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ABSTRACT

Super-resolution algorithms combine multiple low resolution images
into a single high resolution image. They have received a lot of atten-
tion recently in various application domains such as HDTV, satellite
imaging, and video surveillance. These techniques take advantage of
the aliasing present in the input images to reconstruct high frequency
information of the resulting image. One of the major challenges in
such algorithms is a good alignment of the input images: subpixel
precision is required to enable accurate reconstruction. In this pa-
per, we give an overview of some subspace techniques that address
this problem. We first formulate super-resolution in a multichannel
sampling framework with unknown offsets. Then, we present three
registration methods: one approach using ideas from variable projec-
tions, one using a Fourier description of the aliased signals, and one
using a spline description of the sampling kernel. The performance
of the algorithms is evaluated in numerical simulations.

Index Terms— Image registration, Image resolution, Image
restoration, Spectral analysis, Spline functions.

1. INTRODUCTION

A high resolution input image is required in many imaging appli-
cations: recognition of people or license plates, satellite imaging,
viewing video material on HD displays, etc. Unfortunately, captur-
ing devices with such a high resolution are often still prohibitively
expensive. In some cases, such as satellite imaging, it can also be
practically impossible to replace a camera by a higher resolution ver-
sion when it becomes available. The wide adoption of HD TVs gen-
erates an increasing demand for the conversion of legacy SD video
material (or even freshly shot camera phone images and movies) to
HD resolution. This is exactly the goal of super-resolution algo-
rithms: to generate a high resolution image from a set of low res-
olution images. Typically, the input images need to be aliased. If
multiple images are then taken with small relative motion, the alias-
ing information from the different images can be used to reconstruct
the high frequency part of the high resolution image.

The idea of super-resolution imaging was first introduced by
Tsai and Huang in 1984 [4]. They used a frequency domain algo-
rithm to minimize the energy outside the known frequency range
of the images. In the past fifteen years, a vast number of algo-
rithms has been presented. Good overviews are given in the spe-
cial issues on this topic in the IEEE Signal Processing Magazine [5]
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and the EURASIP Journal of Applied Signal Processing [6]. Super-
resolution reconstruction is an ill-posed problem. It is usually turned
into a well-posed problem using regularization or an image model.
We will consider the second case, where we assume our image (after
sampling) to be in the Fourier or spline space. Most algorithms treat
image registration (aligning the input images) and reconstruction
(combining the aligned images to a single high resolution image)
as two separate problems. A standard image registration algorithm
is often used for the alignment, and emphasis is put on the recon-
struction part of the algorithm [7, 8]. Recently, new algorithms have
been developed that specifically consider registration methods for
(aliased) input images, and are successfully integrated in the super-
resolution algorithm [1, 2, 3, 9, 10]. In this paper, we present three
of those registration algorithms in a common framework based on
multichannel sampling.

In the next section, we will set up this framework by describing
super-resolution as a multichannel sampling problem with unknown
offsets. We will then use this setup to describe three algorithms that
solve this problem in Section 3: using projections, Fourier analysis,
and spline analysis. Simulation results of each method are presented
in Section 4, and Section 5 gives some concluding remarks.

2. SUPER-RESOLUTION AS A MULTICHANNEL
SAMPLING PROBLEM

We will now analyze the super-resolution setup mathematically.
While this description is given in 1D for simplicity, it can straightfor-
wardly be extended to 2D. Let f(t) be a continuous-domain signal
in an L-dimensional Hilbert space H with basis {ϕl(t)}l=0..L−1:

f(t) =

L−1∑

l=0

αlϕl(t), (1)

where αl is the expansion coefficient corresponding to the l-th ba-
sis function. Examples of such signals are truncated Fourier series,
wavelets, splines, etc. Without loss of generality, we will only con-
sider the signal on the interval [0, 1] here (0 ≤ t < 1).

