v0 = f2δ̂2 (y
′)
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f1δ̂1 (y
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)
.

(8)

In the expression above, µ, ν and ξ are unknown parameters
resulting from the initial spatial transform, and fi is the focal
length of the camera at the ith recapture stage. It can be seen
that unless R = I and t = 0, Eq. (8) is a rational polynomial
of degree at least 9 in s assuming a first-order radial distortion
function. This can be seen by considering that the second
distortion δ̂2 is performed on already distorted coordinates,
i.e. δ̂2 is a function of δ̂1, and the two distortions are further
compounded together as indicated by the multiplication of
the two distortion factors. By iterating the same process,
the polynomial will rapidly increase in degree as each stage
compounds the previous distortion.

III. A PRACTICAL DETECTOR FOR RECAPTURED VIDEOS

The main message from the previous section lies in the
demonstration that consecutive recapture will introduce distor-
tions of increasingly high order. Therefore, any state-of-the-art
method for distortion correction assuming a reasonably low
distortion order will not succeed in completely restoring the
original straight lines. We exploit this error in our practical
algorithm by extracting distorted straight lines from incoming
frames, and testing them for compliance with a low order
distortion model. However, because of the strong distortion,
traditional line detection methods such as the Hough transform
are bound to fail, as they tend not to be robust to deviations

from perfectly straight segments. On the other hand, the prob-
lem arises of automatically distinguishing a distorted straight
line from a genuine curved line.

Our approach is based on the idea of detecting continuous
smooth segments that exhibit small deviations from a straight
line. In Fig. 2, the pipeline for our proposed approach is
shown. Given a frame from an input video sequence, the
edges are first detected and converted into a binary mask.
While a Hough transform will not be able to identify entire
distorted segments, these can be approximated in a piecewise
fashion through a set of straight lines. The Hough transform
is therefore applied to the edge map and the Hough lines
are then clustered together, so that multiple lines with similar
coefficients describing the same curved edge can be associated
to the same cluster. Lines from the clusters are then merged
together by considering the intersections of the lines from each
cluster with the original edge map. The segmented curves are
finally used to estimate the overall distortion function for the
frame under the assumption of a first-order radial distortion
model, which is then used to obtain a corrected version of
the image. Deviations between the first- and higher-order
orthogonal projections of the lines are then used to provide
incremental evidence towards single or double capture.

A. Edge detection

The first task is to detect straight segments in the input
frame. Given an input frame I , the image derivatives along
the x and y directions are calculated with a 3×3 Scharr filter.
Similarly to other works, the computed derivatives are then
combined together within a monotonically decreasing gradient
function g(x, y), g ∈ [0, 1], which tends to 1 for smooth areas
and to 0 for perfect edges:

g(x, y) =
1

1 + γ

((
dI

dx

)2

+

(
dI

dy

)2
) , (9)

where the constant γ was empirically set to 1
50 . The detected

edges are then thresholded in order to preserve only areas of
strong gradient in the image. The threshold is set manually for
the first frame in the sequence, and then kept constant for the
remainder of the video input, although an extension to vary it
automatically to preserve an initial quantity of detected edges
in the image would be straightforward to implement.

The output of this stage is a binary map of detected edges.
The next step consists of isolating distorted straight lines from
genuinely curved segments. To this end, the Hough transform
of the binary edge map is computed in order to identify
straight segments within the detected edges. Hough lines with
little support corresponding to short straight segments are
automatically filtered out. The reasoning stems from the obser-
vation that for conventional capture devices the deformation
will be mild and warped straight lines will still be roughly
straight and suitable to be approximated with a limited number
of piecewise straight segments from the Hough transform.
On the other hand, curved lines will exhibit a much higher



Fig. 2: Workflow for the proposed video recapture detector.

curvature, thus will require a higher number of Hough lines
for approximation, each with a lower support in the image.

B. Distorted line identification

Hough lines belonging to the same segment will be char-
acterised by similar linear coefficients. Indeed, even Hough
lines belonging to parallel edges will be characterised by an
identical slope but distinct y-intercepts. The discrepancies in
the slope and y-intercepts are used to automatically cluster
Hough lines into groups describing each separate edge in the
binary map. The Hough line coefficients are first calculated
and the lines separated in two groups depending on whether
the line intersects first with the x or y axis. This first grouping
is carried out in order to have a better posed clustering
initialisation. Lines within the two groups are then clustered
using K-means, where each cluster defines the lines belonging
to a curved edge. The clusters from a distorted synthetic
calibration grid are shown in different colours in Fig. 2.

Identification of the curved lines is then carried out by
considering the intersections of the lines in each cluster with
the initial binary edge map. This is necessary since we are
interested in finding which portion of the curved segment
each Hough line in the cluster represents. The interesctions are
detected within a small user-defined tolerance threshold which
in our experiments has been set to ±2 pixels. The identified
intersection points are then filtered to eliminate disconnected
points from spurious intersections of the clustered Hough lines
with other edges in the edge map. All the intersection points
assigned to a cluster are then labelled as a single curved
segment and used for distortion estimation and classification.

C. Distortion estimation

Depending on the number of edges present in each frame,
the steps outlined above might need to be repeated for
several consecutive frames before a sufficient number of
edges is accumulated for estimating the lens radial distortion
function. Given a large enough set of N curved segments
li = (xi, yi), i ∈ [0, · · · , N ] from the previous stage of the

algorithm, these are used for an automatic estimation of the
lens radial distortion coefficients kj according to the method
proposed in [22].

