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ABSTRACT
This paper proposes a new approach to distributed video coding.
Distributed video coding is based on the concept of decoding with
side information at the decoder. Such a coding scheme employs a
low-complexity encoder and the load of computational complexity
is shifted to the decoder side. This property makes it well suited for
low-power devices such as mobile video cameras.

The uniqueness of our approach lies in the combined use of
discrete wavelet transform (DWT) and the concept of sampling of
signals with �nite rate of innovation (FRI) [1], which allow us to
shift the task of motion estimation to the decoder side. Unlike
the currently existing practical coders, we do not employ any tradi-
tional channel coding technique. Our preliminary results show that,
for a simple video sequence with a uniform background, the pro-
posed coding scheme can achieve a better PSNR than JPEG2000-
intraframe coding at low bit rates.

Keywords - distributed video compression, wavelet, FRI sig-
nals, sampling, moments.

1. INTRODUCTION

The rapid growth in the area of "uplink" rich media applications
in today's emerging era of mobile devices has sparked the inter-
est in the development of practical distributed coding algorithms
[2], [3]. Such video coding schemes employ a low-complexity
encoder while achieving a better compression ef�ciency than the
"intraframe" coding. This is made possible by shifting the load of
computational complexity to the decoder side and the "interframe"
dependency of the video sequence is exploited at the receiver. This
unconventional balance in complexity is, in fact, a part of the archi-
tectural requirements of the "uplink" rich media applications [3].
Existing distributed video coders use sophisticated channel codes
to reconstruct the video sequence at the decoder (see [2] for a com-
prehensive review).

In this paper, we investigate the use of discrete wavelet trans-
form (DWT) together with the concept of sampling of signals with
�nite rate of innovation (FRI) [1] to implement motion estimation at
the decoder. Sampling of FRI signals shows that the geometric mo-
ments of the signals can be retrieved from its low-resolution set of
samples, which are the low-pass coef�cients of the DWT. The mo-
tion parameters describing the disparity between two video frames
can then be estimated using the moments of each frame. In our
scheme, the encoder only performs the DWT and the complex task
of motion estimation is shifted to the decoder side. Therefore, our
aim here is to present a new approach to perform motion estimation
at the decoder. We present three coding schemes for the following
scenarios: (a) a polygon moving by translation in a uniform back-
ground; (b) the extension of (a) to the case where motion can be

described by an af�ne transform; (c) a real video sequence with a
�xed background.

In the next section, main results of sampling of FRI signals are
discussed. Our proposed distributed coding schemes are presented
in Section 3. The preliminary results are given in Section 4. Finally,
conclusions are drawn in Section 5.

2. SAMPLING OF 2-D FRI SIGNALS

Recent developments in sampling theory have focussed on classes
of non-band limited signal, one of which is a class of signals with
�nite rate of innovation (FRI). The de�nition and sampling schemes
of FRI signals are given in details in [4] and [1]. In this section, we
will only discuss the main results that will be used in the sequel. The
family of sampling kernel used in our setup includes functions that
reproduce polynomials and thus satisfy the Strang-Fix conditions
[1].

Let a 2-D continuous signal be f(x; y) with x; y 2 R and let
the 2-D sampling kernel be '(x; y). In a typical sampling setup, the
samples obtained by sampling f(x; y) with '(x; y) are given by:

Sm;n = hf(x; y); '(x=T �m; y=T � n)i ; (1)

where h�i denotes the inner product andm;n 2 Z. Assume that the
sampling kernel satis�es the polynomial reproduction property i.e.:X
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with p; q 2 Z and a proper set of coef�cients c(p;q)m;n . It follows
that, with T = 1, the continuous geometric momentmp;q of order
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c(p;q)m;n Sm;n. (3)

Therefore, given a set of coef�cients c(p;q)m;n , one can retrieve the con-
tinuous moments from an arbitrarily low-resolution set of samplesbSm;n provided that f(x; y) lies in the region where equation (2) is
satis�ed.