We now take a first set of N uniformly distributed samples (cor-
responding to the first image) with sampling rate 1/N and sampling
kernel ψ(t):

y0(n) = 〈f(t), ψ
(
t− n

N

)
〉 =

L−1∑

l=0

αl〈ϕl(t), ψ
(
t− n

N

)
〉. (2)

Next, we take K − 1 other sets of samples (images), with offsets



{tk}k=1..K−1 with respect to the first set (t0 = 0):

yk(n) = 〈f(t), ψ
(
t− tk − n

N

)
〉

=

L−1∑

l=0

αl〈ϕl(t), ψ
(
t− tk − n

N

)
〉.

(3)

The offsets tk can take arbitrary real values between 0 and 1, and
are supposed to have a part that is not a multiple of 1/N (subpixel
shifts). We can rewrite this in vector notation as

yk = Φtkα, (4)

where yk and α are column vectors containing the samples yk(n)
and the expansion coefficients αl, respectively. The K × N matrix
Φtk consists of the basis functions ϕl(t) sampled uniformly with a
sampling kernel ψ(t), and unknown offset tk. The K sets of samples
can be combined in a single vector, resulting in

y =




y0

y1

...
yK−1


 =




Φt0

Φt1

...
ΦtK−1


 α = Φtα. (5)

This results in K sets of N uniform samples with unknown off-
sets between the sets of samples, just like in super-resolution imag-
ing, where one takes K pictures of N pixels each, with unknown
camera motion between the images (horizontal and vertical shifts or
more complex motion). It can be shown that if the total number of
samples KN is larger than the total number of unknowns L+K−1
(expansion coefficients and offsets), the problem is well-defined, and
has a single solution [11]. We will assume here that this is the case
(except in Section 3.3, where no special assumptions are made).

From (5), we can see that this problem is linear in the unknown
expansion coefficients αl, but non-linear in the unknown offsets tk.
Once the offsets are known, we can easily reconstruct the signal co-
efficients by solving a set of linear equations. We will therefore con-
centrate in this paper on the computation of the unknown offsets:
image registration.

3. SUBSPACE-BASED IMAGE REGISTRATION

In this section, we present a set of algorithms based on a subspace
analysis of super-resolution imaging. First, we present a projection-
based algorithm, followed by a Fourier-based and a spline-based al-
gorithm. In the first two algorithms, we assume the sampling kernel
is a Dirac (or can be factored out after reconstruction), and place
restrictions on the (sampled) signal model. The third method uses
splines to explicitly model the sampling kernel, and does not restrict
the signal model itself.

3.1. Projection-Based Algorithm

From (5), it is clear that our set of images y belongs to the subspace
spanned by the sampled basis functions Φt. In practice, the exact
sampling points of those basis functions are unknown, due to the
unknown shifts. If we take an arbitrary set of shift values t̂ 6= t and
the corresponding subspace Φt̂, it does not contain the set of images
y (taken with shifts t). We can therefore compute the shift values
by minimizing the difference between the sample vector y and its
projection PΦt̂

y onto the subspace Φt̂:

t = arg min
t̂
‖y −PΦt̂

y‖. (6)

As discussed in Section 2, once the shifts are known, the sig-
nal coefficients (and thus a high resolution image) can be recon-
structed by solving the set of linear equations from (5). We compute
a least squares solution for increased robustness against noise.
Note that this algorithm uses ideas similar to separable nonlinear
least squares [12] (which was also used with different descriptions
in [9, 10]).

3.2. Fourier-Based Algorithm

Let us now assume f(t) can be expressed in a Fourier basis. We can
then rewrite (4) as

yk = F∗Dtkα, (7)

with F∗ an N × L inverse Discrete Fourier Transform (DFT) ma-
trix, and Dtk an L × L diagonal matrix with elements Dtk (l, l) =

ej2πtkl/N . The notation F∗ is used for the Hermitian transpose of
the forward transform matrix F. Note that due to the undersampling,
F∗ is an extension of a square N×N inverse DFT matrix F∗N where
some columns are repeated, and not a submatrix of an L×L matrix
F∗L.