In light of the considerations made in Section II and [14],
[21], a first-order radial distortion model is imposed within
the optimisation scheme. The method minimises the following
function to find the distortion coefficient k̂0:

E(k̂0) =
1

N

N∑
i=0

(
SixxS

i
yy −

(
Sixy
)2)

, (10)

where the Si elements are the covariance matrix entries for the
ith line calculated from the coordinates of the points on the line
corrected according to the current estimate k̂0. The function
in (10) has been proven to reach its minimum whenever the
corrected points lie along a straight line. For more details,
please refer to [22].

The estimated radial distorted coefficients are then used
in conjunction with the known cordinates of the distorted
segments in order to recover the corrected segments coordi-
nates l∗i = (x∗i , y∗i ) and passed onto the final stage of the
classification scheme.

D. Automatic classification

The fundamental idea behind the classification phase is
that the first-order distortion model assumed in the energy
minimisation in (10) is sufficient to describe the distortion
behaviour under single capture but unsuitable for the high-
order nonlinearities introduced during recapture. As a conse-
quence, we expect the detected lines after undistortion with the
estimated parameters to be closer to perfectly straight edges
in the single capture case rather than in recaptured sequences.

In our algorithm, we test the compliance of the corrected
lines l∗i = (x∗i , y∗i ) both with first and higher-order poly-
nomials. Generally this can be accomplished by projecting
the vector y∗i onto the subspace spanned by the vectors
x∗i
M , x∗i

M−1, · · · , 1, where M is the order of the polynomial
for the fitting. By defining the N×M matrix A as the stacked
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Fig. 3: Automatic classification. Top and bottom: (a) Frames from single capture and recaptured sequences. Fitting error
distribution with a (b) linear and (c) 4th degree polynomial fitting for single capture and recaptured frames.

x∗i
M , x∗i

M−1, · · · , 1 vectors, the M × 1 vector ci containing
the polynomial coefficients can be calculated as:

ci =
(

ATA
)−1

AT y∗i . (11)

For the projection, we only consider portions of the detected
curves away from the image boundaries in order to avoid
excessive curvature artifacts due to the undistortion algorithm.
Once all coefficients are estimated for all the corrected lines
and for both first and higher order polynomial approximations,
the distributions of the fitting errors are computed for both
approximation orders. For single capture cases, high-order co-
efficients will be negligible and the error distributions will be
very similar. On the other hand, significant differences will be
observed in the error distributions from recaptured sequences,
as it is shown for simulated data in Fig. 3 (b) and (c). Such
discrepancies are measured by calculating the Jensen-Shannon
divergence between the two orders of error distributions, which
has the desirable properties of being symmetric and being
bound within the interval (0, 1). Depending on whether the
measured divergence is greater than a threshold τ determined
offline with training sequences, the input acquisition chain is
classified as either single capture or recapture.

IV. EXPERIMENTAL RESULTS

The method has been tested on automatically generated
synthetic sequences. A virtual rendering environment was
created where the single capture sequence depicts a standard

calibration grid in 3D at a randomly generated position and
orientation. This is projected within the field of view of the
virtual camera for each frame. To generate the recaptured
sequence, another random 3D translation and rotation was
applied to the 2D image plane from the first capture for each
frame, and the scene projected again in 2D with a second
virtual camera. Both virtual cameras were set according to a
first-order radial distortion model.

In our experiment, lines were detected and analysed on a
per-frame basis on video sequences consisting of 50 frames.
Example frames from the test sequences are shown in Fig. 3
(a). It is interesting to note how despite the strong distortion no
appreciable differences between single capture and recaptured
frames can be deduced from visual inspection alone. In Fig.
3 (b), the linear polynomial fitting error distributions obtained
from all the frames in the sequences are shown. Here, it can be
noticed that the distribution of the recaptured sequence, as well
as having a higher average error value, presents a distinctly
different shape compared to the single capture case. However,
due to the limited size of the image domain and the generally
low curvature of the segments, these errors alone will be too
small for automatic classification.

Regarding the fitting error distributions for higher order
polynomials, these are shown in Fig. 3 (c). In the single capture
case, the error fitting distribution is virtually identical to the
one shown in (b) as the linear approximation is sufficient to
capture the distortion coefficients and the high order polyno-
mial coefficients will be close to zero. Conversely, the high-



order nonlinearities introduced during the recapture operation
will not be corrected during the undistortion phase, as a low-
order distortion model is assumed. This will in turn leave
nonzero high order polynomial coefficients in the projection,
resulting in the discrepancies between the distributions in Fig.
3.

Quantitative evaluation was carried out by 50-fold cross
validation for each sequence, corresponding to a classification
test for each frame with the classification threshold trained
based on the remaining 49 frames. As shown in Fig. 4,
the distributions of the JS divergence are perfectly separated
between the two sequences, resulting in perfect classification.
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Fig. 4: Distribution of the Jensen-Shannon divergences for
single and double capture sequences during cross-validation.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a model for automatic
recapture of video sequence based on radial distortion artifacts.
The effect of recapture chains on geometric primitives such as
straight lines was mathematically derived as the introduction
of high-order components in the distorted points coordinates.
A practical detector and classifier was then proposed to extract
curved edge features from images, estimate the lens distortion
coefficients and classify the sequence based on its compliance
to a low-order lens radial distortion model. Future work will
concentrate on fusing this cue with existing video recapture
methods and to test it extensively on real video data.
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