The fact that any valid scaling function will reproduce poly-
nomials is well known. We can therefore use the scaling function
'j(x; y) of the DWT as a sampling kernel in our coding scheme,
where j represents the number of level of the wavelet decompo-
sition. Here, 'j(x; y) is given by the tensor product of two 1-D
scaling function 'j;n(t) = 2�j=2'(2�jt � n), j; n 2 Z. Thus
we can change the resolution of Sm;n by altering j with the cor-
responding sampling period of T = 2j . It can be shown that the
required coef�cients c(p;q)m;n are given by:

c(p;q)m;n =


xpyq; e'j(x�m; y � n)� (4)

where e'j(x; y) is the dual of 'j(x; y). In the next section, we
show that the motion parameters can be extracted from the set of
continuous momentsmp;q obtained using the equation (3).

3. A NOVEL APPROACH TO DISTRIBUTED VIDEO
CODING

The basic framework behind our coding scheme is as follows; �rst,
the video sequence is divided into blocks where each block contains
N frames. The �rst frame of each block is treated as the "key frame"
and is encoded with a conventional intraframe coding method. The
rest of the frames are "non-key frames", which are sampled and then
quantized. At the decoder, once the key frame is reconstructed, its
moments can be calculated directly. The moments of the non-key
frames are retrieved from the quantized samples using the relation-
ship given in (3). The motion parameters describing the disparity
between the key frame and non key frames are then estimated using
their respective moments. Lastly, non-key frames are reconstructed
by performing motion estimation on the key frame. Compression is
achieved by only transmitting the low-resolution set of samples of
non-key frames. We now present our proposed distributed coding
schemes for the three scenarios stated above.

3.1. A bi-level polygon moving by translation

In order to gain some intuition, we start by considering the simple
case of a sequence of a bi-level polygon, moving by translation, in
a uniform background. Let us de�ne a block of N video frames to
be fi(x; y), i = 1; 2; :::; N , x; y 2 R and set f1(x; y) to be the key
frame. It follows that fi(x; y) = f1(x�xi; y�yi), i = 2; 3; :::; N
where ti= [xi; yi] is the translation vector. Using the de�nition of
the moment of the ith frame, mi

p;q , and let x0 = x � xi, we have
that:

mi
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is de�ned as the barycenter of the signal.

Our coding scheme for this sequence is as follow; each cor-
ner point of the polygon in the key frame f1(x; y) is quantized
and transmitted to the decoder and the moments of f1(x; y) are
computed directly. The non-key frames fi(x; y), i = 2; 3; :::; N
are then sampled with a kernel '(x; y) that satis�es the condition
given in (2). The samples Si(m;n), i = 2; 3; :::; N are quan-
tized before being transmitted. The decoder retrieves the zeroth
and �rst order moments of each frame using the equations (3) and
(4) and the translation vectors ti, i = 2; 3; :::; N are retrieved as
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Fig. 1. Coding scheme for a translating bi-level polygon

shown in (5). Non key frames are then reconstructed as fi(x; y) =
f1(x� xi; y � yi). This scheme is illustrated in Figure 1.

Since the continuous moments are preserved in the samples
Si(m;n) the distortion in our scheme is due to the quantization
process. We compare the performance of our coding scheme with
an ideal interframe coder case, where the encoder transmits the
quantized corner points and the quantized translation vectors ti di-
rectly to the decoder. Given a block of N frames, each of size
M � M , that contains a bi-level equal-side polygon of C corner
points with amplitude B. At high bit-rate, we can show that the
theoretical distortion-rate D(Rtotal) curve of the interframe coder,
whereD is measured as the mean-squared-error (MSE), is bounded
by:

D(Rtotal) � 2M2B2E

�
2
� Rtotal
2(C+N�1)

�
, (6)
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�
. The total number of

bits used to encode the sequence is given by Rtotal = CRC +
(N � 1)RT , where RC and RT are the number of bits allocated
to represent each corner point and each translation vector in the
Cartesian coordinate. The optimal bit-allocation is given by RT +
RE = RC . The derivation of the D(R) curve is omitted due to
limited space. The simulation results are given in Section 4.