The Fourier transform of (7) can then be written as

Yk = FNyk = FNF∗Dtkα. (8)

The vector Yk is a phase shifted and aliased version of the original
Fourier coefficient vector α. If we assume the length L of α is a
multiple of N (otherwise we can always add zeros to α to make it a
multiple), α can be split in S = L/N blocks αi of length N . We
can then rewrite the Fourier transform as

Yk = FN

(
F∗N F∗N · · · F∗N

)
Dtkα

=
(

I I · · · I
)
Dtkα

= D′
tk

∑
i

ej2πtkiαi,

(9)

with D′
tk

the N ×N central part of the matrix Dtk . The subvectors
αi represent the overlapping parts of the spectrum due to undersam-
pling, and the sum is therefore over each of those S overlapping parts
of the spectrum.

From (9), we can see that for each set of samples, the vector
D′−1

tk
Yk belongs to the same S-dimensional subspace spanned by

the vectors αi. As the diagonal matrix D′
tk depends on tk, we can

therefore compute the offsets {tk} as the values for which

rank
(

Y0 D′−1
t1 Y1 · · · D′−1

tK−1YK−1

)
= S, (10)

where we require K > S = dL/Ne.

3.3. Spline-Based Algorithm

In many situations the sampling kernel ψ(t) can be estimated or is
known a-priori and this knowledge can be used to devise more effec-
tive registration techniques.

In the idealized acquisition model of digital cameras, the sam-
ples are related to the original view through the point spread func-
tion (PSF), which fundamentally models the blur due to the camera
lenses and the sensor structure. The PSF of a camera is normally
modeled with a Gaussian pulse, however, in this work, we assume
that the PSF can be approximated with a B-spline function. We make
this choice for two main reasons: first, B-splines of sufficiently high
order have a shape which is very close to that of a Gaussian function.



Second, B-splines possess the polynomial reproduction property we
can take advantage of in the registration step.

For those not familiar with polynomial splines, let us just recall
that a B-spline βL(t) of order L is obtained from the (L+1)-fold
convolution of the box function β0(t), that is:

βL(t) = β0(t) ∗ β0(t)... ∗ β0(t)︸ ︷︷ ︸
L+1 times

, with β̂0(ω) =
1− e−jω

jω
.

Here, β̂0(ω) denotes the Fourier transform of β0(t). Moreover, a
linear combination of shifted versions of B-splines of order L can
reproduce polynomials up to order L. More precisely, there exist
coefficients cm,n such that

∑

n∈Z
cm,nβL(t− n) = tm m = 0, 1, ..., L. (11)

Let us now reconsider the sampling problem of the previous sec-
tion. In this new acquisition scenario, we have that the measurements
yk(n) observed by the k-th digital camera are given by:

yk(n) = 〈f(t), βL

(
t− tk − n

N

)
〉.

We now observe the following:

∑
n cm,nyk(n)

(a)
= 〈f(t),

∑
n cm,nβL

(
t− tk − n

N

)〉
(b)
=

∫∞
−∞ f(t)(t− tk)mdt

def
= τm,k m = 0, 1, ..., L,

(12)
where (a) follows from the linearity of the inner product and (b)
from the polynomial reproduction formula (11). The above equation
is therefore showing that it is possible to retrieve the exact moments
τm,k of the signal f(t − tk) from its samples. From the moments
it is then almost straightforward to retrieve the offsets tk. In fact we
have that tk = (τ1,k − τ1,0)/τ0,0.

In the case of two-dimensional signals like images, the trans-
formation that relates two signals can be more complicated than a
simple translation. For example, the same object in two different
images might be related by an affine transformation. One can show
that a moment-based registration as described above for a simple
shift is also possible for such more complex motion. Since an affine
transformation has six degrees of freedom, more moments are re-
quired. More precisely, third order moments along the x and y axis
are needed in order to retrieve the affine transformation.

Local algorithm - There might be situations where the above
approach might become impractical or unstable. In this case, a reg-
istration approach based on local features might be more convenient.
Many registration algorithms are based on corner detection and then
on the matching of the corners of two different images in order to
retrieve the transformation between the two images.

In this work, we propose to locate corner points at the intersec-
tion of two straight edges. A single edge is parameterized by its an-
gle θ, height ζ and shift γ. Such parameters can be exactly retrieved
from the samples using the moment of the derivative of the original
function. More precisely, denote with z(n) = y0(n) − y0(n − 1),
one can show the following:

z(n) = 〈df(t)

dt
, βL+1

(
t− n

N

)
〉.

Namely, the new samples z(n) are equivalent to those obtained by
sampling the derivative of f(t) with a B-spline of order L+1 rather
than L.

It is then possible to retrieve the step parameters from the new
samples z(n). The complete solution for a single step edge is given
by:

ζ = −τ0,n,

tan θ =
τ0,n

τ1,n+1−τ1,n
,

γ =
(n+1)τ1,n−nτ1,n+1

τ0,n
,

(13)

where in this case τi,n indicates the i-th order moment of df(t)
dt

along
the n-th row of the sampled image. The derivative df(t)

dt
is computed

in discrete domain using discrete differences.
The validity of the above schemes will be assessed in the next

section.

4. RESULTS

We now apply the presented algorithms on various sets of input im-
ages. For the algorithm from Section 3.1, we subsampled an image
of 31×31 pixels (without prefiltering, but after applying real-valued
shifts), generating 5 randomly shifted and aliased input images of
16×16 pixels. One such image is shown in Figure 1a, and the recon-
structed image is shown in Figure 1b. The shift values are estimated
up to a precision of 10−16 (Matlab precision). Similarly, we tested

(a) Input image. (b) Output image.

Fig. 1: Results using algorithm from Section 3.1. The high resolu-
tion image (b) is perfectly reconstructed from 5 shifted low resolu-
tion images (a).

the algorithm from Section 3.2 on a set of 5 shifted and aliased input
images of size 32×32, generated from a 63×63 image. The results
are shown in Figure 2. Again, motion parameters are estimated up
to working precision.

For the algorithm from Section 3.3, we consider a set of real
images as they are acquired by a digital camera. The registration
approach considered here is based on continuous moments. Since it
takes a sampling point of view, image samples should be modified
as little as possible by internal post-processing occurring in a digi-
tal camera after acquisition. The set of images is thus acquired by
a SLR digital camera (a Nikon D70s) in RAW format. The experi-
ment is presented in Figure 3. Sixty pictures of the moon are taken
with a digital SLR camera and a lens with a focal length at 38mm
(35mm equivalent: 57mm) and settings: F16, 1/60s, ISO 200. The
PSF in this case is not estimated and is directly approximated with a
cubic B-spline at scale 1. The MRNSD algorithm (modified residual



(a) Input image. (b) Output image.

Fig. 2: Results using algorithm from Section 3.2. The high resolu-
tion image (b) is perfectly reconstructed from 5 shifted low resolu-
tion images (a).

norm steepest descent) is used as restoration method [13]. Figure 3a
shows the moon as acquired by the camera and Figure 3b presents
the obtained super-resolved image where details of the moon can be
observed.

(a) (b)

Fig. 3: Real super-resolution of the moon from 60 images acquired
with a Nikon D70s SLR camera and a lens (18-70mm, F3.5-4.5) set
at a focal length of 38mm (35mm equiv.: 57mm). (a) The moon as
acquired by the camera (60x60 px); (b) Super-resolved image of the
moon (600x600 px) with MRNSD restoration method.

From the above figures, we can see that all three methods give
considerable improvements in image resolution. They also require
high computational power. For the algorithms from Sections 3.1
and 3.2, only computer simulations were shown where the origi-
nal image is perfectly reconstructed. While the memory require-
ments are higher for the algorithm in Section 3.1, the algorithm
from Section 3.2 requires a slightly larger number of input images
(K > S = dL/Ne instead of K > (L − 1)/(N − 1)). The algo-
rithm from Section 3.3 is tested in an experiment using real images
from a digital camera as input. The result can therefore only be eval-
uated visually. It does not put specific requirements on the minimum
number of input images and performs pairwise registration of the
images.

5. CONCLUSIONS

We have presented a common framework for some recent subspace-
based image registration methods for super-resolution imaging.

First, we have shown that super-resolution can be described as
a multichannel sampling problem with unknown offsets. Three
different solution methods using subspace descriptions were then
described: one using ideas from variable projection theory, one us-
ing a Fourier analysis of the aliased signals, and finally one based
on a spline analysis of the sampling kernel. The performance of the
different algorithms is illustrated in numerical simulations.
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