3.2. A real object moving under af�ne transform

We can extend the above scheme to the case of a real object, where
the motion is estimated with an af�ne transform. The disparity be-
tween the ith and jth frame is given by (xj ; yj) = Aij(xi; yi)+tij ,
i; j 2 [1; 2; :::; N ], i 6= j where Aij is a non-singular 2 � 2 ma-
trix and t is a translation vector. A method to retrieve the matrix
Aij using second and higher order moments is described in [5] and
[6]. In [5], the author showed that, by using the whitening trans-
form, the estimation of Aij can be reduced to a problem of �nding
a rotational matrix R with:

A = FjRF
�1
i with F(�) =

2664
q
�
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where �(�)p;q is the central moment of order (p + q). It was shown
in [5] that the matrix R can be retrieved from the third order com-
plex moments. The central and complex moments can be calcu-
lated from a combination of geometric moments of the same order.
Therefore, we need a sampling kernel that can reproduce polynomi-
als up to degree three, for example, a third order B-Spline.

The above coding scheme, as shown in Figure 1, can be re-
peated in a similar manner. Since the sequence contains a real ob-
ject, the key frame can be encoded with a conventional intraframe
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Fig. 2. A coding scheme for the highway sequence. Top: the en-
coder. Bottom: the decoder.

coding such as JPEG2000 and its moments can be computed di-
rectly at the decoder. Using the quantized samples bSi(m;n), i =
2; 3; :::; N of the non-key frames, the decoder estimates not only
tij but alsoAij using the moments up to third order obtained by the
equations (3) and (7). The sequence is reconstructed as (xj ; yj) =
Aij(xi; yi)+tij .

3.3. A real video sequence with �xed background

This is a part of our on going work where we aim to apply the above
framework to encode a more realistic video sequence with a �xed
background. We used the "highway sequence" in our experiment
as shown in Figure 6. The motion of each car can be modelled
by an af�ne transform, which involves translation and rescaling.
We also assume that the encoder and decoder have access to the
background image by extracting it from a set of video frames prior
to compression.

We propose the following coding algorithm for this sequence.
First, the video sequence is divided into blocks of N frames. The
�rst frame of the block is the key frame K and is encoded using
a conventional intraframe coding method. For the non-key frames
L, the frame difference Dres between the current frame and the
background is sampled. The encoder then transmits these quantized
samples bSm;n. At the decoder, object segmentation is performed on
the reconstructed key frameK0 and the objects Oo, o = 1; 2; ::; No

are obtained where No denotes the total number of objects or cars
in this case. The moments of each object are then computed. The
non-key frames are then reconstructed as follow: the decoder seg-
ments the observed samples to obtain the sampled version of each
object bSom;n; for each object, the moments are retrieved and the
af�ne transform parameters, Aoij and to, describing the disparity
between the same object in the current frame and the key frame
are estimated; �nally, the decoder combines the af�ne transformed
objects A(Oo)with the background.

In order to improve the quality of the reconstructed non-key
frames, further processing can be applied, for example, iterative re-
�nement of motion parameters using the observed samples as refer-
ence. The proposed coding scheme is summarised in the Figure
2. Note that the complexity of the encoder is much lower than
that of the decoder. We are currently investigating the use more
sophisticated segmentation and reconstruction techniques that will
give more visually pleasant results. In the next section, we present
our preliminary results of the coding schemes of the three scenarios
above.
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4. PRELIMINARY SIMULATION RESULTS

In order to quantize the samples in our simulation, we adopted the
embedded coding technique �rst presented in [7]. This gave us
the advantage of allocating more bits to samples with higher mag-
nitudes and providing a compact multiprecision representation of
samples.

First, we present the simulation results for the polygon case.
The resolution of the original image was 1024 � 1024. It was
then sampled with a Daubechies 2 �lter for 8 iterations. The ob-
served samples were of size 8�8. Note that zero-padding was used
to eliminate errors caused by boundary conditions. The sequence
contained a translating bi-level square of 8 frames. The �rst frame
was set to be the key frame. We used 10 bits to encode the corner
points and then varied the number of bits used by the embedded-
code quantizer to represent the samples. The D(R) plot is shown
in Figure 3 where the theoreticalD(R) of the interframe encoder is
given in (6) withM = 1 and B = 255 in this case. At higher rate,
the gap between the ideal encoder and our scheme is in the order of
10�4 bits per pixel (bpp). A perfect reconstruction was achieved at
a total rate of 1:76� 10�4 bpp.

Figure 4 shows a video sequence of a real object moving un-
der af�ne transform. The sequence had 8 frames, each of size
512 � 512. In this example, the object was translated, rotated and
re-scaled. Each non-key frame was sampled with a Daubechies
db 4 �lter for 6 iterations. With zero-padding, the observed sam-
ples were 20 � 20 in size. JPEG2000 was used to encode the �rst
frame and was implemented with the JJ2000 software [8]. A plot
of PSNR against bit rate of the sequence as illustrated in Figure 4
is shown in Figure 5. The bit allocation between the key frame and
the non-key frames was done using a greedy strategy, meaning that
an additional bit was given to the one that improves PSNR the most.
We compared our results with that of the, independent, JPEG2000
intraframe encoder where each frame was independently encoded
with JPEG2000. From Figure 5, at lower rates (below the 0:01 bpp
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point), our coding scheme performed better than the JPEG2000 in-
traframe encoder.

The highway sequence is shown in Figure 6. We used a 4-frame
sequence with the original frame size of 288�352 and the samples
were 88�104 with Daubechies db 4 �lter at 2 decomposition level.
Multiple objects limited the number of decomposition level as we
needed to separate the samples at the decoder. JPEG2000 was used
to encode the �rst frame. The segmentation was done by detecting
changes in pixel values. Figure 7 shows the plot of PSNR against
bit rate in comparison with a JPEG2000 intraframe encoder. In or-
der to make a fair comparison, we assumed that the background
is also available at the intraframe encoder. From Figure 7, the in-
dependent encoder performed slightly better as the performance of
our scheme is limited by the simple segmentation technique. We
believe that with more sophisticated segmentation and reconstruc-
tion techniques the performance can be improved signi�cantly. This
development is a part of our ongoing work.
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5. CONCLUSIONS AND FUTUREWORK

In distributed video coding, the load of computational complexity
is shifted to the decoder side. We have introduced a new approach
to perform the complex task of motion estimation at the decoder us-
ing results of sampling of FRI signals. The novelty of the scheme
lies in its ability to estimate the motion parameters using geomet-
ric moments, which can be retrieved from the low-resolution sam-
ples. Three schemes were presented in this paper. Our preliminary
results showed that, for a simple video sequence with a uniform
background, our coding scheme can perform better than an indepen-
dent JPEG2000 intraframe coder at low bit rates. Our future work
includes the development of a decoder that employs more sophisti-
cated techniques as well as a more precise analysis on the effect of
quantization errors and theD(R) behavior of our schemes. Finally,
we aim to develop a scheme which employs local motion estimation
technique at the decoder.

6. REFERENCES

[1] P. L. Dragotti, M. Vetterli, and T. Blu, �Sampling moments
and reconstructing signals of �nite rate of innovation: Shannon
meets Strang-Fix,� IEEE Transactions on Signal Processing,
vol. 55(5), pp. 1741�1757, May 2007.

[2] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, �Dis-
tributed video coding,� Proceedings of the IEEE, vol. 93, no. 1,
pp. 71�83, 2005.

[3] R. Puri and K. Ramchandran, �PRISM: a video coding archi-
tecture based on distributed compression principles,� in 40th
Allerton Conference on Communication, Control and Comput-
ing, Allerton, IL, October 2002.

[4] M. Vetterli, P. Marziliano, and T. Blu, �Sampling signals with
�nite rate of innovation,� IEEE Transactions on Signal Process-
ing, vol. 50, no. 6, pp. 1417�1428, 2002.

[5] J. Heikkilä, �Pattern matching with af�ne moment descriptors,�
Pattern Recognition, vol. 37, no. 9, pp. 1825�1834, 2004.

[6] L. Baboulaz and P. Dragotti, �Distributed acquisition and image
super-resolution based on continuous moments from samples,�
in IEEE International Conference on Image Processing (ICIP),
Atlanta, USA, October 2006.

[7] J. Shapiro, �Embedded image coding using zerotrees of wavelet
coef�cients,� IEEE Transactions on Signal Processing, vol. 41,
no. 12, pp. 3445�3462, 1993.

[8] �JJ2000 an implementation of the JPEG2000 standard in Ja-
vaTM,� EPFL (Ecole Polytechnique Federale de Lausanne),
Switzerland, http://jj2000.ep�.ch/.


